• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modèle Vlasov-Maxwell pour l'étude des instabilités de type Weibel / Vlasov Maxwell model for the study of Weibel type instabilities

Inglebert, Aurélie 19 November 2012 (has links)
L'origine de champs magnétiques observés dans les plasmas de laboratoire et d'astrophysique est l'un des problèmes récurrents en physique des plasmas. À cet égard, les instabilités de type Weibel sont considérées d'une grande importance. Ces instabilités ont pour origine une anisotropie de température (instabilité de Weibel) et des moments des électrons (instabilité de filamentation de courant). L'objectif principal de cette thèse est l'étude théorique et numérique de ces instabilités dans un plasma non collisionnel en régime relativiste. Le premier aspect de ce travail est l'étude du régime non-linéaire de ces instabilités et du rôle des effets cinétiques et relativistes sur la structure des champs électromagnétiques auto-cohérents. Dans ce cadre, un problème essentiel pour les applications et la théorie, concerne l'identification et l'analyse des structures cohérentes développées spontanément dans le régime non-linéaire sur des échelles cinétiques. Un deuxième aspect du travail est le développement de techniques analytiques et numériques pour l'étude des plasmas non collisionnels. Le modèle mathématique de référence, à la base des études des plasmas chauds, est le modèle Vlasov-Maxwell, où l'équation de Vlasov (théorie des champs moyens) est couplée aux équations de Maxwell de façon auto-cohérente. Un modèle unidimensionnel, le modèle multi-faisceaux, a également été introduit durant cette thèse. Basé sur une technique de réduction en dimension, il est à la fois un modèle analytique "simple" présentant l'avantage de pouvoir résoudre une équation de Vlasov 1D pour chaque faisceau de particules, et un modèle numérique moins coûteux qu'un modèle complet / The origin of magnetic fields observed in laboratory and astrophysical plasmas is one ofthe most challenging problems in plasma physics. In this respect, the Weibel type instabilities are considered of key importance. These instabilities are caused by a temperature anisotropy (Weibel instability) and electron momentum (current filamentation instability). The main objective of this thesis is the theoretical and numerical study of these instabilities in a collisionless plasma in the relativistic regime. The first aspect of this work is to study the nonlinear regime of these instabilities and the role of kinetic and relativistic effects on the structure of self-consistent electromagnetic fields. In this context, a key problem for the theory and applications, is the identification and analysis of coherent structures developed spontaneously in the nonlinear regime of kinetic scales. A second aspect of the work is the development of analytical and numerical techniques for the study of collisionless plasmas. A mathematical model of reference is the Vlasov-Maxwell model, where the Vlasov equation (mean field theory) is coupled to the Maxwell equations in a self-consistent way. A one-dimensional model, the multi-stream model, is also introduced. Based on a dimensional reduction technique, it is both an analytical model "simple" having the advantage of being able to solve a 1D Vlasov equation for each particle beam, and a numerical model less expensive than a complete model
12

Extensão de GENSMAC para escoamentos de fluidos governados pelos modelos integrais Maxwell e K-BKZ / Extension of GENSMAC to incompressible flows governed by the Maxwell and K-BKZ integral models

