• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural, kinetic and synthetic studies of intercalation compounds

Fogg, Andrew Michael January 1998 (has links)
No description available.
2

Growth of Metal-Nitride Thin Films by Pulsed Laser Deposition

Farrell, Ian Laurence January 2010 (has links)
The growth of thin-film metal nitride materials from elemental metal targets by plasma-assisted pulsed laser deposition (PLD) has been explored and analysed. A new UHV PLD growth system has been installed and assembled and its system elements were calibrated. A series of GaN thin films have been grown to calibrate the system. In-situ RHEED indicated that the films were single crystal and that growth proceeded in a three-dimensional fashion. SEM images showed heavy particulation of film surfaces that was not in evidence for later refractory metal nitride films. This may be connected to the fact that Ga targets were liquid while refractory metals were solid. Most GaN films were not continuous due to insufficient laser fluence. Continuous films did not exhibit photoluminescence. HfN films have been grown by PLD for the first time. Films grown have been shown to have high reflectivity in the visible region and low resistivity. These factors, along with their crystal structure, make them suitable candidates to be used as back-contacts in GaN LEDs and could also serve as buffer layers to enable the integration of GaN and Si technologies. Growth factors affecting the films’ final properties have been investigated. Nitrogen pressure, within the operating range of the plasma source, has been shown to have little effect on HfN films. Substrate temperature has been demonstrated to have more influence on the films’ properties, with 500 °C being established as optimum. ZrN films have also been grown by PLD. Early results indicated that they exhibit reflectivities 50 % ± 5 % lower than those of HfN. However, further growth and characterisation would be required in order to establish this as a fundamental property of ZrN as nitride targets were mostly used in ZrN production. Single-crystal epitaxial GdN and SmN films have been produced by PLD. This represents an improvement in the existing quality of GdN films reported in the literature, which are mostly polycrystalline. In the case of SmN, these are the first epitaxial films of this material to be grown. Film quality has been monitored in-situ by RHEED which has allowed growth to be tailored to produce ever-higher crystal quality. Post-growth analyses by collaborators was also of assistance in improving film growth. Substrate temperatures and nitrogen plasma parameters have been adjusted to find optimum values for each. In addition, laser fluence has been altered to minimise the presence of metal particulates in the films, which interfere with magnetic measurements carried out in analyses. Capping layers of Cr, YSZ or AlN have been deposited on the GdN and SmN prior to removal from vacuum to prevent their degradation upon exposure to atmospheric water vapour. The caps have been steadily improved over the course of this work, extending the lifetime of the nitride films in ambient. However, they remain volatile and this may persist since water vapour can enter the film at the edge regardless of capping quality. Optical transmission has shown an onset of absorption at 1.3 eV for GdN and 1.0 eV for SmN.
3

Salts as highly diverse porogens : functional ionic liquid-derived carbons and carbon-based composites for energy-related applications

