• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une approche combinatoire novatrice fondée sur les matroïdes orientés pour la caractérisation de la morphologie 3D des structures anatomiques / A new combinatorial method based on oriented matroids to characterize the 3D morphology of anatomical structures

Sol, Kevin 05 December 2013 (has links)
Dans cette thèse, nous proposons une approche combinatoire novatrice fondée sur les matroïdes orientés pour l'étude quantitative de la forme de structures anatomiques 3D. Nous nous basons sur des points de repère qui ont été préalablement localisés par des experts sur la structure anatomique étudiée. La nouveauté de cette méthode provient de l'utilisation de matroïdes orientés. Ces outils mathématiques nous permettent de coder la position relative des points de repère de façon purement combinatoire, c'est-à-dire sans utiliser de notions d'angles ou de distances, en associant un signe (0, + ou -) à chaque sous-ensemble de (d+1) points de repère où d est la dimension de l'espace (dans notre cas 2 ou 3). Dans une première partie, nous supposons qu'il existe des contraintes d'ordres sur chaque axe de coordonnée pour les points de repère. Nous obtenons alors une caractérisation (en dimension 2 et 3) des sous-ensembles de points de repère dont le signe associé est constant, quelles que soient les valeurs des coordonnées satisfaisant les contraintes d'ordre. Dans une deuxième partie, nous cherchons à classifier un ensemble de modèles 3D, en les codant au préalable par ces listes de signes. Nous analysons d'abord comment s'appliquent les algorithmes de clustering classiques, puis nous décrivons comment caractériser des classes de façon directe, à l'aide des signes associés à quelques sous-ensembles de points de repère. Dans une troisième partie, nous détaillons les algorithmes et l'implémentation en machine de cette nouvelle méthode de morphométrie afin de pouvoir l'appliquer à des données réelles. Dans la dernière partie, nous appliquons la méthode sur trois bases de données composées chacune de plusieurs dizaines de points de repères relevés sur plusieurs dizaines à plusieurs centaines de structures crâniennes pour des applications en anatomie comparée, en orthodontie et sur des cas cliniques d'enfants présentant des déformations cranio-faciales. / In this thesis, we propose an innovative combinatorial method based on oriented matroids for the quantitative study of the shape of 3D anatomical structures. We rely on landmarks which were previously defined by experts on the studied anatomical structure. The novelty of this method results from the use of oriented matroids. These mathematical tools allow us to encode the relative position of landmarks in a purely combinatorial way, that is without using concepts of angles or distances, by associating a sign (0, + or -) for each subset of (d+1) landmarks where d is the dimension of space (in our case 2 or 3). In the first part, we assume that there exist constraints of orders on each coordinate axis for the landmarks. We obtain a characterization (in dimension 2 and 3) of the subsets of landmarks of which the associated sign is constant, regardless of the values of the coordinates satisfying the constraints of order. In a second part, we try to classify a set of 3D models, encoding in advance by these lists of signs. We first analyze how to apply classic clustering algorithms, and then describe how to characterize the classes directly, using signs associated with some subsets of landmarks. In the third part, we explain the algorithms and the implementation of this new morphometry method in order to apply it to real data. In the last part, we apply the method to three databases each consisting of several dozens of points defined on several dozens to several hundreds of cranial structures for applications in comparative anatomy, in orthodontics and on clinical cases of children with craniofacial deformities.
2

Multiflots, métriques et graphes h-parfaits : les cycles impairs dans l'optimisation combinatoire

Marcus, Karina 12 January 1996 (has links) (PDF)
Ce travail se situe dans le domaine de l'optimisation combinatoire. Nous étudions plus particulièrement des caractérisations d'objets pour lesquels des problèmes, qui dans le cas général sont NP-complets, deviennent polynomiaux. Nous traitons d'abord le problème de la faisabilité d'un multiflot, qui possède des applications trés importantes en recherche opérationnelle. C'est à dire, étant donnée la spécification du problème, avec le réseau, les capacités et les demandes, on veut démontrer l'existence ou la non-existence d'une solution. Une façon d'aborder ce problème est de donner des conditions nécessaires et suffisantes pour l'existence d'un multiflot, comme celle connue par condition de coupe. Nous présentons la condition (CC, K_5, F_7), qui généralise la condition de coupe et "raffine" une autre condition existante, la (CC3). La structure du problème de multiflot nous permet aussi de regarder un problème étroitement associé, celui du "packing" de métriques. Nous traitons le cas des packing entiers et demi-entiers, quand la famille de métriques comprend les métriques CC3 et les métriques K_5 et F_7. Nous caractérisons la classe de graphes, et plus généralement de matroïdes, ou l'on peut trouver des packings entiers et demi-entiers, sous quelques hypothèses additionnelles. Puis nous nous intéressons aux propriétés générales des graphes h- et t-parfaits, et au problème de coloration associé. Les résultats que nous présentons donnent des bornes pour leur nombres chromatiques, et des classes qui satisfont une conjecture de Shepherd. Enfin nous présentons la hiérarchie des graphes étudiés, qui est obtenu grâce à des outils comme les graphes faiblement bipartis, les clutters binaires et les matrices à composantes 0,1. Nous clôturons ce mémoire en précisant quelques directions de recherche qui pourront donner suite à ce travail, aussi bien sur le sujet de la faisabilité des problèmes de multiflot, que sur la coloration des graphes h- et t-parfaits.
3

