1 |
Maximum Energy Subsampling: A General Scheme For Multi-resolution Image Representation And AnalysisZhao, Yanjun 18 December 2014 (has links)
Image descriptors play an important role in image representation and analysis. Multi-resolution image descriptors can effectively characterize complex images and extract their hidden information.
Wavelets descriptors have been widely used in multi-resolution image analysis. However, making the wavelets transform shift and rotation invariant produces redundancy and requires complex matching processes. As to other multi-resolution descriptors, they usually depend on other theories or information, such as filtering function, prior-domain knowledge, etc.; that not only increases the computation complexity, but also generates errors.
We propose a novel multi-resolution scheme that is capable of transforming any kind of image descriptor into its multi-resolution structure with high computation accuracy and efficiency. Our multi-resolution scheme is based on sub-sampling an image into an odd-even image tree. Through applying image descriptors to the odd-even image tree, we get the relative multi-resolution image descriptors. Multi-resolution analysis is based on downsampling expansion with maximum energy extraction followed by upsampling reconstruction. Since the maximum energy usually retained in the lowest frequency coefficients; we do maximum energy extraction through keeping the lowest coefficients from each resolution level.
Our multi-resolution scheme can analyze images recursively and effectively without introducing artifacts or changes to the original images, produce multi-resolution representations, obtain higher resolution images only using information from lower resolutions, compress data, filter noise, extract effective image features and be implemented in parallel processing.
|
2 |
Maximum Energy Subsampling: A General Scheme For Multi-resolution Image Representation And AnalysisZhao, Yanjun 18 December 2014 (has links)
Image descriptors play an important role in image representation and analysis. Multi-resolution image descriptors can effectively characterize complex images and extract their hidden information.
Wavelet descriptors have been widely used in multi-resolution image analysis. However, making the wavelet transform shift and rotation invariant produces redundancy and requires complex matching processes. As to other multi-resolution descriptors, they usually depend on other methods, such as filtering function, prior-domain knowledge, etc.; that not only increases the computation complexity, but also generates errors.
We propose a novel multi-resolution scheme that is capable of transforming any kind of image descriptor into its multi-resolution structure with high computation accuracy and efficiency. Our multi-resolution scheme is based on sub-sampling each image into an odd-even image tree. Through applying image descriptors to the odd-even image tree, we get the relative multi-resolution image descriptors. Multi-resolution analysis is based on downsampling expansion with maximum energy extraction followed by upsampling reconstruction. Since the maximum energy usually retained in the lowest frequency coefficients; we do maximum energy extraction through keeping the lowest coefficients from each resolution level.
Our multi-resolution scheme can analyze images recursively and effectively without introducing artifacts or changes to the original images, produce multi-resolution representations, obtain higher resolution images only using information from lower resolutions, compress data, filter noise, extract effective image features and be implemented in parallel processing.
|
3 |
MAXIMIZATION OF ENERGY GENERATION FROM SMALL HYDROPOWER PLANTIN SRI LANKA : - / MAXIMIZATION OF ENERGY GENERATION FROM SMALL HYDROPOWER PLANTIN SRI LANKA : -PATHIRANAGE, GUMINDA SANJEEWA PRIYADARSHANA January 2014 (has links)
Sri Lanka has a number of small waterfalls and channels. Related to this there is a significant potential to develop small hydropower plants, thus to generate much needed electricity for country’s development efforts. Small hydro power plants cause less environmental effects compared to large scale hydro power generation and power generation using fossil fuel. Therefore, it is a timely requirement to explore the possibilities of utilizing small water streams to generate electricity as much as possible as well as to optimize the energy generation with the available water in those water streams. The importance of small hydro power is highlighted in the Sri Lanka’s energy generation plan, and the Ceylon Electricity Board (CEB) annual report states that in year 2011 total installed capacity of small hydro plant was around 200MW and it is expected to expand energy generation to around 800GWh. This study focuses on finding out optimum operating parameters to maximize the energy generation of existing small hydro power plant in the country. By selecting a few small hydro power plants, preliminary studies were performed to identify optimum values of water flow rate to maximize the efficiency of the power generation. The study revealed that the selected plants had not operated at the maximum efficiency; hence they did not optimally utilize the available water.
|
4 |
Model, Design, and Control for Power Conversion in Wave Energy Converter SystemChen, Chien-An 29 June 2020 (has links)
Wave energy has great potential in energy harvesting, but due to its high system cost per electricity production, it is still in the pre-commercialization stage for grid connection.