Araújo, Manoel Silvino Batalha de 22 May 2006 (has links)
Este trabalho tem como objetivo desenvolver um método numérico para simular escoamentos incompressíveis, isotérmicos, confinados ou com superfícies livres, de fuidos viscoelásticos governados pelos modelos integrais de Maxwell e K-BKZ (Kaye-Bernstein, Kearsley e Zapas). A técnica numérica apresentada é uma extensão do método GENSMAC (Tomé McKee - J. Comp. Phys., (110), pp 171--186, 1994 ) para a solução das equações de conservação, juntamente com as equações constitutivas integrais de Maxwell e K-BKZ. As equações governantes são resolvidas pelo método de diferenças finitas em uma malha deslocada. O tensor de Finger, B_t\'(t) é calculado com base nas idéias do método de campos de deformação (Peters et al. - J. Non-Newtonian Fluid Mech. (89), de maneira que não há a necessidade de seguir a trajetória da partícula de fuido para descrever a história de deformação da partícula. Uma abordagem diferente para a discretização do instante passado é utilizada e o tensor de Finger e o tensor das tensões são calculados utilizando um método de segunda ordem. A validação do método numérico descrito nesse trabalho foi feita utilizando o escoamento em um canal bidimensional e a solução numérica obtida para a velocidade e para as componentes de tensão com o modelo de Maxwell foram comparadas com as respectivas soluções analíticas no estado estacionário, mostrando excelente concordância. Os resultados numéricos para a simulação do escoamento em uma contração planar 4 : 1 mostraram bons resultados, tanto qualitativos quanto quantitativos, quando comparados com os resultados experimentais de Quinzani et al. ( J. Non-Newtonian Fluid Mech. (52), pp 1?36, 1994 ). Além disso, utilizando os modelos Maxwel e K-BKZ, o escoamento em uma contração planar 4 : 1 foi simulado para vários números de Weissenberg e os resultados obtidos estão de acordo com os encontrados na literatura. Resultados numéricos de escoamentos com superfícies livres modelados pelas equações integrais de Maxwell e K-BKZ são apresentados. Em particular, a simulação numérica do jato oscilante para diferentes números de Weissenberg e diferentes números de Reynolds é apresentada. / The aim of this work is to develop a numerical technique for simulating incompressible, isothermal, free surface (also con¯ned) viscoelastic flows of fuids governed by the integral models of Maxwell and K-BKZ (Kaye-Bernstein, Kearsley and Zapas). The numerical technique described herein is an extension of the GENSMAC method (Tome and McKee, J. Comput. Phys., 110, pp. 171-186, 1994) to the solution of the momentuum and mass conservation equations together with the integral constitutive Maxwell and K-BKZ equations. The governing equations are solved by the finite difference method on a staggered grid using a Marker-and-Cell approach. The fluid is represented by marker particles on the fluid surface only. This provides the visualization and location of the fluid free surface so that the free surface stress conditions can be applied. The Finger tensor Bt0(t) is computed using the ideias of the deformation fields method (Peters et al. J. Non-Newtonian Fluid Mech., 89, pp. 209-228, 2001) so that it is not necessary to track a fluid particle in order to calculate its deformation history. However, in this work modifcations to the deformation fields method are introduced: the past time is discretized using a different formula, the Finger tensor Bt0(x; t) is obtained by a second order method and the stress tensor ? (x; t) is computed by a second order quadrature formula. The numerical method presented in this work is validated by simulating the flow of a Maxwell fluid in a two-dimensional channel and the numerical solutions of the velocity and the stress components are compared with the respective analytic solutions providing a good agreement. Further, the flow through a 4:1 planar contraction of a specific fuid studied experimentally by Quinzani et al. (J. Non-Newtonian Fluid Mech., 52, pp. 1-36, 1994) was simulated and the numerical results were compared qualitatively and quantitatively with the experimental results and very good agreement was obtained. The Maxwell and the K-BKZ models were applied to simulate the 4:1 planar contraction problem using various Weissenberg numbers and the numerical results were in agreement with those published in the literature. Finally, numerical results of free surface flows using the Maxwell and K-BKZ integral constitutive equations are presented. In particular, the numerical simulation of jet buckling using several Weissenberg numbers and various Reynolds numbers are presented
13

Extensão de GENSMAC para escoamentos de fluidos governados pelos modelos integrais Maxwell e K-BKZ / Extension of GENSMAC to incompressible flows governed by the Maxwell and K-BKZ integral models