Fechler, Nina January 2012 (has links)
The present thesis is to be brought into line with the current need for alternative and sustainable approaches toward energy management and materials design. In this context, carbon in particular has become the material of choice in many fields such as energy conversion and storage. Herein, three main topics are covered: 1)An alternative synthesis strategy toward highly porous functional carbons with tunable porosity using ordinary salts as porogen (denoted as “salt templating”) 2)The one-pot synthesis of porous metal nitride containing functional carbon composites 3)The combination of both approaches, enabling the generation of highly porous composites with finely tunable properties All approaches have in common that they are based on the utilization of ionic liquids, salts which are liquid below 100 °C, as precursors. Just recently, ionic liquids were shown to be versatile precursors for the generation of heteroatom-doped carbons since the liquid state and a negligible vapor pressure are highly advantageous properties. However, in most cases the products do not possess any porosity which is essential for many applications. In the first part, “salt templating”, the utilization of salts as diverse and sustainable porogens, is introduced. Exemplarily shown for ionic liquid derived nitrogen- and nitrogen-boron-co-doped carbons, the control of the porosity and morphology on the nanometer scale by salt templating is presented. The studies within this thesis were conducted with the ionic liquids 1-Butyl-3-methyl-pyridinium dicyanamide (Bmp-dca), 1-Ethyl-3-methyl-imidazolium dicyanamide (Emim-dca) and 1 Ethyl 3-methyl-imidazolium tetracyanoborate (Emim-tcb). The materials are generated through thermal treatment of precursor mixtures containing one of the ionic liquids and a porogen salt. By simple removal of the non-carbonizable template salt with water, functional graphitic carbons with pore sizes ranging from micro- to mesoporous and surface areas up to 2000 m2g-1 are obtained. The carbon morphologies, which presumably originate from different onsets of demixing, mainly depend on the nature of the porogen salt whereas the nature of the ionic liquid plays a minor role. Thus, a structural effect of the porogen salt rather than activation can be assumed. This offers an alternative to conventional activation and templating methods, enabling to avoid multiple-step and energy-consuming synthesis pathways as well as employment of hazardous chemicals for the template removal. The composition of the carbons can be altered via the heat-treatment procedure, thus at lower synthesis temperatures rather polymeric carbonaceous materials with a high degree of functional groups and high surface areas are accessible. First results suggest the suitability of the materials for CO2 utilization. In order to further illustrate the potential of ionic liquids as carbon precursors and to expand the class of carbons which can be obtained, the ionic liquid 1-Ethyl-3-methyl-imidazolium thiocyanate (Emim-scn) is introduced for the generation of nitrogen-sulfur-co-doped carbons in combination with the already studied ionic liquids Bmp-dca and Emim-dca. Here, the salt templating approach should also be applicable eventually further illustrating the potential of salt templating, too. In the second part, a one-pot and template-free synthesis approach toward inherently porous metal nitride nanoparticle containing nitrogen-doped carbon composites is presented. Since ionic liquids also offer outstanding solubility properties, the materials can be generated through the carbonization of homogeneous solutions of an ionic liquid acting as nitrogen as well as carbon source and the respective metal precursor. The metal content and surface area are easily tunable via the initial metal precursor amount. Furthermore, it is also possible to synthesize composites with ternary nitride nanoparticles whose composition is adjustable by the metal ratio in the precursor solution. Finally, both approaches are combined into salt templating of the one-pot composites. This opens the way to the one-step synthesis of composites with tunable composition, particle size as well as precisely controllable porosity and morphology. Thereby, common synthesis strategies where the product composition is often negatively affected by the template removal procedure can be avoided. The composites are further shown to be suitable as electrodes for supercapacitors. Here, different properties such as porosity, metal content and particle size are investigated and discussed with respect to their influence on the energy storage performance. Because a variety of ionic liquids, metal precursors and salts can be combined and a simple closed-loop process including salt recycling is imaginable, the approaches present a promising platform toward sustainable materials design. / Die vorliegende Arbeit basiert auf der Notwendigkeit für eine alternative und nachhaltige Energiewirtschaft sowie alternativer Herstellungsmethoden der damit verbundenen Materialien. Hierbei kommt besonders Kohlenstoffen und kohlenstoffbasierten Systemen eine hohe Bedeutung zu. Im Rahmen der Dissertation wurden drei Ansätze verfolgt, die zu der Entwicklung alternativer Strategien zur Herstellung poröser Heteroatom-enthaltender Kohlenstoffe und deren Komposite beitragen. Die Materialien wurden des Weiteren für die CO2 Nutzung sowie Energiespeicherung in Form von Superkondensatoren getestet. Allen Materialien ist gemeinsam, dass sie ausgehend von ionischen Flüssigkeiten, Salze mit einem Schmelzpunkt unterhalb von 100 °C, als Kohlenstoffvorstufe durch Hochtemperaturverfahren hergestellt wurden. Im ersten Teil wird ein alternatives und nachhaltiges Verfahren zur Herstellung hochporöser Stickstoff und Stickstoff-Bor-haltiger Kohlenstoffe vorgestellt. Bei dieser als „Salztemplatierung“ bezeichneten Methode werden herkömmliche Salze als Porogen verwendet. Damit sind sehr hohe Oberflächen erreichbar, die neben der Porengröße und dem Porenvolumen durch die Variation der Salzspezies und Salzmenge einstellbar sind. Dies bietet gegenüber herkömmlichen Templatierungsverfahren den Vorteil, dass das Salz nach erfolgter Karbonisierung der ionischen Flüssigkeit in Anwesenheit der nicht karbonisierbaren Salzspezies einfach mit Wasser auswaschbar ist. Hierbei ist ein Recyclingprozess denkbar. Bei hohen Synthesetemperaturen werden graphitische, bei niedrigen hochfunktionalisierte, polymerartige Produkte erhalten. Letztere erwiesen sich als vielversprechende Materialien für die CO2 Nutzung. Unter Verwendung einer bisher nicht eingesetzten ionische Flüssigkeit konnte weiterhin die Einführung von Schwefel als Heteroatom ermöglicht werden. Im zweiten Teil wird eine Templat-freie Einschrittsynthese von porösen Kompositen aus Metallnitrid Nanopartikeln und Stickstoff-dotiertem Kohlenstoff vorgestellt. Die Materialien werden ausgehend von einer Lösung aus einer ionischen Flüssigkeit und einem Metallvorläufer hergestellt, wobei die ionische Flüssigkeit sowohl als Kohlenstoffvorläufer als auch als Stickstoffquelle für die Metallnitride dient. Der Metallgehalt, das Metallverhältnis in ternären Nitriden und die Oberfläche sind über den Anteil des Metallvorläufers einstellbar. Schließlich werden beide Ansätze zur Salztemplatierung von den Kompositen kombiniert. Dadurch wird die Einschrittsynthese von Kompositen mit einstellbarer Oberfläche, Zusammensetzung, Partikelgröße und Morphologie ermöglicht. Diese Materialien wurden schließlich als Elektroden für Superkondensatoren getestet und der Einfluss verschiedener Parameter auf die Leistungsfähigkeit untersucht. Aufgrund verschiedener Kombinationsmöglichkeiten von ionischen Flüssigkeiten, Metallvorläufern und Salzen, stellen die hier präsentierten Ansätze eine vielversprechende Plattform für die nachhaltige Materialsynthese dar.
4

