• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 18
  • 9
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 115
  • 115
  • 27
  • 22
  • 17
  • 16
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications

Abeywickrama, Thulitha Madawa 01 October 2016 (has links)
Various synthetic methods have been developed to produce metal nanostructures including copper and iron nanostructures. Modification of nanoparticle surface to enhance their characteristic properties through surface functionalization with organic ligands ranging from small molecules to polymeric materials including organic semiconducting polymers is a key interest in nanoscience. However, most of the synthetic methods developed in the past depend widely on non-aqueous solvents, toxic reducing agents, and high temperature and high-pressure conditions. Therefore, to produce metal nanostructures and their nanocomposites with a simpler and greener method is indeed necessary and desirable for their nano-scale applications. Hence the objective of this thesis work is to develop an environmentally friendly synthesis method to make welldefined copper and iron nanostructures on a large-scale. The size and shape-dependent optical properties, solid-state crystal packing, and morphologies of nanostructures have been evaluated with respect to various experimental parameters. Nanostructures of copper and iron were prepared by developing an aqueous phase chemical reduction method from copper(II) chloride and Fe(III) chloride hexahydrate upon reduction using a mild reducing agent, sodium borohydride, under an inert atmosphere at room temperature. Well-defined copper nanocubes with an average edge length of 100±35 nm and iron nanochains with an average chain length up to 1.70 μm were prepared. The effect of the molar ratios of each precursor to the reducing agent, reaction time, and addition rate of the reducing agent were also evaluated in order to develop an optimized synthesis method for synthesis of these nanostructures. UV-visible spectral traces and X-ray powder diffraction traces were obtained to confirm the successful preparation of both nanostructrues. The synthesis method developed here was further modified to make poly(3-hexylthiophene) coated iron nanocomposites by surface functionalization with poly(3-hexylthiophene) carboxylate anion. Since these nanostructrues and nanocomposites have the ability to disperse in both aqueous-based solvents and organic solvents, the synthesis method provides opportunities to apply these metal nanostructures on a variety of surfaces using solution based fabrication techniques such as spin coating and spray coating methods.
22

ELISA plasmônica na detecção de anticorpos IgG anti-leishmania sp. /

Maciel, Marilene Oliveira dos Santos January 2019 (has links)
Orientador: Valéria Marçal Felix Lima / Resumo: O cão tem sido alvo do controle da Leishmaniose Visceral (LV), pois são reservatórios potenciais de Leishmania infantum e desempenham um papel fundamental na cadeia epidemiológica da doença no homem. Portanto, o diagnóstico da leishmaniose canina (Lcan) no Brasil tem sido um desafio para os órgãos de controle de endemias, uma vez que apresentam limitações quanto à sensibilidade e especificidade em áreas endêmicas. Nesta perspectiva a presente pesquisa objetivou desenvolver e validar um ELISA plasmônica indireto rK28 (pELISA) para o diagnóstica da Lcan. Para o desenvolvimento do pELISA, foram realizados diferentes ensaios de otimização, determinação das concentrações ideais de peróxido de hidrogênio, íons ouro, anticorpo IgG anti-dog biotinilado e também do soro. Para a validação do ensaio, 170 amostras de soro de cães de área endêmica para Lcan e 26 amostras de cães saudáveis de área não endêmica para a doença foram testadas pelo pELISA e comparadas com ELISA indireto rk28 e com o teste imunocromatográfico (Dual Path Platform, TR_DPP®) usando como teste padrão-ouro o qPCR em amostras de sangue e/ou swab de subconjuntival. O ensaio foi padronizado com as concentrações de 250 μM de peróxido de hidrogênio, 0,30 mM de íons ouro e a melhor diluição do conjugado de estreptavidina-catalase foi de 1/50. O TR_DPP®, ELISA indireto rK28 e pELISA apresentaram sensibilidade de 79,0%, 89,5% e 94,7% e especificidade de 90,1%, 91,4% e 100,0%, respectivamente. Os maiores valores preditivos po... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Dogs have been the target of control of Visceral Leishmaniasis (VL) in humans, as they are potential reservoirs of Leishmania infantum and play a key role in the epidemiological chain of the disease. Therefore, the diagnosis of Canine Leishmaniasis (CanL) in Brazil has been a challenge for endemic control organs, since they have limitations on sensitivity and specificity in endemic areas. In this perspective the present research aimed to develop and validate an indirect plasmonic ELISA rK28 (pELISA) for the diagnosis of CanL. For the development of pELISA, different concentrations of hydrogen peroxide, gold ions, biotinylated anti-dog IgG antibody and serum were tested in order to establish ideal values to each parameter. For the validation of the assay, 170 dog serum samples from endemic area to CanL and 26 healthy dog samples from an area nonendemic to the disease were tested by pELISA and compared with indirect ELISA rk28 and the imunocromatografic test (Dual Path Platform, TR_DPP®) using as gold standard assay the real-time PCR in blood samples and/or subconjunctival swab. The assay was standardized with the concentrations of 250 μM hydrogen peroxide, 0.30 mM gold ions, and dilution of the streptavidin-catalase conjugate of 1/50. The TR_DPP®, indirect ELISA rK28 and pELISA presented sensitivity of 79.0%, 89.5% and 94.7% and specificity of 90.1%, 91.4% and 100%, respectively. The highest predictive positive (100%), negative (99.3%) and accuracy (99.4%) values were observed... (Complete abstract click electronic access below) / Mestre
23

