Spelling suggestions: "subject:"dm2""
21 |
Análise da via do Akt em neoplasias benignas e malignas de glândulas salivares / Analisys of Akt pathway in benign and malignant salivary galnd tumoursYonara Maria Freire Soares Marques 01 October 2010 (has links)
A proteína Akt modula a função de numerosos substratos envolvidos na regulação da sobrevivência celular, progressão do ciclo celular e crescimento celular. Estudos prévios realizados em nosso laboratório demonstraram a superexpressão de Akt em adenoma pleomórfico, mioepitelioma e carcinoma adenóide cístico. O objetivo deste estudo foi analisar a via da proteína Akt através da avaliação da expressão das proteínas NFkB e PTEN em neoplasias benignas e malignas de glândulas salivares através das técnicas de imunohistoquímica, western blotting e imunofluorescência, e a possível interação protéica direta entre p-Akt/Mdm2 e p-Akt/PTEN em linhagem de carcinoma adenóide cístico. A superexpressão nuclear na proteína PTEN foi encontrada nas duas neoplasias malignas estudadas. Além disso, não foi observada interação direta entre as proteínas p-Akt/Mdm2 e p-Akt/PTEN, as quais apresentam localização nuclear em neoplasias de glândulas salivares. / The Akt protein modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cell growth. Previous studies from our laboratories showed overexpression of Akt and Mdm2 followed by the lack of p53 expression in pleomorphic adenoma, myoepithelioma and adenoid cystic carcinoma. The aim of this study was to analyze the Akt pathway through evaluation of expression of NFkB and PTEN proteins in pleomorphic adenoma, carcinoma ex pleomophic adenoma and adenoid cystic carcinoma by western blotting, immunofluorescence and immunohistochemical techniques, and we have intended to analyse a possible direct interaction between p-Akt/Mdm2 and p-Akt/ PTEN protein in salivary gland tumours. Overexpression of nuclear PTEN was present in both carcinomas studied. In addition, there was no direct interaction between p-Akt/Mdm2 and p-Akt/ PTEN protein, which presents a nuclear localization in salivary gland tumours.
|
22 |
Efeito do hormônio tireoidiano (T3) sobre a expressão da E3 ligase Mdm2 e suas implicações na regulação do trofismo muscular. / Effects of thyroid hormone (T3) on Mdm2 E3 ligase expression and its implications in the muscle trofism regulation.Ramos, Gracielle Vieira 16 July 2014 (has links)
Estudos preliminares através de microarray nos mostraram que a E3 ligase Mdm2 foi regulado positivamente no músculo de animais hipertireoideos. Dessa forma, nós inferimos uma possível relação de Mdm2 com a atrofia causada por T3. Para testar nossa hipótese, ratos foram induzidos ao hipertireoidismo para análises subsequentes. Concomitante com a perda de massa muscular foi confirmado um aumento da expressão de Mdm2 tanto no nível gênico (p<0.05) quanto protéico. Interessantemente, Mdm2 foi preferencialmente expresso em fibras tipo I, mostrando maior sensibilidade dessas fibras ao T3. Além disso, foi observado uma diminuição severa na expressão de Pax7/MyoD associado à superexpressão de Mdm2, sugerindo inatividade das células satélites. Surpreendentemente, a inibição de Mdm2 em miotubos cultivados provocou uma diminuição severa no diâmetro destes (~35%, p<0.05), ou seja, tal inibição foi incapaz de minimizar a proteólise muscular causada por T3. Portanto, nós concluímos que a responsividade de Mdm2 ao T3 agiria como um mecanismo compensatório numa tentativa de minimizar a proteólise muscular causada pelo hipertireoidismo. Esta conclusão é reforçada pela atrofia observada em miotubos durante a inibição de Mdm2 sem a presença de T3. / Previous studies in our lab through microarray assay observed Mdm2, an E3 ligase, up regulated in soleus muscle from hyperthyroid rats. In this sense, we inferred that Mdm2 could be related to muscle atrophy caused by T3. To test our hypothesis, rats were induced to experimental hyperthyroidism for subsequent analysis. Along the muscle mass loss, the increase on Mdm2 gene expression was confirmed (p<0.05) as well as protein expression by RT-PCR and Western Blot, respectively. Interestingly, Mdm2 was expressed predominantly in fiber I type during T3 treatment, demonstrating a higher sensibility when compared to type II fiber. Moreover, it was observed a severe decrease in Pax7/MyoD labeling, associated to an increase on Mdm2 labeling, suggesting that T3 could be associated with inactivation of satellite cells. Surprisingly, Mdm2 inhibition in myotubes have induced severe decrease on myotubes diameter (~35%, p<0.05), in other words, Mdm2 inhibition was not able to decrease muscle proteolysis during high levels of T3. Thus, the increase on Mdm2 levels could be a compensatory effect to reduce the muscle mass loss during T3 treatment. This conclusion is highlighted by the myotubes atrophy observed during the Mdm2 inhibition without T3 treatment.