Metal Nitride Complexes as Potential Catalysts for C-H and N-H Bonds Activation

Alharbi, Waad Sulaiman S. 12 1900 (has links)
Recognizing the dual ability of the nitride ligand to react as a nucleophile or an electrophile – depending on the metal and other supporting ligands – is a key to their broad-range reactivity; thus, three DFT studies were initiated to investigate these two factors effects (the metal and supporting ligands) for tuning nitride ligand reactivity for C-H and N-H bond activation/functionalization. We focused on studying these factors effects from both a kinetic and thermodynamic perspective in order to delineate new principles that explain the outcomes of TMN reactions. Chapter 2 reports a kinetic study of C–H amination of toluene to produce a new Csp3–N (benzylamine) or Csp2–N (para-toluidine) bond activated by diruthenium nitride intermediate. Studying three different mechanisms highlighted the excellent ability of diruthenium nitride to transform a C-H bond to a new C-N bond. These results also revealed that nitride basicity played an important role in determining C–H bond activating ability. Chapter 3 thus reports a thermodynamic study to map basicity trends of more than a one hundred TMN complexes of the 3d and 4d metals. TMN pKb(N) values were calculated in acetonitrile. Basicity trends decreased from left to right across the 3d and 4d rows and increases from 3d metals to their 4d congeners. Metal and supporting ligands effects were evaluated to determine their impacts on TMNs basicity. In Chapter 4 we sought correlations among basicity, nucleophilicity and enhanced reactivity for N–H bond activation. Three different mechanisms for ammonia decomposition reaction (ADR) were tested: 1,2-addition, nitridyl insertion and hydrogen atom transfer (HAT). Evaluating nitride reactivity for the aforementioned mechanisms revealed factors related to the metal and its attached ligands on TMNs for tuning nitride basicity and ammonia N–H activation barriers.
5

