• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 15
  • 4
  • Tagged with
  • 48
  • 38
  • 38
  • 24
  • 24
  • 24
  • 23
  • 20
  • 19
  • 13
  • 12
  • 12
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of nonmetallic inclusions in continuously cast steels in view of macro-cleanliness, castability, precipitation modification and grain refinement

Ma, Zhongting 09 July 2009 (has links) (PDF)
Nichtmetallische Einschlüsse üben normalerweise auf die Gebrauchseigenschaften von Stählen einen schädlichen Einfluss aus. Sie können aber unter gewissen Bedingungen positiv sein. Hohe Gebrauchseigenschaften von Stählen können garantiert werden, wenn die Größe nichtmetallischer Einschlüsse unter einem kritischen Niveau gehalten wird. Die vorliegende Studie dient dem Zweck, die Verfahrenstechnik zur Erzeugung feiner Oxidteilchen nahe oder unter 1 mm Durchmesser, die als Keime für die Bildung feinverteilten Ferrits und feinverteilter Ausscheidungen dienen, zu entwickeln. Alternative Desoxidationstechniken sind ein erfolgversprechender Ansatz, die genannten Wirkungen zu erreichen. Die Einflüsse von Desoxidationsmitteln wie Al, Ti, Zr und Mn sowie der Abkühlungsgeschwindigkeit auf die Oxideinschlüsse sowie deren Größe, Verteilung und Anzahl werden untersucht. Die Keimbildungsmechanismen feinverteilten Ferrits und feinverteilter Ausscheidungen werden vorgestellt. Der physikalische Mechanismus des Nozzle Cloggings wird vorgestellt und quantativ interpretiert. Eine gute Vergießbarkeit wird durch die Erzeugung von feinverteilten sphärischen Einschlüssen mit glatter Oberfläche, hoher Dichte und kleinem Benetzungswinkel garantiert. Desweiteren wird auch ein modifizierter e-Formalismus zur exakten thermodynamischen Analyse metallischer Schmelzen und ein Modell zur Berechnung des Wachstums von Oxideinschlüssen in Stahlschmelzen während der Erstarrung entwickelt.
2

Ni-free Ti-based Bulk Metallic Glasses: Glass Forming Ability and Mechanical Behavior