|
23 |
Detecção do HPV e avaliação imunoistoquímica de proteínas reguladoras do ciclo celular em carcinomas invasivos de laringe com e sem metástases / HPV detection and immunohistochemical expression of cell cycle regulating proteins in metastatic and non-metastatic laryngeal carcinoma.Marcela Kazue Hassumi 02 September 2008 (has links)
O mecanismo de oncogênese na laringe pode ser controlado por vários fatores, entre eles fatores envolvidos na regulação do ciclo celular e outros de risco, tais como exposição prolongada ao fumo e álcool. O desenvolvimento do câncer de laringe também pode estar associado à infecção pelo HPV. Este estudo, análise imunoistoquímica quantitativa de p53, p27 e Mdm2, foi realizado em 54 pacientes com carcinoma invasivo de laringe subdivididos em: carcinoma sem metástase (laryngeal squamous cell carcinoma without metastasis - LSCCWT), com metástase (laryngeal squamous cell carcinoma with metastasis - LSCCW) e linfonodos cervicais (limph nodes biopsies - LB). A detecção e tipificação do HPV foram realizadas pela reação em cadeia da polimerase (PCR) e os tipos de HPV avaliados foram HPV 6, 11, 16, 18, 31 e 33. Na análise quantitativa, alta expressão de p53, p27 e Mdm2 foi observada nos grupos LSCCW e LSCCWT assim como nas biópsias dos linfonodos cervicais, indicando que a avaliação dessas proteínas poderia não discriminar carcinomas de laringe metastáticos e não-metastáticos. Detecção do HPV foi verificada em apenas 7.4% dos casos. Dentre os pacientes HPV positivos, verificou-se expressão negativa de p53. Por outro lado, alta expressão de p27 e Mdm2 foi observada. Em conclusão, a avaliação quantitativa de p53, p27 e Mdm2 não permite traçar um perfil complementar em lesões metastáticas de laringe. / The mechanism of larynx oncogenesis could be controlled by various factors, most of them involved in cell cycle regulation and other risk factors such as smoking and alcohol abuse. The development of laryngeal carcinoma is associated with human papillomavirus (HPV) infection. In this study, quantitative immunohistochemistry was perfomed for p53, p27 and Mdm2 in 54 patients with invasive laryngeal squamous cell carcinoma without metastasis (LSCCWT), with metastasis (LSCCW) and cervical lymph nodes (LB). HPV detection and typing was performed by PCR and the HPV types evaluated were HPV 6, 11, 16, 18, 31 and 33. In the quantitative analysis higher p53, p27 and Mdm2 expression was observed in both LSCCW and LSCCWT, as well in cervical lymph node biopsies with metastasis, may indicating that evaluation of these proteins may not discriminate between metastatic and non-metastatic laryngeal carcinoma. HPV was found in 7.4% of the cases. Among HPV- positive patients, p53 expression was negative. On the other hand, high p27 and Mdm2 expression was observed. In conclusion, these data suggest that quantitative evaluation of p53, p27 and Mdm2 does not permit to determine a complementary profile in metastatic laryngeal lesions.