A wave energy converter (WEC) system that harvests energy through wave motion consists of a wave energy converter and a power take-off (PTO). A wave energy converter, usually a floating buoy, absorbs the hydrodynamic motion from wave and generates a mechanical oscillation. A power take-off (PTO) with mechanical transmission, which harvests the electrical energy through the mechanical energy, usually includes a transmission that converts linear motions from the buoy to rotational motions, an electromagnetic generator that produces electricity from a rotational shaft, and a power electronics converter that converts the ac electric power from the generator and charges the output dc battery or the ac grid.
The models of the WEC system are usually oversimplified in a multi-physics study. A PTO model as an ideal actuator with 100 % efficiency will show a different frequency response than the real tested results and can make the controller design invalid. A conventional regular-wave circuit model shows discrepancies in power and force prediction in time-domain under irregular wave conditions. A model that can bring the multiple fields together, and provides an accurate prediction from irregular wave dynamics and non-ideal PTO mechanism is needed.
A methodology that converts mechanical transmission equations into a circuit model is created. The equivalent circuits of mechanical components such as one-way clutches, gears, a ball screw, mechanical couplings, and generator are derived respectively to describe the dry frictions, viscous damping, and mechanical compliances in these components. The non-ideal efficiency and force of the PTO are predicted in electrical simulations by integrating these sub-circuit models. The circuit model is simplified, and its parameters are categorized as dc and ac unknowns. Using PTO with a mechanical-motion-rectifier (MMR) gearbox as an example, the dc and ac tests on the PTO are performed sequentially to extract two sets of parameters through linear regression or nonlinear curve fitting. The simulated efficiencies of 30 – 80% match well with experimental results. The model is validated through its prediction capability over 25 test conditions on input forces, output voltages, and efficiencies, with correlation coefficients R2 value of 0.9, 0.98, and 0.981, respectively.
An equivalent circuit model of fluid-body dynamics for irregular waves, applicable to real ocean conditions with frequency-dependent radiation damping, is developed. Different from PTO modeling, the time-invariant circuit is created from a fourth-order RLC equivalent circuit through transfer function approximation in the frequency domain and Brune network. The circuit-based wave energy converter (WEC) model is verified by comparing the results with the predictions of a detailed model under irregular wave conditions in the time and frequency domains based on a point absorber type of WEC with a power take-off (PTO). The results show that the developed model gives an accurate dynamic prediction for a WEC under both regular and irregular conditions. Along with the PTO model, the circuit-based W2W model is completed for control and design optimization of the WEC system.
Wave energy converter systems have faced various challenges such as reciprocal wave motion, high peak-to-average power ratio, and potential wave height from hundred-year storm conditions. These could lead to an overdesigned power take-off (PTO) of the system and significantly reduce the lifetime of the power electronics converter.
The power ratio between the peak and the average power of the wave power converter is around 10 – 20 times. Power optimization is necessary to reduce the over design ratio of the power electronics converter. The design guideline that optimizes the power ratings for the power converter and the generator is introduced. The methodology is developed from the W2W circuit model taking the losses of the power converter and the generator into consideration. By optimizing the power limiting and field-weakening controls, the ratio from the average output power to the rated power of the power converter is reduced to 2.4 in the maximum wave condition, and 15 in the annual wave profile.
A maximum energy control algorithm on the power electronics in wave energy application is developed to increase the total energy produced from the power converter in a wave energy converter (WEC) system. A 4-D damping and power leveling maps for maximum energy are built for the algorithm. The maps are based on the irregular W2W circuit model and reliability analysis on the IGBT module. From the yearly wave mission profile, the strategy is proved to increase energy by 16 times or increase the lifetime from 3 to 18 years in exchange for 6 % of average output power than the conventional maximum power algorithm.
In conclusion, this work provides a new circuit-based perspective for co-designing the multi-disciplinary WEC system. The methodologies of circuit modeling can benefit the co-design process of other mechatronic power systems, such as electric vehicle or renewable energy system. The newly invented mechanical device – the mechanical motion rectifier, is understood thouroughly via the non-ideal electrical model.