Enumérations eulériennes dans les multigraphes et invariants de Tutte-Grothendieck

Martin, Pierre 19 March 1977 (has links) (PDF)
.
4

Synthèse de réseaux à composantes connexes unicycliques

Hadji, Makhlouf 24 September 2009 (has links) (PDF)
Cette thèse s'inscrit dans le domaine de l'optimisation combinatoire. Elle utilise l'approche polyèdrale pour résoudre des problèmes combinatoires qui se posent dans le contexte des réseaux de télécommunications. Nous introduisons et étudions le problème de synthèse de réseaux à composantes connexes unicycliques. Après avoir rappelé que le problème est facile à résoudre en absence d'autres contraintes, nous étudions de nouvelles variantes en intégrant de nouvelles contraintes techniques. Nous commençons par une contrainte portant sur la taille des cycles. Nous souhaitons interdire tous les cycles contenant au plus p sommets. Le problème est alors NP-Difficile. Des inégalités valides sont alors proposées pour ce problème. On montre sous des conditions bien précises que ces inégalités peuvent être des facettes. Plusieurs algorithmes polynomiaux ont été proposés pour la séparation des inégalités valides. Ces algorithme sont mis en oeuvre et des résultats numériques sont donnés. Nous nous focalisons par la suite sur un nouveau problème dit de Steiner consistant à partitionner un réseau en composantes unicycliques tout en imposant que certains sommets soient sur les cycles. On montre alors que ce problème est facile au sens de la complexité algorithmique en proposant un algorithme polynomial et une formulation étendue du problème. On présente également une description partielle de l'enveloppe convexe des vecteurs d'incidence de ces réseaux. La séparation des inégalités est également étudiée. Nous proposons notamment une généralisation de l'algorithme de Padberg-Rao pour séparer les inégalités Blossom. D'autres contraintes techniques sont prises en compte : contraintes de degrés, contrainte sur le nombre de composantes connexes, appartenance de certains sommets à une même composante connexe et enfin la séparation de certains sommets qui doivent être sur des composantes différentes. Enfin, nous faisons une étude spectrale de deux classes spécifiques de graphes unicycliques. Mots clés : Optimisation Combinatoire, Polyèdres, Algorithme à Plans Coupants, Graphes
5

Outils d'aide à la conduite pour les opérateurs des réseaux de distribution

Enacheanu, Florin Bogdan 26 October 2007 (has links) (PDF)
La détermination d'une topologie d'un réseau de distribution caractérisée par des pertes Joule minimales conduit à résoudre un problème d'optimisation combinatoire, non linéaire avec des variables discrètes. Ce problème, à la charge du distributeur, s'avère critique et dépendant de nombreux facteurs tels que la présence de production décentralisée et les évolutions de la charge. Diverses approches ont été abordées. Après l'examen d'une recherche exhaustive, deux approches heuristiques et une approche méta heuristique, fondée sur la théorie des graphes et des matroïdes, ont été employées pour déterminer une topologie radiale optimale pour un état donné de charge et de production. Une procédure indiquant les permutations de branches nécessaires pour transiter entre deux topologies radiales est ensuite présentée. Afin d'identifier une topologie optimale suivant une courbe de charge, une procédure fondée sur des optimisations horaires est réalisée. Finalement, des algorithmes pour l'optimisation de topologies partiellement maillées sont présentés.
6

Les matroïdes et leur implication dans l'allocation de ressources indivisibles : algorithmes d'approximation avec garantie de performance / Matroids and their implication in the allocation of indivisible resources : approximation algorithms with guaranteed performance

Tlilane, Lydia 28 November 2014 (has links)
Nous nous intéressons dans cette thèse à la problématique de la décision collective. L’objectif est de déterminer une solution de compromis pour des problèmes soumis à de multiples points de vue. Les problèmes considérés sont de nature combinatoire. Plus précisément, il s’agit de la classe des systèmes d’ensembles qui ont une structure de matroïde. La théorie des matroïdes est centrale en optimisation combinatoire, elle a permis d’unifier des structures apparemment séparées comme les arbres et les couplages dans les graphes et elle a engendré des algorithmes efficaces pour résoudre des problèmes d’optimisation non triviaux en temps polynomial. Nous nous intéressons à fournir des algorithmes d’approximation polynomiaux centralisés et décentralisés avec garantie de performance pour déterminer une solution de compromis qui est une base du matroïde. La solution de compromis doit également être équitable pour tous les membres de la collectivité. Nous portons un intérêt particulier au problème de partage équitable de biens indivisibles qui est une thématique importante en choix social computationnel et dont le problème se modélise par les matroïdes. / In this thesis, we are interested in collective decision-making. The objective is to find a tradeoff solution for problems that are evaluated by multiple points of view. We consider problems having a matroid structure. Matroid theory is significant in combinatorial optimization, it helped to unify apparently separated structures like forests and matchings in graphs and it includes efficient algorithms for solving non-trivial optimization problems in polynomial time. We are interested to provide polynomial time centralized and decentralized approximation algorithms for finding a tradeoff solution which is a base of the matroid. The tradeoff solution must also be fair for all the members of the community. We are particularly interested in the issue of the fair division of indivisible goods which is central in computational social choice and that can be modeled by matroids.

Page generated in 0.0494 seconds