|
24 |
L'oncogène Mdm2 : nouvelles fonctions et implications dans le métabolisme des cellules cancéreuses / The Mdm2 oncogene : new functions and implications in serine metabolismRiscal, Romain 30 September 2016 (has links)
L'oncoprotéine MDM2 est reconnue comme un régulateur négatif majeur du suppresseur de tumeur p53, mais plus de preuves indiquent que ses activités oncogéniques vont au-delà de p53. Ici, nous montrons que MDM2 est recruté à la chromatine indépendamment de p53 pour réguler un programme transcriptionnel complexe impliqué dans le métabolisme des acides aminés et l'homéostasie redox. L'identification des gènes cibles de MDM2 au niveau du génome entier met en évidence un rôle important pour les facteurs de transcription ATF3/4 dans le recrutement de MDM2 à la chromatine. Ce recrutement de MDM2 à la chromatine est un processus étroitement régulé qui se produit lors d'un stress oxydatif et lors d'une déprivation en serine/glycine et est modulé par la pyruvate kinase M2 (PKM2) qui est une enzyme métabolique. La déplétion de la protéine MDM2 endogène dans des cellules déficientes en p53 altère le métabolisme sérine/glycine, le rapport NAD+/NADH et le recyclage de la glutathion (GSH), important leurs état redox et leurs potentiel tumorigènique. Nos données illustrent une fonction précédemment insoupçonnée de MDM2 à la chromatine impliquée dans le métabolisme des cellules cancéreuses. / The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD+/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatinbound MDM2 in cancer cell metabolism.
|
25 |
Efeito do hormônio tireoidiano (T3) sobre a expressão da E3 ligase Mdm2 e suas implicações na regulação do trofismo muscular. / Effects of thyroid hormone (T3) on Mdm2 E3 ligase expression and its implications in the muscle trofism regulation.Gracielle Vieira Ramos 16 July 2014 (has links)
Estudos preliminares através de microarray nos mostraram que a E3 ligase Mdm2 foi regulado positivamente no músculo de animais hipertireoideos. Dessa forma, nós inferimos uma possível relação de Mdm2 com a atrofia causada por T3. Para testar nossa hipótese, ratos foram induzidos ao hipertireoidismo para análises subsequentes. Concomitante com a perda de massa muscular foi confirmado um aumento da expressão de Mdm2 tanto no nível gênico (p<0.05) quanto protéico. Interessantemente, Mdm2 foi preferencialmente expresso em fibras tipo I, mostrando maior sensibilidade dessas fibras ao T3. Além disso, foi observado uma diminuição severa na expressão de Pax7/MyoD associado à superexpressão de Mdm2, sugerindo inatividade das células satélites. Surpreendentemente, a inibição de Mdm2 em miotubos cultivados provocou uma diminuição severa no diâmetro destes (~35%, p<0.05), ou seja, tal inibição foi incapaz de minimizar a proteólise muscular causada por T3. Portanto, nós concluímos que a responsividade de Mdm2 ao T3 agiria como um mecanismo compensatório numa tentativa de minimizar a proteólise muscular causada pelo hipertireoidismo. Esta conclusão é reforçada pela atrofia observada em miotubos durante a inibição de Mdm2 sem a presença de T3. / Previous studies in our lab through microarray assay observed Mdm2, an E3 ligase, up regulated in soleus muscle from hyperthyroid rats. In this sense, we inferred that Mdm2 could be related to muscle atrophy caused by T3. To test our hypothesis, rats were induced to experimental hyperthyroidism for subsequent analysis. Along the muscle mass loss, the increase on Mdm2 gene expression was confirmed (p<0.05) as well as protein expression by RT-PCR and Western Blot, respectively. Interestingly, Mdm2 was expressed predominantly in fiber I type during T3 treatment, demonstrating a higher sensibility when compared to type II fiber. Moreover, it was observed a severe decrease in Pax7/MyoD labeling, associated to an increase on Mdm2 labeling, suggesting that T3 could be associated with inactivation of satellite cells. Surprisingly, Mdm2 inhibition in myotubes have induced severe decrease on myotubes diameter (~35%, p<0.05), in other words, Mdm2 inhibition was not able to decrease muscle proteolysis during high levels of T3. Thus, the increase on Mdm2 levels could be a compensatory effect to reduce the muscle mass loss during T3 treatment. This conclusion is highlighted by the myotubes atrophy observed during the Mdm2 inhibition without T3 treatment.