The commercialization of wave energy converter is driven forward through the reduction of the levelized cost of electricity (LCoE) which is made possible by increasing the energy production and optimizing the cost per output power of the generation and power conditioning stages. / Doctor of Philosophy / Wave energy, if all been harvested along the U.S. coastline, can power around 65% of the energy consumption in U.S.. Comparing to other renewable energy sources like solar or wind, ocean wave can provide up to 90% of steady uptime. With the high energy density (2-3 kW/m2), it can produce more energy with the same amount of installation area comparing to the energy density of wind turbine (0.6 kW/m2) and solar panel(0.2 kW/m2). The predictability of wave provides advantages like planning installation, power dispatching, and maintenance activities.
Although with all these advantages, wave energy converter system is still in the research stage due to its high system cost per electricity production. One of the challenges that need to be solved is the irregularity from the wave motion that leads to high instantaneous peak power into the wave energy converter, which usually reaches up to 10 - 20 times of the average power. The high peak power will not only bring high mechanical/electrical stress but also result in an overrating design of the components in the system. Another obstacle that prevents the wave energy system from moving forward is the high testing cost from the validations in wave-energy-test sites or tank-test sites. A high-fidelity multi-disciplinary system model, including hydrodynamics, mechanical dynamics, electromagnetics, and power electronics, is needed to predict the behavior of the system and reduce the cost of design validation.
This work provides a unified circuit-based perspective for co-designing the multi-disciplinary wave energy system. The efficiencies and mechanical dynamics of the system are accurately predicted via the non-ideal electrical model. These methodologies of circuit modeling can also benefit the co-design process of other mechatronic power systems, such as electric vehicles or renewable energy systems. The peak of the irregular power is controlled by the power-leveling and field-weakening control, and as a result, the overdesign ratio of the power converter reduces from 11.1 to 2.4. Through proper design of the converter's control algorithm, the total produce electric energy is increased by 15 times, as well as the lifetime of the power electronics extended from 3 years to 18 years.
Therefore, the commercialization of wave energy converter is driven forward through the reduction of the levelized cost of electricity (LCoE), which is made possible by optimizing the component lifetime and the output energy utilizing the developed circuit-based wave-to-wire model.
|
5 |
Energy extraction using maximum energy harvesting control as a refinement over maximum power point tracking on an energy harvesting backpackGaydarzhiev, Venceslav 01 January 2007 (has links)
The growing need and desire for the harvesting of energy from everyday mechanical interactions impose a challenge on the current design of such systems. Often their nature indicates slow response times and unsteady AC voltages. The objective of this work is to present a new method of designing and controlling an oscillating energy harvesting system using a cutting-edge algorithm for fast determination of the optimal operating condition. In this thesis, an energy harvesting backpack, which captures energy from the interaction between the user and the spring decoupled load, is being introduced. The new control strategy, Maximum Energy Harvesting Control (MEHC), is developed and applied to the aforementioned system to evaluate its improvement over the basic Maximum Power Point Tracking (MPPT) algorithm. MEHC algorithm can also be used in many different applications, ranging from ocean wave to sports shoes energy harvesting.
|
6 |
Enhanced Laser Ion Acceleration from SolidsKluge, Thomas 08 March 2013 (has links) (PDF)
This thesis presents results on the theoretical description of ion acceleration using ultra-short ultra-intense laser pulses. It consists of two parts. One deals with the very general and underlying description and theoretic modeling of the laser interaction with the plasma, the other part presents three approaches of optimizing the ion acceleration by target geometry improvements using the results of the first part. In the first part, a novel approach of modeling the electron average energy of an over-critical plasma that is irradiated by a few tens of femtoseconds laser pulse with relativistic intensity is introduced.
The first step is the derivation of a general expression of the distribution of accelerated electrons in the laboratory time frame. As is shown, the distribution is homogeneous in the proper time of the accelerated electrons, provided they are at rest and distributed uniformly initially. The average hot electron energy can then be derived in a second step from a weighted average of the single electron energy evolution. This result is applied exemplary for the two important cases of infinite laser contrast and square laser temporal profile, and the case of an experimentally more realistic case of a laser pulse with a temporal profile sufficient to produce a preplasma profile with a scale length of a few hundred nanometers prior to the laser pulse peak. The thus derived electron temperatures are in excellent agreement with recent measurements and simulations, and in particular provide an analytic explanation for the reduced temperatures seen both in experiments and simulations compared to the widely used ponderomotive energy scaling.