Metal Colorization Using Picosecond Laser Pulses

Guay, Jean-Michel 12 March 2019 (has links)
In the last few decades, the nanoscale fabrication of metallic structures has demonstrated promising applications in security (e.g. cryptography), photochemistry (e.g. plasmonassisted photo-chemistry), decoration (e.g. colouring), biocompatibility of implants and more. To fabricate such subwavelength nanostructures, we typically resort to the use of several nanolithography techniques that are lengthy and incompatible with large-scale production on complex substrates. For this purpose, we invented an innovative technique for the fast fabrication of nanostructures via the use of a picosecond laser. We used this technique to produce colourful coins for the Royal Canadian Mint which were presented at the World Money Fair in Germany in 2015 as a world rst. To ensure the long-term survival of these plasmonic colours, a new dual-layer passivation technique was conceived based on a atomic deposition process, to meet the commercialisation requirements of our industrial partner. A new burst colouring technology was also invented that allows for the creation of more visually appealing colours. These laser burst colours were also shown to have a high sensing potential and an overall better visual response to the application of the passivation layer.
24

Potency of nanoparticles to amplify radiation effects revealed in radioresistant bacteria / La puissance de nanoparticules à amplifier les effets des rayonnements révélé dans des bactéries radiorésistantes

Li, Sha 04 April 2014 (has links)
Les thérapies par irradiation sont utilisées pour traiter la plupart des cas de cancer. Une limitation majeure est l’induction de dommages dans les tissus sains. Par conséquent, l’amélioration du ciblage tumoral est un défi majeur. L'addition de nanoparticules (NPs) est proposée comme une nouvelle stratégie pour amplifier les effets des radiations dans les tumeurs (radiosensibilisation ). Les nanoparticules de Z élevé (platine, or, gadolinium) se révèlent être de bons candidats. Afin de développer de nouveaux nanoagents et d’améliorer les plans de traitement, il est nécessaire de mieux comprendre les mécanismes fondamentaux impliqués. Il a été observé que les radiosensibilisateurs augmentent l'effet létal des radiations (ions rapides ou rayons gamma). Ceci est attribué à une cascade d'événements multi-échelle qui comprend l'activation des NPs, leur relaxation, suivi de la production de radicaux responsables de la mort cellulaire (dans les eucaryotes). Il n'est pas encore clair laquelle des étapes, entre l’excitation/relaxation électronique des NPs ou la réponse biologique joue le rôle prédominant. Par conséquent, le défi de ma thèse était de tester les effets de radiosensibilisateurs (NPs d'or, de platine ou à base de gadolinium) sur des cellules autres que des cellules eucaryotes. Pour la première fois, l’effet des NPs a été testé sur la bactérie la plus radiorésistante jamais rapportée, D. radiodurans. Les NPs ont également été testées sur E. coli. Des études à l'échelle moléculaire ont été utilisées pour comprendre les mécanismes élémentaires. En résumé, ce travail montre que les NPs radiosensibilisantes amplifient les effets des rayons γ dans les bactéries radiosensibles et radiorésistantes. Ceci est attribué à la production de grappes de radicaux et à l’induction de dommages nanométriques dans l'ADN mais également dans les protéines de réparation. Finalement la radiosensibilisation est un phénomène «universel» qui peut être induite dans tout organisme vivant. En d'autres termes, les mécanismes élémentaires liés à l’excitation/relaxation de la NP jouent un rôle majeur par rapport à la réponse biologique de la cellule. Enfin, un ensemble de méthodes ont été optimisées pour évaluer la toxicité et observer l’internalisation des NPs dans les bactéries. / Radiation therapies are used to treat most of the cancer cases. One major limitation is the damage induced in the healthy tissues and tumor targeting is a major challenge. The addition of nanoparticles (NPs) is proposed as a