|
26 |
Rôle de deux suppresseurs de tumeurs TET2 et P53 dans un contexte hématopoïétique / Role Of TET2 And P53, Two Tumor Suppressors, In A Hematopoietic ContextMahfoudhi, Emna 29 January 2016 (has links)
TET2 et P53, deux suppresseurs de tumeurs, jouent un rôle important dans l’homéostasie des cellules souches hématopoïétiques et sont trouvés mutés dans les hémopathies malignes. Ils sont aussi impliqués dans le contrôle du cycle cellulaire et les mécanismes de réparation des dommages de l’ADN, notamment la voie de réparation par excision de base (BER). Dans la première partie de ce travail, nous avons montré que la surexpression de TET2 et l’augmentation consécutive des 5hmC, ralentit la progression du cycle cellulaire et la transition G1/S et induit une instabilité centrosomique associée à une instabilité chromosomique dans un modèle cellulaire Ba/F3. De plus, la surexpression de TET2 induit l’augmentation de la mutagenèse particulièrement des transitions C->T dans les sites CpG dans un contexte déficient en thymidine DNA glycosylase (TDG), une protéine initiatrice du BER. Dans la seconde partie de ce travail, nous avons montré que l’activation de P53, par des antagonistes de MDM2, a un effet délétère sur tous les progéniteurs hématopoïétiques. Ces antagonistes induisent aussi une cytotoxicité non seulement dans les stades précoces de la mégacaryopoïèse mais surtout dans les stades tardifs. Cette cytotoxicité n’est pas réversible, contrairement à ce qui est observé en clinique, et ne peut pas être restaurée par des doses croissantes de thrombopoïétine. Au total, TET2 et P53 doivent être strictement régulés pour assurer l’homéostasie et la stabilité génétique des cellules hématopoïétiques. / Two tumor suppresors, TET2 and P53, play an important role in the homeostasis of hematopoietic stem cells and have been found mutated in hematological malignancies. They are also involved in cell cycle control and DNA repair mechanisms, including the base excision repair pathway (BER). In the first part of this work, we showed that TET2 overexpression and the consequent increase of 5hmC, inhibit cell cycle progression particularly G1/S transition and induces centrosome instability associated with chromosomal instability in Ba/F3 cellular model. In addition, overexpression of TET2 induces increased mutagenesis particularly transitions C->T at CpG sites in a context deficient in thymidine DNA glycosylase (TDG), a protein initiating BER. In the second part of this work, we have shown that p53 activation by MDM2 antagonists has deleterious effect on all haematopoietic progenitors. These antagonists also induce cytotoxicity not only in the early stages of megakaryopoiesis but also mainly in the late stages. This cytotoxicity is not reversible, in contrast to what is observed in clinic, and can not be restored by increasing doses thrombopoietin. To conclude, TET2 and P53 must be strictly controlled to ensure homeostasis and genetic stability of the hematopoietic cells.