Zirconium-doped tantalum oxide high-k gate dielectric films

Tewg, Jun-Yen 17 February 2005 (has links)
A new high-k dielectric material, i.e., zirconium-doped tantalum oxide (Zr-doped TaOx), in the form of a sputter-deposited thin film with a thickness range of 5-100 nm, has been studied. Important applications of this new dielectric material include the gate dielectric layer for the next generation metal-oxide-semiconductor field effect transistor (MOSFET). Due to the aggressive device scaling in ultra-large-scale integrated circuitry (ULSI), the ultra-thin conventional gate oxide (SiO2) is unacceptable for many practical reasons. By replacing the SiO2 layer with a high dielectric constant material (high-k), many of the problems can be solved. In this study, a novel high-k dielectric thin film, i.e., TaOx doped with Zr, was deposited and studied. The film’s electrical, chemical, and structural properties were investigated experimentally. The Zr dopant concentration and the thermal treatment condition were studied with respect to gas composition, pressure, temperature, and annealing time. Interface layer formation and properties were studied with or without an inserted thin tantalum nitride (TaNx) layer. The gate electrode material influence on the dielectric properties was also investigated. Four types of gate materials, i.e., aluminum (Al), molybdenum (Mo), molybdenum nitride (MoN), and tungsten nitride (WN), were used in this study. The films were analyzed with ESCA, XRD, SIMS, and TEM. Films were made into MOS capacitors and characterized using I-V and C-V curves. Many promising results were obtained using this kind of high-k film. It is potentially applicable to future MOS devices.
6

Zirconium-doped tantalum oxide high-k gate dielectric films

Tewg, Jun-Yen 17 February 2005 (has links)
A new high-k dielectric material, i.e., zirconium-doped tantalum oxide (Zr-doped TaOx), in the form of a sputter-deposited thin film with a thickness range of 5-100 nm, has been studied. Important applications of this new dielectric material include the gate dielectric layer for the next generation metal-oxide-semiconductor field effect transistor (MOSFET). Due to the aggressive device scaling in ultra-large-scale integrated circuitry (ULSI), the ultra-thin conventional gate oxide (SiO2) is unacceptable for many practical reasons. By replacing the SiO2 layer with a high dielectric constant material (high-k), many of the problems can be solved. In this study, a novel high-k dielectric thin film, i.e., TaOx doped with Zr, was deposited and studied. The film’s electrical, chemical, and structural properties were investigated experimentally. The Zr dopant concentration and the thermal treatment condition were studied with respect to gas composition, pressure, temperature, and annealing time. Interface layer formation and properties were studied with or without an inserted thin tantalum nitride (TaNx) layer. The gate electrode material influence on the dielectric properties was also investigated. Four types of gate materials, i.e., aluminum (Al), molybdenum (Mo), molybdenum nitride (MoN), and tungsten nitride (WN), were used in this study. The films were analyzed with ESCA, XRD, SIMS, and TEM. Films were made into MOS capacitors and characterized using I-V and C-V curves. Many promising results were obtained using this kind of high-k film. It is potentially applicable to future MOS devices.
7

Mechanism and Modeling of Contact Damage in ZrN-Zr and TiAIN-TiN Multilayer Hard Coatings