The implications of this new electron temperature scaling on the ion acceleration, i.e. the maximum proton energy, are then briefly studied in the frame of an isothermal 1D expansion model. Based on this model, two distinct regions of laser pulse duration are identified with respect to the maximum energy scaling. For short laser pulses, compared to a reference time, the maximum ion energy is found to scale linearly with the laser intensity for a simple flat foil, and the most important other parameter is the laser absorption efficiency. In particular the electron temperature is of minor importance. For long laser pulse durations the maximum ion energy scales only proportional to the square root of the laser peak intensity and the electron temperature has a large impact. Consequently, improvements of the ion acceleration beyond the simple flat foil target maximum energies should focus on the increase of the laser absorption in the first case and the increase of the hot electron temperature in the latter case.
In the second part, exemplary geometric designs are studied by means of simulations and analytic discussions with respect to their capability for an improvement of the laser absorption efficiency and temperature increase. First, a stack of several foils spaced by a few hundred nanometers is proposed and it is shown that the laser energy absorption for short pulses and therefore the maximum proton energy can be significantly increased. Secondly, mass limited targets, i.e. thin foils with a finite lateral extension, are studied with respect to the increase of the hot electron temperature. An analytical model is provided predicting this temperature based on the lateral foil width. Finally, the important case of bent foils with attached flat top is analyzed. This target geometry resembles hollow cone targets with flat top attached to the tip, as were used in a recent experiment producing world record proton energies. The presented analysis explains the observed increase in proton energy with a new electron acceleration mechanism, the direct acceleration of surface confined electrons by the laser light. This mechanism occurs when the laser is aligned tangentially to the curved cone wall and the laser phase co-moves with the energetic electrons. The resulting electron average energy can exceed the energies from normal or oblique laser incidence by several times. Proton energies are therefore also greatly increased and show a theoretical scaling proportional to the laser intensity, even for long laser pulses.
|
7 |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch / Energetic integration of extraction step of soybean oil, using Pinch analysisFernandes Junior, Carlos Coutinho 13 October 2009 (has links)
Made available in DSpace on 2017-07-10T18:08:13Z (GMT). No. of bitstreams: 1
Carlos Coutinho Fernandes Junior.pdf: 1216021 bytes, checksum: 140e087a28751c7c2ea0079d79d89a2d (MD5)
Previous issue date: 2009-10-13 / In the process of soy oil the consumption of energy is extremely high, which is always important to create new alternatives to energetic consumption reduction. This paper is carried on a case study of energetic integration in a soy oil factory operating with an average production of 15.000 tons/month. At first, the rate of flow, the input and output temperatures and the calorific capacity of all currents in the extraction phase were evaluated. After this assessment, based on the thermal potential change, four currents were selected, two denominated hot currents and two denominated cold currents. The first hot current (Q1) consists of a crude oil current from the post-separation phase of the solvent hexane with the input temperature of 110 ºC and output temperature of 80ºC. The second hot current (Q2) consists of a water current coming out of a boiler with an input temperature of 90 ºC and goes to the effluent treatment station having to be cooled to 55 ºC. These two currents have a thermal potential change of 262,8 kW/h. The third current denominated cold current F1, consists of a water current that comes from the decanter with a input temperature of 40 ºC and enters in the heater to reach an output temperature of 90 ºC, where the residual hexane is evaporated. The fourth current, denominated cold current F2, is a mixture of 70% of oil and 30% of hexane with an input temperature of 60 ºC and output temperature of 90 ºC. These two currents have a thermal necessity of 330 kW, for their heating. The synthesis methodology adopted for the heat exchangers network synthesis, due to the easiness in application and interaction with the user, was the Pinch Analysis. In the synthesis procedure, the Problem Table was developed and the Pinch Point was identified and the goals for the consumption of utilities were obtained for the maximum energy recovery. The problem was divided into two regions, below and above the Pinch Point. After the synthesis and