Manoel Silvino Batalha de Araújo 22 May 2006 (has links)
Este trabalho tem como objetivo desenvolver um método numérico para simular escoamentos incompressíveis, isotérmicos, confinados ou com superfícies livres, de fuidos viscoelásticos governados pelos modelos integrais de Maxwell e K-BKZ (Kaye-Bernstein, Kearsley e Zapas). A técnica numérica apresentada é uma extensão do método GENSMAC (Tomé McKee - J. Comp. Phys., (110), pp 171--186, 1994 ) para a solução das equações de conservação, juntamente com as equações constitutivas integrais de Maxwell e K-BKZ. As equações governantes são resolvidas pelo método de diferenças finitas em uma malha deslocada. O tensor de Finger, B_t\'(t) é calculado com base nas idéias do método de campos de deformação (Peters et al. - J. Non-Newtonian Fluid Mech. (89), de maneira que não há a necessidade de seguir a trajetória da partícula de fuido para descrever a história de deformação da partícula. Uma abordagem diferente para a discretização do instante passado é utilizada e o tensor de Finger e o tensor das tensões são calculados utilizando um método de segunda ordem. A validação do método numérico descrito nesse trabalho foi feita utilizando o escoamento em um canal bidimensional e a solução numérica obtida para a velocidade e para as componentes de tensão com o modelo de Maxwell foram comparadas com as respectivas soluções analíticas no estado estacionário, mostrando excelente concordância. Os resultados numéricos para a simulação do escoamento em uma contração planar 4 : 1 mostraram bons resultados, tanto qualitativos quanto quantitativos, quando comparados com os resultados experimentais de Quinzani et al. ( J. Non-Newtonian Fluid Mech. (52), pp 1?36, 1994 ). Além disso, utilizando os modelos Maxwel e K-BKZ, o escoamento em uma contração planar 4 : 1 foi simulado para vários números de Weissenberg e os resultados obtidos estão de acordo com os encontrados na literatura. Resultados numéricos de escoamentos com superfícies livres modelados pelas equações integrais de Maxwell e K-BKZ são apresentados. Em particular, a simulação numérica do jato oscilante para diferentes números de Weissenberg e diferentes números de Reynolds é apresentada. / The aim of this work is to develop a numerical technique for simulating incompressible, isothermal, free surface (also con¯ned) viscoelastic flows of fuids governed by the integral models of Maxwell and K-BKZ (Kaye-Bernstein, Kearsley and Zapas). The numerical technique described herein is an extension of the GENSMAC method (Tome and McKee, J. Comput. Phys., 110, pp. 171-186, 1994) to the solution of the momentuum and mass conservation equations together with the integral constitutive Maxwell and K-BKZ equations. The governing equations are solved by the finite difference method on a staggered grid using a Marker-and-Cell approach. The fluid is represented by marker particles on the fluid surface only. This provides the visualization and location of the fluid free surface so that the free surface stress conditions can be applied. The Finger tensor Bt0(t) is computed using the ideias of the deformation fields method (Peters et al. J. Non-Newtonian Fluid Mech., 89, pp. 209-228, 2001) so that it is not necessary to track a fluid particle in order to calculate its deformation history. However, in this work modifcations to the deformation fields method are introduced: the past time is discretized using a different formula, the Finger tensor Bt0(x; t) is obtained by a second order method and the stress tensor ? (x; t) is computed by a second order quadrature formula. The numerical method presented in this work is validated by simulating the flow of a Maxwell fluid in a two-dimensional channel and the numerical solutions of the velocity and the stress components are compared with the respective analytic solutions providing a good agreement. Further, the flow through a 4:1 planar contraction of a specific fuid studied experimentally by Quinzani et al. (J. Non-Newtonian Fluid Mech., 52, pp. 1-36, 1994) was simulated and the numerical results were compared qualitatively and quantitatively with the experimental results and very good agreement was obtained. The Maxwell and the K-BKZ models were applied to simulate the 4:1 planar contraction problem using various Weissenberg numbers and the numerical results were in agreement with those published in the literature. Finally, numerical results of free surface flows using the Maxwell and K-BKZ integral constitutive equations are presented. In particular, the numerical simulation of jet buckling using several Weissenberg numbers and various Reynolds numbers are presented
14

Méthodes numériques pour l'équation de Vlasov réduite / Numerical methods for the reduced Vlasov equation

Pham, Thi Trang Nhung 19 December 2016 (has links)
Beaucoup de méthodes numériques ont été développées pour résoudre l'équation de Vlasov, car obtenir des simulations numériques précises en un temps raisonnable pour cette équation est un véritable défi. Cette équation décrit en effet l'évolution de la fonction de distribution de particules (électrons/ions) qui dépend de 3 variables d'espace, 3 variables de vitesse et du temps. L'idée principale de cette thèse est de réécrire l'équation de Vlasov sous forme d'un système hyperbolique par semi-discrétisation en vitesse. Cette semi-discrétisation est effectuée par méthode d'éléments finis. Le modèle ainsi obtenu est appelé équation de Vlasov réduite. Nous proposons différentes méthodes numériques pour résoudre efficacement ce modèle: méthodes des volumes finis, méthodes semi-Lagrangiennes et méthodes Galerkin discontinus. / Many numerical methods have been developed in order to selve the Vlasov equation, because computing precise simulations in a reasonable time is a real challenge. This equation describes the time evolution of the distribution function of charged particles (electrons/ions), which depends on 3 variables in space, 3 in velocity and time. The main idea of this thesis is to rewrite the Vlasov equation in the form of a hyperbolic system using a semi-discretization of the velocity. This semi-discretization is achieved using the finite element method. The resulting model is called the reduced Vlasov equation. We propose different numerical methods to salve this new model efficiently: finite volume methods, semi-Lagrangian methods and discontinuous Galerkin methods.
15