novel strategy to amplify the radiations effects in the tumors (radiosensitization). The high-Z nanoparticles (platinum, gold, gadolinium) are found to be good candidates. To develop new nanoagents and improve treatment planning, a deeper knowledge of the fundamental mechanisms is required. It was found that radiosensitizers enhance the lethal effect of radiations (fast ions and gamma rays). This is attributed to a multiscale cascade of events, which includes the NPs activation and relaxation, the production of water radicals up to the biological impact in mammalian cells. It is not clear yet what from the early stage processes or from the (eukaryotic) cell response is the key stage of the radiosensitization. Hence, the challenge of my thesis was to probe the effects of radiosensitizers (gold, platinum and gadolinium based nanoparticles) on cells other than eukaryotic cells. For the first time, their effect was tested on the most radioresistant bacterium ever reported Deinoccocus radiodurans (D. radiodurans). For comparison, the nanoparticles were tested on the radiosensitive bacterium E.coli. Additional studies at molecular scale were used to understand the elementary mechanisms. In summary, this work demonstrates that the radiosensitizing nanoparticles amplify the effects of -rays in radiosensitive and also radioresistant bacteria. This is attributed to the production of radical clusters and to the inducetion of nano-size biodamages in DNA but also in repair proteins. Finally, this work proves that the radiosensitization is a “universal” phenomenon that can take place in all living organisms. In other words, it tells that elementary mechanisms play a major role compared to the biological response of the cell. A set of standardized methods for evaluating the cellular uptake and the toxicity of the potential nanodrug was established throughout this study.
25

Plasmonic Nanoparticles: Factors Controlling Refractive Index Sensitivity

Miller, Molly McBain 10 May 2007 (has links)
Plasmonic nanoparticles support surface plasmon resonances that are sensitive to the environment. Factors contributing to the refractive index sensitivity are explored systematically through simulation, theory, and experiment. Particles small with respect to the wavelength of light and with size parameters much less than 1 have optical properties accurately predicted by quasi-electrostatic theory while particles with larger size parameters necessitate electrodynamics. A theory is developed that captures the effects of geometry on the refractive index sensitivity with a single factor, plasmon band location, and, although based on electrostatic theory, well predicts the sensitivity of particles whose properties are beyond the electrostatic limit. This theory is validated by high quality simulations for compact particles with shape parameters approaching 1 and, therefore, electrodynamic in nature, as well as higher aspect ratio particles that are electrostatic. Experimentally observed optical spectra for nanorods immobilized on glass and subjected to changes in n of the medium are used to calculate the sensitivity of the particles, found to be well matched by a variation on the homogeneous plasmon band theory. The separate electrostatic and electrodynamic components of plasmon band width, are explored and the overall width is found to affect the observability of the aforementioned sensitivity similarly within each particle class. The extent of the sensing volume around a spherical particle is explored and found to vary with particle size for small particles. Through simulation of oriented dielectric layers, it is shown particles are most sensitive to material located in regions of highest field enhancement. Variations on seed-mediated growth of gold nanorods results in spectra exhibiting a middle peak, intermediate to the generally accepted longitudinal and transverse modes. Simulated optical properties and calculated field enhancement illustrates the correlation between geometry and optical properties and allows for identification of the middle peak. / Dissertation
26