|
27 |
Proteomic investigation of the MDM2 interactome and linear motif interactionsNicholson, Judith January 2011 (has links)
The oncoprotein MDM2 has an integral role in cancer development via multiple signalling pathways. Two proteomic mass spectrometry screens, label-free with spectral counting quantitation and 8-plex iTRAQ were used to identify proteins up or downregulated over time by the MDM2 targeting drug Nutlin. A subset of previously identified MDM2 binding partners were identified as altered after Nutlin treatment, along with proteins which have not as yet been linked to MDM2 or p53. Proteins altered two hours after Nutlin treatment were screened for sequence similarity to an MDM2 binding consensus motif based on the BOX-I region of p53. Peptides corresponding to this motif were validated for MDM2 binding, and the mode of binding investigated using competition ELISA and thermal denaturation assays. Known MDM2 ligands such as Nutlin were shown to have a range of effects on the binding of these newly identified MDM2 peptides, which may be attributed to allosteric regulation of MDM2. The effects of Nutlin on two full length proteins identified by the MS screens, CypB and NPM, were confirmed in vivo. In vitro binding of MDM2 to CypB and PK, which contain BOX-I like motifs, was also demonstrated validating proteomic mass spectrometry screens as a method to identify new protein-protein interactions. To further investigate the potential of linear motifs to modulate protein-protein interactions, a peptide aptamer targeting the protein AGR2 was tested for effect on AGR2 and p53 in a cancer cell line.
|
28 |
Inhibition of protein-peptide interactions by small moleculesYen, Li-Hsuan January 2014 (has links)
In all kinds of disease models, many proteins involved in protein-protein interactions (PPIs) are mutated and do not function properly. The important role of PPIs in disease makes the design of small molecule inhibition an interesting proposition. This project looks at mouse double minute 2 (MDM2) and mouse double minute X (MDMX) which binds and inhibits the tumour suppressor protein p53. MDM2 and MDMX are therefore attractive therapeutic targets due to their role in tumour progression. The aim is to identify small molecule dual inhibitors that are able to disrupt MDM2 and MDMX from binding to p53. Both N-terminal MDM2 and MDMX were successfully expressed and purified with high purity and decent yield. These proteins were used to develop Fluoresence Polarization (FP) and Capillary Electrophoresis (CE) assays for small molecule inhibitors screening. This work has successfully developed FP and CE assays for detecting weakly interacting fragments. The CE assay is a novel method for detecting weak fragments for protein-protein interactions, which are a challenging target. Two approaches were employed to identify small molecule inhibitors for MDM2- N/p53 interaction. At first, small molecules were identified using in silico screening and these hits were verified using FP and CE assays. Second, analogue exploration was applied to identify fragments from the small molecule inhibitors discovered from the in silico screening. Diphenylamine and oxindole fragments were identified as the most potent. However, diphenylamine fragment was discovered to aggregate MDM2-N and was ranked as a false positive hit. No protein aggregation was found when incubated with the oxindole fragment. Therefore oxindole can provide a good starting point for the design of higher affinity analogues. Studying the interaction of MDMX has only recently been undertaken. MDMX contains a high homology binding site with MDM2. Hence, developing a dual MDM2/MDMX inhibitor has become an attractive target to focus on. FP and CE assays were developed to screen compounds against MDMX-N. In silico screening against MDM2-N and MDMX-N found several hits. One compound was discovered as a dual binder to MDM2-N and MDMX-N with low μM affinity. This novel hit is potentially a good starting point for the design of higher affinity analogues.