Verma, Nisha January 2012 (has links) (PDF)
With the amalgamation of hard coating in cutting tools industries for three decades now, a stage with proven performance has been reached. Today, nearly 40% of all cutting tools used in machining applications are sheltered with coatings. Coatings have proven to dramatically improve wear resistance, increase tool life and enable use at higher speed. Over the years TiN, TiAlN and TiC have emerged as potential materials to coat machining tools. Chemical vapor deposition was the first technology to be used to deposit these coatings followed by physical vapor deposition. Currently, extensive use is being made of cathodic arc evaporation and sputtering for coatings components. The principal limiting factor in the performance of these cutting tools lies in their failure due to the brittleness of these coatings. These hard coatings, usually coated on soft steel substrates, are subjected to contact damage during service. This contact damage is driven by mismatch strain between the elastically deforming film on a plastically deforming substrate. Understanding of the contact damage is the key parameter for improvement in the coating design. Contact damage involves initiation of cracks and subsequent propagation within coating. Multiple cracking modes are seen in nitride coatings on soft substrate and mutual interaction of cracks may lead to spallation of the coating, exposing the substrate to extreme service conditions. Hence visualization of subsurface crack trajectories facilitates the classification of benign and catastrophic modes of failure, which consequently allows us to tailor the coating architecture to eliminate catastrophic failure. Multilayers have shown to perform better then monolayer coatings. In multilayer coatings, application specific particular properties can be engineered by alternately stack-ing suitable layers. The multilayer utilizes benefits of interfaces by crack deflection, crack blunting and desirable transition in residual stress across the interface. Hence, designing interfaces is the key parameter in the multilayer coating. However, very few studies exist that describe experimental visualization of deformation modes in multilayer coatings with different types of interfaces, e.g. nitride/nitride and nitride/metal. Thus the prime objective of the present study is to comprehend the influence of different interface structures as well as its architecture on the various contact damage modes in these coatings. TiAlN/TiN has shown better tribological properties compared to its constituent monolayers. There is an order of magnitude augmentation in loads for cracking without any hardness enhancement relative to monolayers of constituents, with the additional feature that both constituents exhibit similar hardness and modulus. The resistance to cracking is seen to increase with increase in number of interfaces. Hence this uniqueness in toughening without drastic reduction in mechanical properties provides the motivation for understanding the fundamental mechanisms of toughening provided by the interfaces in these hard/hard coatings. Another combination for the present study is with interfaces between hard-soft phases ZrN/Zr, a composite that seeks to compromise hardness in order to achieve greater toughness. The selected combination has potential of providing a model system without any substoichiometric nitrides influencing the interfacial structure. There is a great need to optimize the metal fraction/thickness for exploiting the benefits of toughening without much compromise on hardness and stiffness, since the principal applications of these coatings lies in preventing erosive and corrosive wear. As all the deformation modes in theses coatings are stress driven, the influence of different variables on stress field would dictate the emerging damage. To understand the role of stress fields on contact damage, finite element method and an analytical model was used to predict the stress field within the coating. The TiAlN/TiN coatings were deposited by cathodic arc evaporation, while sputtering was employed to procure the ZrN/Zr multilayer coatings with much finer layer spacing. Microstructural characterization of the as received coatings was done by XRD, scanning electron microscopy, focused ion beam cross section machining and transmission electron microscopy. Mechanical properties like hardness and modulus were evaluated by nanoindentation with restricted penetration depths to allow measurements that were not influenced by the substrate. Contact damage was induced by micro indentation at high loads. Indentations were examined from plan view as well as cross section for getting details of crack nucleation as well as propagation trajectories. Focused ion beam was used to examine cross sections of indents as well as to prepare electron transparent thin foils for transmission electron microscopy examination of subsurface damage induced by indentation. To emphasize specific issues in detail, the present work is divided into four sections: 1 Microstructure and mechanical characterization of the as deposited coatings of ZrN/Zr multilayer (while that of TiAlN/TiN has been reported elsewhere) 2 Details of contact damage in ZrN/Zr coating 3 Resolution of micro mechanistic issues in TiAlN/TiN coating utilizing detailed microscopy 4 The effect of change in architecture through heat-treatment of ZrN/Zr multilayer coatings on the mechanical behavior and contact damage Detailed microstructural, compositional and mechanical characterization was done on ZrN/Zr as received multilayer coatings. Thickness of metal layer was seen to influence the texture in the nitride, thick metal acquiring basal texture in turn inducing (111) texture in the nitride to reduce interfacial energy. Microstructure revealed that the nitride grows with interrupted columnar grains, renucleating at each metal/nitride interface. Presence of both phases was confirmed at even very low bilayer spacing, with slight changes in multilayers architecture, from planar interfaces to curved interfaces. The chosen system proved to be an ideal system for