Shape-Dependent Nanocatalysis and the Effect of Catalysis on the Shape and Size of Colloidal Metal Nanoparticles

Narayanan, Radha 30 March 2005 (has links)
From catalytic studies in surface science, it has been shown that the catalytic activity is dependent on the type of metal facet used. Nanocrystals of different shapes have different facets. This raises the possibility that the use of metal nanoparticles of different shapes could catalyze different reactions with different efficiencies. The catalytic activity is found to correlate with the fraction of surface atoms located on the corners and edges of the tetrahedral, cubic, and spherical platinum nanoparticles. It is observed that for nanoparticles of comparable size, the tetrahedral nanoparticles have the highest fraction of surface atoms located on the corners and edges and also have the lowest activation energy, making them the most catalytically active. Nanoparticles have a high surface-to-volume ratio, which makes them attractive to use compared to bulk catalytic materials. However, their surface atoms are also very active due to their high surface energy. As a result, it is possible that the surface atoms are so active that their size and shape could change during the course of their catalytic function. It is found that dissolution of corner and edge atoms occurs for both the tetrahedral and cubic platinum nanoparticles during the full course of the mild electron transfer reaction and that there is a corresponding change in the activation energy in which both kinds of nanoparticles strive to behave like spherical nanoparticles. When spherical palladium nanoparticles are used as catalysts for the Suzuki reaction, it is found that the nanoparticles grow larger after the first cycle of the reaction due to the Ostwald ripening process since it is a relatively harsh reaction due to the need to reflux the reaction mixture for 12 hours at 100 oC. When the tetrahedral Pt nanoparticles are used to catalyze this reaction, the tetrahedral nanoparticles transform to spherical ones, which grow larger during the second cycle. In addition, studies on the effect of the individual reactant have also provided clues to the surface catalytic process that is taking place. In the case of the electron transfer reaction, the surface catalytic process involves the thiosulfate ions binding to the nanoparticle surface and reacting with the hexacyanoferrate (III) ions in solution. In the case of the Suzuki reaction, the surface catalytic mechanism of the Suzuki reaction involves the phenylboronic acid binding to the nanoparticle surface and reacting with iodobenzene via collisional processes.
27

Selective Interfacial Interaction between Diblock Copolymers and Cobalt Nanoparticles

David, Kasi 20 November 2006 (has links)
In order to optimize the synthesis of metal nanoparticle-polymer systems, there are certain processes which must be understood. Perhaps the most important one is the selective interfacial interaction between the block copolymer and the growing metal nanoparticles. To investigate this interaction, four different approaches were taken. The first approach looked at the strength of interaction between the competing blocks of the copolymer and the metal nanoparticles surface. The second approach looked at the effect of polymer architecture on the metal nanoclusters. The third approach looked at the polymer composition and solvent effects on the phase behavior of the metal nanocluster-block copolymer nanocomposite. Finally, the influence of the metal precursor on the rate of the decomposition was examined. It was found that adsorbed layers of PS on the cobalt nanoparticles are completely displaced by PMMA when the solvent is a common good solvent. An adsorbed layer of only PMMA is also obtained through competitive adsorption from a common good solvent. However, in a selective solvent that is poor for PS, sequential adsorption leads to the formation of mixed layers. In homopolymer solutions, the cluster size reaches a minimum at a finite chain MW. In the case of diblock copolymers, the only parameter (for a fixed copolymer concentration) controlling the cluster size in suspensions of di-block copolymers is the molecular weight of one block, in this case PMMA, and is indifferent to other parameters including the molecular weight of the other block (PS) or the solvent quality. It was also found that the spatial distribution of the metal clusters synthesized in-situ coincided with the morphology dictated by thermodynamically-driven microdomain structure of the block copolymer. Moreover, the overall final morphology of the nanocomposite is locked into place while in solution, and fast solvent evaporation does not cause this morphology to change. Finally, results showed that the rate of nanocomposite synthesis occurred faster in the PS suspensions compared to PMMA, indicating that chemical bonds between PMMA and the cobalt nanoclusters slowed the thermal decomposition of the metal precursor. So the PMMA chains provided sites for nucleation, but did not necessarily aid particle growth.
28