|
29 |
Biochemical and biophysical studies of MDM2-ligand interactionsWang, Shao-Fang January 2012 (has links)
MDM2, murine double minute 2, is a RING type-E3 ligase protein and also an oncogene. MDM2 plays a critical role in determining the steady levels and activity of p53 in cells using two mechanisms. The N-terminal domain of MDM2 binds to the transactivation domain of p53 and inhibits its transcriptional activity. The RING domain of MDM2 plays a role in the ubiquitination (and degradation) of p53. Several proteins are responsible for the ubiquitination mechanism including the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). Since the E2-E3 interaction is essential for ubiquitination, the protein-protein recognition site is a potential drug target. Two different MDM2 RING constructs were expressed and purified: MDM2RING (residues 386-491) and MDM2RING△C (residues 386-478). Both constructs were characterised using dynamic light scattering, size exclusion chromatography, mass spectrometry, NMR and electron microscopy. E3 ligase activity in vitro was also studied. Taken together these results showed that the MDM2RING construct formed a concentration-dependent oligomeric structure. In contrast, the MDM2RING△C construct formed a dimer at all concentrations. Both MDM2RING and MDM2RING △ C retain E3 ligase activity. However, the MDM2RING△C construct is less active. Full length E2 enzyme UbcH5a was also purified. Various biophysical techniques were used to study its interaction with MDM2 as well as with potential small molecule inhibitors as in principle, small molecules which disrupt the interaction between MDM2 and UbcH5a, could prevent/promote ubiquitination of p53. The dimerisation of MDM2 is important for its E3 activity and the C8-binding site potentially provides a second druggable site. In this work, peptide 9, which has the same sequence as the C-terminus of MDMX (an MDM2 homologue) was found to inhibit MDM2 E3 activity. Various biological techniques including NMR, fluorescence anisotropy, and electrospray mass spectrometry were used to investigate the interaction between two inhibitory peptides and MDM2. A major part of project involved virtual screening (VS) to search for small molecules which can affect MDM2-dependent ubiquitination. Three potential targets were considered: (1) the C8-binding site of MDM2; (2) the UbcH5a-binding site of MDM2; and (3) the MDM2-binding site of UbcH5a. Several small molecules were identified using our virtual screening database-mining and docking programs that were shown to affect MDM2-dependent ubiquitination of p53. In terms of understanding the complex biochemical mechanism of MDM2 this work provides two interesting and functionally relevant observations: (i) the MDM2 RING△C construct is a dimer as this would not be expected form the existing studies, and has less E3 ligase activity than MDM2RING; (ii) small molecules that bind MDM2 on the E2 binding site enhanced E3 ligase activity. One model to explain these observations is that binding of small molecule activators family to the RING induces a change in the conformation of the Cterminal tail residues which may enhance E2 binding.
|
30 |
REGULATION OF MDM2 MEDIATED NFκB2 PATHWAY IN HUMAN LUNG CANCERMohanraj, Lathika 04 December 2008 (has links)
Overexpression of oncoprotein MDM2 and mutations of tumor suppressor p53 are frequently observed in human cancers. The NFκB pathway is one of the deregulated pathways in oncogenesis. The overall goal of the project was to study the regulation of NFκB pathway by MDM2 in lung cancer. Our first effort was to determine the frequency of MDM2 overexpression in human lung tumor samples and to identify co-occurring abnormal gene expression by studying the levels of MDM2 and members of NFκB pathway with respect to p53 status. Higher than normal levels of MDM2 were found in approximately 30% of the cancer samples harboring wild-type (WT) and mutant p53. Expression of NFκB2, a mutant p53 inducible gene showed significant statistical correlation with MDM2 in cancer samples that harbored WT p53. A downstream target gene of NFκB2, Bcl2, showed a significant correlation to MDM2 levels, independent of p53 status. Lung cancer samples harboring mutant p53 exhibited elevated levels of NFκB2 though not statistically significant. Our next step was to corroborate findings from lung tumor samples with data from lung cancer cell line harboring WT p53-H460. Consistent with lung tumor samples, ectopic overexpression of MDM2 in H460, showed elevated expression of NFκB2 and Bcl2 with promoter upregulation of NFB2. Silencing of MDM2 proportionally downregulated NFκB2 and Bcl2 in H460 cells. Domain analysis of MDM2 suggested that increase in the NFκB2 promoter activity was not confined to the p53 binding domain of MDM2 suggesting their interaction via p53-dependent and p53-independent mechanisms. A functional cell growth assay showed retarded cell proliferation with downregulation of MDM2. Data from human lung tumor samples and lung cancer cell line suggest that overexpression of MDM2 mediates NFB2 upregulation to confer growth advantage, thus favoring oncogenesis.
|
Page generated in 0.048 seconds