optimization, the total cost for the network was calculated and all thermal exchange occurs above the Pinch Point . The proposed network consists of two heat exchangers and two boilers, so that a exchanger performs the thermal change between the Q1 (crude oil) and Q2 (miscela) currents. The second exchanger performs the change between Q2 (the water in the boiler exit) and F1 (water in the decanter exit) currents. The additional heating for the cold currents to reach final temperatures is provided by the boilers that are already being used in the factory. The economy generated by the reduction in the consumption of utilities was of R$ 91,000.00/year, meaning a reduction of steam consumption of 79,6% and a reduction of 5,3% in the global consumption of the plant steam. The investment needed for the two proposed heat exchangers in the network, is R$ 16.540,00. Evaluating the year total cost, that includes the annual capital cost of the exchangers, an annual reduction of R$ 114.445,00 for R$ 25.800,00 is verified corresponding to 77.5% reduction in the annual total cost after the network synthesis. The return rate for the investment proposed is only 3 months. Therefore, Pinch Analysis is confirmed to be efficient in the energetic integration of processes reaching meaningful economy results in thermal energy, contributing for the industrial processes that are more and more competitive. / No processo de fabricação de óleo de soja, o consumo de energia é extremamente alto, sendo sempre um tema de foco para criar alternativas de redução do consumo energético. Neste trabalho, realizou-se um estudo de caso de integração energética na etapa da extração de uma fábrica de óleo de soja operando com produção média de 15.000 toneladas/mês. Inicialmente avaliou-se as vazões, as temperaturas de entrada e saída e as capacidades caloríficas de todas as correntes da etapa de extração. Após esta avaliação, baseando-se no potencial de troca térmica, foram selecionadas quatro correntes, sendo duas delas denominadas de correntes quentes e outras duas denominadas de correntes frias. A primeira corrente quente (Q1), consiste em uma corrente de óleo bruto oriunda da etapa pós-separação do solvente hexano, com temperatura de entrada de 110 ºC e temperatura de saída de 80ºC. A segunda corrente quente (Q2), consiste em uma corrente de água que sai de um aquecedor com temperatura de entrada de 90ºC e vai para a estação de tratamento de efluentes, necessitando ser resfriada até 55 ºC. Essas duas correntes quentes têm um potencial de troca térmica de 262,8 kW/h. A terceira corrente, denominada de corrente fria F1, consiste em uma corrente de água que sai do decantador a 40 ºC, e entra no aquecedor para atingir a temperatura de saída de 90 ºC, onde hexano residual é evaporado. A quarta corrente, denominada de corrente fria F2, consiste em uma mistura de 70% óleo e 30% hexano com temperaturas de entrada de 60 ºC e de saída de 90 ºC. Essas duas correntes (F1 e F2) tem uma necessidade térmica para seu aquecimento de 330 kW. A metodologia de síntese adotada para a síntese da rede de trocadores de calor, devido à facilidade de aplicação e interação com o usuário, foi a Análise Pinch. No procedimento de síntese, inicialmente é construída a tabela do problema onde identificou-se o ponto de estrangulamento energético, ou ponto Pinch, obtendo-se assim as metas de consumo de utilidades para a máxima recuperação de energia. Após esta etapa, o problema foi dividido em duas regiões: abaixo e acima do Pinch, sendo realizada a síntese da rede. No caso estudado, toda a troca térmica ocorre na região acima do Pinch. Assim, após a síntese e otimização da rede, calculou-se o custo total anual. A rede proposta consiste em 2 trocadores de calor e dois aquecedores, sendo que um trocador realiza troca térmica entre a corrente Q1 (óleo bruto) e a corrente F2 (a miscela), e o segundo trocador realiza troca entre a corrente Q2 (água na saída do aquecedor) e a corrente F1 (água na saída do decantador). O aquecimento complementar para as correntes frias atingirem suas temperaturas finais, é provido pelos aquecedores já existentes na linha. A economia gerada pela redução de consumo de utilidades foi de R$ 91.000,00/ano, o que representa uma economia de consumo de vapor de 79,6%, acarretando uma redução de 5,3% do consumo global de vapor da planta. O investimento necessário para os dois trocadores de calor propostos na rede é de R$ 16.540,00, e avaliando-se o custo total anual, verifica-se uma redução de R$ 114.445,00 para R$ 25.800,00, correspondendo a uma redução de 77,5% no custo total anual, após a síntese da rede. A taxa de retorno para o investimento proposto é de apenas 3 meses. Desta forma, confirma-se a eficiência da Análise Pinch na integração energética de processos, atingindo resultados significativos de economia de energia térmica,contribuindo para processos industriais cada vez mais competitivos.