Localized Surface Plasmons In Metal Nanoparticles Engineered By Electron Beam Lithography

Guler, Urcan 01 September 2009 (has links) (PDF)
In this study, optical behavior of metal nanoparticles having dimensions smaller than the wavelength of visible light is studied experimentally and numerically. Gold (Au) and silver (Ag) nanoparticles are studied due to their superior optical properties when compared to other metals. A compact code based on Discrete Dipole Approximation (DDA) is developed to compute extinction efficiencies of nanoparticles with various different properties such as material, dimension and geometry. To obtain self consistent nanoparticle arrays with well defined geometries and dimensions, Electron Beam Lithography (EBL) technique is mainly used as the manufacturing method. Dose parameters required to produce nanoparticles with dimensions down to 50 nm over substrates with different electrical conductivities are determined. Beam current is found to affect the doseV size relation. The use of thin Au films as antistatic layer for e-beam patterning over insulating substrates is considered and production steps, involving instabilities due to contaminants introduced to the system during additional removal steps, are clarified. 4 nm thick Au layer is found to provide sufficient conductivity for e-beam patterning over insulating substrates. An optical setup capable of performing transmittance and reflectance measurements of samples having small areas patterned with EBL is designed. Sizes of the metal nanoparticles are determined by scanning electron microscope (SEM) and spectral data obtained using the optical setup is analyzed to find out the parameters affecting the localized surface plasmon resonances (LSPR). Arrays of particles with diameters between 50 &ndash / 200 nm are produced and optically analyzed. Size and shape of the nanoparticles are found to affect the resonance behavior. Furthermore, lattice constants of the particle arrays and surrounding medium are also shown to influence the reflectance spectra. Axes with different lengths in ellipsoidal nanoparticles are observed to cause distinguishable resonance peaks when illuminated with polarized light. Peak intensities obtained from both polarizations are observed to decrease under unpolarized illumination. Binary systems consisting of nanosized particles and holes provided better contrast for transmitted light.
29

Nanoscale characterization of interactions between molecular specific plasmonic nanoparticles and living cells and its implications for optical imaging of protein-protein interactions

Harrison, Nathan Daniel 19 January 2011 (has links)
Imaging of biomolecules on the nano-scale is a crucial developing technology with major implications for our understanding of biological systems and for detection and therapy of disease. Plasmonic nanoparticles are a key optical contrast agent whose signal is generated by the collective oscillation of electrons in the metal particle. The resonance behavior of the electrons depends strongly on the arrangement of neighboring nanoparticles in a structure. This property may be exploited in imaging applications to report information on nanoscale morphology of targeted biomolecules. While the effect of plasmon resonance coupling has been studied in dimers and linear arrays of nanoparticles, this phenomenon remains largely unexplored in the case of 2D and 3D assemblies which are important in molecular cell imaging. This dissertation demonstrates how the optical signal from assemblies of gold nanoparticles can be related to nanoscale morphology in cellular imaging systems. First, the scattering spectra from live cells labeled with gold nanoparticles were collected and compared to the nanoscale arrangement of the particles in the same cells as determined by electron micrograph. Then, trends in scattering spectra with respect to nanoparticle arrangement were analyzed using a model system that allowed precise control over arrangement of nanoparticles. Several approaches to creating these model systems are discussed including biochemical linking, capillary assembly of colloidal particles, and direct deposition of gold onto substrates patterned by electron beam lithography. Spectral properties of the assemblies including peak position, width, and intensity are gathered and related to model variables including interparticle gap and overall particle number. It is shown that the redshift in the scattering spectra from nanoparticle assemblies is derived from both the particle number and the gap and is due to near-field coupling of particles as well as phase retardation of the scattered wave. The redshift behavior saturates as the number of particles in the aggregate increases but the saturation point depends strongly on interparticle gap. The drastic dependence of the red-shift saturation on the gap between nanoparticles has not been previously described; this phenomenon can have significant impact on the development of nanoparticle contrast agents and plasmonic sensor arrays. / text
30