Contrôle optimal des équations d'évolution et ses applications / Optimal control of evolution equations and its applications

Nabolsi, Hawraa 17 July 2018 (has links)
Dans cette thèse, tout d’abord, nous faisons l’Analyse Mathématique du modèle exact du chauffage radiatif d’un corps semi-transparent $\Omega$ par une source radiative noire qui l’entoure. Il s’agit donc d’étudier le couplage d’un système d’Equations de Transfert Radiatif avec condition au bord de réflectivité indépendantes avec une équation de conduction de la chaleur non linéaire avec condition limite non linéaire de type Robin. Nous prouvons l’existence et l’unicité de la solution et nous démontrons des bornes uniformes sur la solution et les intensités radiatives dans chaque bande de longueurs d’ondes pour laquelle le corps est semi-transparent, en fonction de bornes sur les données, Deuxièmement, nous considérons le problème du contrôle optimal de la température absolue à l’intérieur du corps semi-transparent $\Omega$ en agissant sur la température absolue de la source radiative noire qui l’entoure. À cet égard, nous introduisons la fonctionnelle coût appropriée et l’ensemble des contrôles admissibles $T_{S}$, pour lesquels nous prouvons l’existence de contrôles optimaux. En introduisant l’espace des états et l’équation d’état, une condition nécessaire de premier ordre pour qu’un contrôle $T_{S}$ : t ! $T_{S}$ (t) soit optimal, est alors dérivée sous la forme d’une inéquation variationnelle en utilisant le théorème des fonctions implicites et le problème adjoint. Ensuite, nous considérons le problème de l’existence et de l’unicité d’une solution faible des équations de la thermoviscoélasticité dans une formulation mixte de type Hellinger- Reissner, la nouveauté par rapport au travail de M.E. Rognes et R. Winther (M3AS, 2010) étant ici l’apparition de la viscosité dans certains coefficients de l’équation constitutive, viscosité qui dépend dans ce contexte de la température absolue T(x, t) et donc en particulier du temps t. Enfin, nous considérons dans ce cadre le problème du contrôle optimal de la déformation du corps semi-transparent $\Omega$, en agissant sur la température absolue de la source radiative noire qui l’entoure. Nous prouvons l’existence d’un contrôle optimal et nous calculons la dérivée Fréchet de la fonctionnelle coût réduite. / This thesis begins with a rigorous mathematical analysis of the radiative heating of a semi-transparent body made of glass, by a black radiative source surrounding it. This requires the study of the coupling between quasi-steady radiative transfer boundary value problems with nonhomogeneous reflectivity boundary conditions (one for each wavelength band in the semi-transparent electromagnetic spectrum of the glass) and a nonlinear heat conduction evolution equation with a nonlinear Robin boundary condition which takes into account those wavelengths for which the glass behaves like an opaque body. We prove existence and uniqueness of the solution, and give also uniform bounds on the solution i.e. on the absolute temperature distribution inside the body and on the radiative intensities. Now, we consider the temperature $T_{S}$ of the black radiative source S surrounding the semi-transparent body $\Omega$ as the control variable. We adjust the absolute temperature distribution (x, t) 7! T(x, t) inside the semi-transparent body near a desired temperature distribution Td(·, ·) during the time interval of radiative heating ]0, tf [ by acting on $T_{S}$. In this respect, we introduce the appropriate cost functional and the set of admissible controls $T_{S}$, for which we prove the existence of optimal controls. Introducing the State Space and the State Equation, a first order necessary condition for a control $T_{S}$ : t 7! $T_{S}$ (t) to be optimal is then derived in the form of a Variational Inequality by using the Implicit Function Theorem and the adjoint problem. We come now to the goal problem which is the deformation of the semi-transparent body $\Omega$ by heating it with a black radiative source surrounding it. We introduce a weak mixed formulation of this thermoviscoelasticity problem and study the existence and uniqueness of its solution, the novelty here with respect to the work of M.E. Rognes et R. Winther (M3AS, 2010) being the apparition of the viscosity in some of the coefficients of the constitutive equation, viscosity which depends on the absolute temperature T(x, t) and thus in particular on the time t. Finally, we state in this setting the related optimal control problem of the deformation of the semi-transparent body $\Omega$, by acting on the absolute temperature of the black radiative source surrounding it. We prove the existence of an optimal control and we compute the Fréchet derivative of the associated reduced cost functional.

Page generated in 0.0617 seconds