|
8 |
Aplikace moderních metod syntézy sítě výměny tepla / Application of recent methods for synthesis of heat exchanger networkKunc, Vlastimil January 2009 (has links)
Master’s thesis deals with the problems of heat exchanger network synthesis and compare the present methods with emphasis on Pinch Design Method and deterministic method. Based on theoretical formulation of deterministic model the computer program for heat exchanger network synthesis was developed in the software Maple environment. Developed software implementation of deterministic method has been applied to several case studies.
|
9 |
Enhanced Laser Ion Acceleration from SolidsKluge, Thomas 06 November 2012 (has links)
This thesis presents results on the theoretical description of ion acceleration using ultra-short ultra-intense laser pulses. It consists of two parts. One deals with the very general and underlying description and theoretic modeling of the laser interaction with the plasma, the other part presents three approaches of optimizing the ion acceleration by target geometry improvements using the results of the first part. In the first part, a novel approach of modeling the electron average energy of an over-critical plasma that is irradiated by a few tens of femtoseconds laser pulse with relativistic intensity is introduced.
The first step is the derivation of a general expression of the distribution of accelerated electrons in the laboratory time frame. As is shown, the distribution is homogeneous in the proper time of the accelerated electrons, provided they are at rest and distributed uniformly initially. The average hot electron energy can then be derived in a second step from a weighted average of the single electron energy evolution. This result is applied exemplary for the two important cases of infinite laser contrast and square laser temporal profile, and the case of an experimentally more realistic case of a laser pulse with a temporal profile sufficient to produce a preplasma profile with a scale length of a few hundred nanometers prior to the laser pulse peak. The thus derived electron temperatures are in excellent agreement with recent measurements and simulations, and in particular provide an analytic explanation for the reduced temperatures seen both in experiments and simulations compared to the widely used ponderomotive energy scaling.
The implications of this new electron temperature scaling on the ion acceleration, i.e. the maximum proton energy, are then briefly studied in the frame of an isothermal 1D expansion model. Based on this model, two distinct regions of laser pulse duration are identified with respect to the maximum energy scaling. For short laser pulses, compared to a reference time, the maximum ion energy is found to scale linearly with the laser intensity for a simple flat foil, and the most important other parameter is the laser absorption efficiency. In particular the electron temperature is of minor importance. For long laser pulse durations the maximum ion energy scales only proportional to the square root of the laser peak intensity and the electron temperature has a large impact. Consequently, improvements of the ion acceleration beyond the simple flat foil target maximum energies should focus on the increase of the laser absorption in the first case and the increase of the hot electron temperature in the latter case.
In the second part, exemplary geometric designs are studied by means of simulations and analytic discussions with respect to their capability for an improvement of the laser absorption efficiency and temperature increase. First, a stack of several foils spaced by a few hundred nanometers is proposed and it is shown that the laser energy absorption for short pulses and therefore the maximum proton energy can be significantly increased. Secondly, mass limited targets, i.e. thin foils with a finite lateral extension, are studied with respect to the increase of the hot electron temperature. An analytical model is provided predicting this temperature based on the lateral foil width. Finally, the important case of bent foils with attached flat top is analyzed. This target geometry resembles hollow cone targets with flat top attached to the tip, as were used in a recent experiment producing world record proton energies. The presented analysis explains the observed increase in proton energy with a new electron acceleration mechanism, the direct acceleration of surface confined electrons by the laser light. This mechanism occurs when the laser is aligned tangentially to the curved cone wall and the laser phase co-moves with the energetic electrons. The resulting electron average energy can exceed the energies from normal or oblique laser incidence by several times. Proton energies are therefore also greatly increased and show a theoretical scaling proportional to the laser intensity, even for long laser pulses.
|
Page generated in 0.067 seconds