Ανάπτυξη υβριδικών φωτονικών υλικών για εφαρμογές σε οπτικούς αισθητήρες

Μεριστούδη, Αναστασία 20 October 2009 (has links)
Στην παρούσα εργασία παρουσιάζεται η σύνθεση και η μελέτη υβριδικών υλικών, τα οποία αποτελούνται από νανοσωματίδια εγκλωβισμένα σε οργανικές και ανόργανες μήτρες. Τα υλικά που συντέθηκαν μπορούν να χωριστούν σε δύο κατηγορίες. Η πρώτη περιλαμβάνει μεταλλικά νανοσωματίδια Au και Ag εγκλωβισμένα σε πολυμερικές μήτρες, ενώ η δεύτερη κατηγορία περιλαμβάνει νανοσωματίδια Au, Ag και NiCl2 σε ανόργανες μήτρες. Η εργασία επικεντρώθηκε στην σύνθεση και την φασματοσκοπική μελέτη των υλικών χρησιμοποιώντας όλες τις διαθέσιμες τεχνικές δομικού χαρακτηρισμού των υλικών. Παράλληλα, πραγματοποιήθηκε μελέτη των οπτικών ιδιοτήτων και της χημειο-οπτικής ενεργότητας των υλικών. Επίσης, μελετήθηκε η βιοσυμβατότητα των υλικών στις περιπτώσεις που αυτό ήταν δυνατό. Αναλυτικότερα, στο μεγαλύτερο κομμάτι της εργασίας αυτής περιγράφεται η in situ σύνθεση μεταλλικών νανοσωματιδίων Au και Ag στον πυρήνα και στην κορώνα δισυσταδικών συμπολυμερών καθώς και τυχαίων συμπολυμερών. Το πρωτόκολλο που ακολουθήθηκε περιλαμβάνει τα παρακάτω βήματα: αρχικά για την διαλυτοποίηση του αμφίφιλου συμπολυμερούς επιλέγεται εκλεκτικός διαλύτης ως προς την μία συστάδα του, ώστε να σχηματιστούν μικκήλια αποτελούμενα από ένα συμπαγή πυρήνα και μια διαλυτή κορώνα. Στην συνέχεια, προστίθεται το άλας του μετάλλου στο διάλυμα του συμπολυμερούς με αποτέλεσμα είτε την εισροή του στον πυρήνα, είτε την συναρμογή του μεταλλικού ιόντος με την κορώνα ανάλογα με την χημική συνάφεια που φέρει η κάθε συστάδα ως προς το μέταλλο. Τέλος, ακολουθεί η αναγωγή του μεταλλικών ιόντων σε μεταλλικά νανοσωματίδια είτε προσθέτοντας κάποιο αναγωγικό μέσο, είτε από το ίδιο το συμπολυμερές που περιβάλλει τα μεταλλικά ιόντα. Η δεύτερη κατηγορία υλικών αφορά στην σύνθεση νανοσωματιδίων Au, Ag και NiCl2 σε ανόργανες μήτρες. Σε αυτή την περίπτωση επιλέχθηκαν πρόδρομες ενώσεις SiO2 και TiO2, οι οποίες αναμίχθηκαν με το άλας των μετάλλων ακολουθώντας την μέθοδο sol-gel ώστε να σχηματιστούν νανοσωματίδια. Μελετήθηκε η επίδραση των πειραματικών παραμέτρων, όπως η θέρμανση και η γήρανση, στο μέγεθος και τον βαθμό συσσωμάτωσης των μεταλλικών νανοσωματιδίων καθώς επίσης και στο πορώδες του τελικού υλικού. Από τα διαλύματα που προέκυψαν, σχηματίστηκαν λεπτά υμένια με την μέθοδο του spin-coating, τα οποία στην συνέχεια θερμάνθηκαν σε υψηλές θερμοκρασίες ώστε να απομακρυνθούν οι οργανικές ομάδες και να σταθεροποιηθεί το τελικό υλικό. Μέρος των υβριδικών υλικών που συντέθηκαν μελετήθηκαν ως προς την μη-γραμμική τους απόκριση χρησιμοποιώντας τις τεχνικές OKE και Z-scan. Όπως προέκυψε από τις μετρήσεις τα υλικά αυτά παρουσιάζουν μη-γραμμικότητα, η οποία εξαρτάται άμεσα τόσο από την αναλογία μετάλλου ως προς το συμπολυμερές αλλά και από την σύσταση του ίδιου του συμπολυμερούς. Τα νανοσύνθετα υλικά που συντέθηκαν αξιολογήθηκαν επίσης ως ενεργά υλικά σε πιθανούς φωτονικούς αισθητήρες. Παρατηρήθηκε ότι παρουσία ατμών μεθανόλης και αμμωνίας, συνέβαιναν μορφολογικές αλλαγές στην επιφάνεια των υλικών. Οι αλλαγές αυτές, ο οποίες καταγράφονται ως μεταβολές της διαδιδόμενης δέσμης σε σχέση