multilayer study without formation of secondary nitrides. Residual stress and hardness reduced with increase in metal layer thickness, whereas modulus was seen to follow the rule of mixture value. Detailed contact damage study of ZrN/Zr is reported in section two with influence of volume fraction and metal layer thickness. All the experimental results were corroborated with finite element methods. A comparative study of contact damage of multilayer with monolayer was carried out with cross section as well as plan view of indents. Metal plasticity was able to distribute damage laterally as well as vertically, hence reducing the stress concentration. There lies an optimum thickness of the metal providing maximum toughening by increasing the threshold load required for edge cracking. The sliding of columns is resisted by the metal. However, thick metal layers promote microcracking in individual nitride layers. Cracking is restricted to within individual nitride layers, eliminating through thickness cracking. The intermediate metal thickness was able to provide a mechanism of laterally distributing sliding and hence a higher tolerance level of the indentation strain that can be accommodated without cracking. Thin metal multilayers were seen to show delamination, strongly influenced by the multilayer architecture. We use the finite element method to understand the influence of stress fields in driving these various modes of damage for varying volume fraction and metal layer thicknesses. It is demonstrated how metal plasticity results in stress enhancement in the nitride layer compared to a monolayer and reduces the shear stress, which is the driving force for columnar sliding. The micro cracking to columnar shearing transition with metal thickness was explained with the help of average shear and normal stress across the multilayer which could explain the transition from cracking and sliding to interfacial delamination in thin metal layer multilayers with enhancement in interfacial shear stress. TiAlN/TiN multilayer allowed to exploit a form of compositional contrast to measure the strain with respect to depth. Layers acting as strain markers quantify the amount of sliding in terms of the offset in layers with respect to depth within the coating. We illustrate with transmission electron micrographs, the flaw generation that occurs as a result of sliding of misaligned column boundaries. These boundary kinks,upon further loading, may lead to cracks running at an angle to the indentation axis in an otherwise dense, defect free, as deposited coating. A previous study illustrates the increase in resistance of multilayers to multiple modes of cracking that are seen in the monolayer nitride coatings on steel substrates. We provide evidence of the enhanced plasticity, seen as macroscopic bending, which in reality is column sliding in a series of distributed small steps. We discuss the role of misfit dislocations in spreading the material laterally to accommodate the constraints during indentation and lattice bending. Interfacial sliding is seen to reduce the stress concentration by distributing the vertical column sliding and accommodating the flaws generated by the sliding of misaligned column boundaries. Some preferred boundaries with special orientation relations do slide, while near the substrate, the sliding is facilitated by the relaxation in intrinsic residual stresses. An analytical model which was formulated earlier is used to support our experimental findings. Investigations of the plausible reasons for the naturally occurring multilayer mollusc sea shells to reach stiffnesses equal to the upper bound of the rule of mixture value have concluded that its brick and mortar organization is responsible for its exceptional mechanical properties. Inspired by the same model, heat treatment was used to change the architecture of the soft-hard metal/nitride combination from that of the planar interface of the as deposited multilayer to a brick and mortar arrangement. Such an interconnected ZrN microstructure was successfully achieved and the stiffness and hardness were both seen to increase relative to the as received coatings. The possible reasons for this enhancement are discussed in term of this newly emerged architecture ,change in residual stress as well as changes in stoichiometry after heat treatment. The contact damage, though, was found to be more catastrophic relative to the as deposited coating with increased propensities for edge and lateral cracking. This was attributed to the interconnected nitrides formed in the brick and mortar architecture as well as residual stress changes due to the dissolution of Zr in ZrN to form off-stoichiometric nitrides. The cracks feel the presence of the metal and deviate from the otherwise smooth trajectory and take a path along the interface of the metal packet and the interconnected nitride. Summarizing, the present study clearly illustrates the fact that interfaces play an important role in damage control under contact loading. Fracture and deformation are either controlled by metal plasticity, distributing the column sliding in metal/nitride multilayers or by interfacial sliding mediated by interfacial misfit dislocations in case of the nitride/nitride multilayer coatings. The effective role of interfaces is to distribute damage laterally as well as horizontally to relieve stresses and hence enhance the damage tolerance under indentation. Optimum metal layer thickness has been proposed for maximum toughening in the metal/nitride multilayer coating and the role of interfaces in providing modes of plasticity is presented for the nitride/nitride multilayer coatings by use of extensive transmission electron microscopic investigations. A new interconnected architecture coatings provides a unique way of combining stiffness and toughness along with scope for further developing such configurations with improved mechanical properties.
8

Plasma Surface Engineering - Studies On Nitride Coatings And Surface Modification Of Polymers

Guruvenket, S 10 1900 (has links) (PDF)
No description available.

Page generated in 0.0696 seconds