με την δέσμη αναφοράς, είναι αντιστρεπτές. Τέλος, στις περιπτώσεις που τα υβριδικά υλικά που συντέθηκαν παρουσίαζαν βιοσυμβατότητα, ελέγχθηκε η ικανότητα συναρμογή τους με μόρια πρωτεϊνών και DNA και διερευνήθηκε η πιθανή εφαρμογή τους σε συστήματα βιολογικών παραγόντων. / In the present study the synthesis of hybrid materials consisting of metal nanoparticles incorporated into organic and inorganic matrices is presented. The synthesized materials can be divided into two categories; the first one consists of Au and Ag nanoparticles incorporated into polymeric matrices, while the second one consists of Au, Ag and NiCl2 nanoparticles incorporated into inorganic matrices. The thesis was focused on the synthesis and the spectroscopic study of these materials. Meanwhile, the optical and photonic properties of these materials were exploited. Moreover, the biological applications of the synthesized hybrid materials were investigated. In more detail, the larger part of this work focuses on the in situ synthesis of Au and Ag nanoparticles either inside the core or on the corona of di- and triblock copolymers and random copolymers. More specifically, the synthesis protocol requires three steps. First, the proper solvent must be chosen, which should be selective for one of the blocks of the amphiphilic copolymer, in order for micelles to be formed, consisting of a dense core and a solubilized corona. Then the metal precursor is added, which is preferentially dissolved into the core or is coordinated on the periphery of the corona block, depending on the chemical affinity that each block displays toward the metal compound. Finally, the metal ions are reduced in metal nanoparticles either by the addition of a reducing agent or by the coordinating block of the copolymer. The second category of the materials involves the synthesis of Au, Ag and NiCl2 nanoparticles inside inorganic matrices such as SiO2 and TiO2. Solutions containing SiO2 and TiO2 precursors were mixed with metal salts and the standard sol-gel methods were followed for the in situ synthesis of the hybrid materials. Thermal treatment and ageing were the two main parameters that influenced the size and the degree of aggregation of the metal nanoparticles, as well as the porosity of the final material. The non-linear optical properties of the synthesized hybrid materials were studied using the OKE and Z-scan techniques. All the materials studied displayed nonlinear refraction which was proportional to the ratio between the metal nanoparticles and the polymer. The composition of the block copolymer itself played also an important role. The hybrid nano materials were also evaluated as active components in potential photonic sensors. In the presence of methanol and ammonia, morphological changes on the surface of the materials were noticed. These changes were recorded as a signal modulation in respect to the reference signal. Finally, some of the synthesized hybrid materials displayed biocompatibility and their ability to coordinate with proteins and DNA molecules was examined, toward their utilization in bioanalytical devices.

Page generated in 0.102 seconds