Zheng, Na 30 July 2013 (has links) (PDF)
Metallic glasses are amorphous alloys that do not possess long-range structural order in contrast to crystalline alloys. Ni-free Ti-based bulk metallic glasses (BMGs) have potential for biomedical applications due to their attractive properties such as high strength, good corrosion resistance and excellent micro-formability, which cannot be obtained for conventional crystalline alloys. In this PhD thesis, Ni-free Ti-based BMGs, i.e. Ti40Zr10Cu34Pd14Sn2 and Ti40Zr10Cu36-xPd14Inx (x = 0, 2, 4, 6, 8), were prepared in the shape of rods by suction casting. Both alloy classes were systematically characterized in terms of glass forming ability, thermal stability, phase formation and mechanical properties. The largest diameter obtained in the fully glassy state for Ti40Zr10Cu34Pd14Sn2 alloy is 3 mm and for Ti40Zr10Cu36-xPd14Inx (x = 2, 4, 6, 8) alloys is 2 mm. Base alloy (Ti40Zr10Cu36Pd14) contains some crystalline phase(s) in the glassy matrix for a 2 mm diameter rod. The structural transformations of Ti40Zr10Cu34Pd14Sn2 BMG upon heating were thoroughly analyzed by utilizing different combination of methods. Firstly, we used differential scanning calorimetry (DSC), X-Ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate the first crystallization event. The main products of the first crystallization are possibly -(Ti, Zr) and Cu3Ti (orthorhombic) phases. Secondly, we employed in situ x-ray diffraction in transmission mode using synchrotron beam to deeply study the thermally-induced structural changes like relaxation, glass transition and crystallization. Since the first peak in the diffraction patterns reflects the structure of the glassy phase on the medium-range scale, the position, width and intensity of this peak in diffraction patterns are fitted through Voigt function below 800 K. All the peak position, width and intensity values show a nearly linear increase with increasing temperature to the onset temperature of structural relaxation, Tr = 510 K. However, these values start to deviate from the linear behavior between Tr and glass transition temperature Tg. The changes in the free volume, which was arrested during rapid quenching of the BMG, and the coefficient of volumetric thermal expansion prove that the aforementioned phenomenon is closely related to the structural relaxation. Above 800 K, three crystallization events are detected and the first exothermic event is due to the formation of metastable nanocrystals. For the Ti40Zr10Cu34Pd14Sn2 alloy, 2 mm diameter rods exhibit the best combination of mechanical properties (e.g. large plastic strain and high yield strength) among all the diameters (ø2, ø3 and ø4 mm) under the room-temperature compression tests. With the aim to improve its room-temperature mechanical properties, the processes of pre-annealing and cold rolling have been applied for the 2 mm diameter rods. Annealed and quenched specimens below Tg and in the supercooled liquid region (between Tg and onset crystallization temperature Tx) do not lead to the enhancement of the plasticity compared to as-cast alloys due to annihilation of excess free volume and crystallization. Cold rolling can effectively improve the plasticity of this BMG by inducing structural heterogeneities. Rolled samples up to a thickness reduction of 15% result in the largest plasticity of 5.7%. Low yield strength and visible work hardening ability are observed in the both 10%-rolled and 15%-rolled samples. The deformation behavior of Ti40Zr10Cu34Pd14Sn2 BMG at the elevated temperatures slightly below Tg and in the supercooled liquid region has been investigated. The stress-strain relations for this BMG over a broad range of temperatures (298 ~716 K) and strain rates (10-5 to 10-3 s-1) were established in uniaxial compression. Under compression tests at the highest test temperature of 716 K, the Ti-based BMG partially crystallizes and low strain rates can lead to the formation of larger volume fractions of crystals. In order to further improve the plasticity of Ti-Zr-Cu-Pd BMGs and simultaneously reduce the content of Cu (considering harmful element for the human body), the Ti40Zr10Cu36-xPd14Inx (x = 2, 4, 6, 8) BMGs have been newly developed with different short- or medium-range order in the structure. The compressive global strain of Ti40Zr10Cu36-xPd14Inx (x = 0, 2, 4, 6, 8) can be significantly improved from 4.5% for the In-free alloy to 10.2% for x = 4. However, a further increase of the indium content to 8 at.% results in a decrease of the plasticity. Among all the monolithic Ni-free Ti-based BMGs reported so far, the novel Ti40Zr10Cu32Pd14In4 BMG shows the largest plasticity. Inspired by the dislocation concept in crystalline materials, we propose a strategy for the design of ductile BMGs through minor substitution using relatively large atoms, which make the bonding nature become more metallic and with it less shear resistant. Such a locally modified structure results in topological heterogeneity, which appears to be crucial for achieving enhanced plasticity. This strategy is verified for Ti-Zr-Cu-Pd glassy alloys, in which Cu was replaced by In, and seems to be extendable to other BMG systems. The atomic-scale heterogeneity in BMGs is somewhat analog to defects in crystalline alloys and helps to improve the overall plasticity of BMGs.
3

Phasenseparation und Einfluss von Mikrolegierungselementen in Systemen mit metallischer Glasbildung

Schmitz, Steffen 18 October 2012 (has links) (PDF)
In den letzten Jahren belegt eine stark ansteigende Anzahl experimenteller und theoretischer Resultate das große Interesse an Volumenmaterialien mit elektronischer, struktureller und/oder chemischer Heterogenität auf der Skala von 0,5 bis 2 nm. Solche Clustermaterialien lassen hervorragende Eigenschaften erwarten, wenn vorteilhafte strukturelle oder elektronische Konfigurationen kombiniert werden können. Ein interessanter neuer Ansatz zur Erzeugung von Heterogenitäten in metallischen Gläsern sind zusätzliche Legierungselemente mit positiven Mischungsenthalpien zwischen mindestens zwei der Komponenten. Die abstoßende Wechselwirkung zwischen zwei Hauptkomponenten kann zu einer Mischungslücke in der Schmelze und sogar zur Bildung phasenseparierter metallischer Gläser führen. Diese Gläser bestehen aus Volumenanteilen mit amorpher Struktur, aber unterschiedlicher Zusammensetzung. Es wurde bereits gezeigt, dass in massiven metallischen Gläsern in einigen Fällen eine verbesserte Plastizität und sogar eine erhöhte Glasbildungsfähigkeit erreicht werden kann, falls ein geringer Massenanteil eines Legierungselements mit positiver Mischungsenthalpie zugegeben wird. In der vorliegenden Arbeit wird die Herstellung von Clustermaterialien von Legierungen mit metallischer Glasbildungsfähigkeit und deren Eigenschaften untersucht. In Levitationsexperimenten wurde zunächst die Phasenseparation in unterkühlten Schmelzen der binären Systeme mit positiver Mischungsenthalpie Gd-Ti und Gd-Zr in einer elektromagnetischen Levitationsanlage experimentell aufgeklärt. Wenn Schmelzen unter die Binodale unterkühlt werden, entmischen sie in Bereiche mit unterschiedlicher Zusammensetzung. Aus den signifikanten Unterschieden der Gefüge von Proben, die von einem Zustand innerhalb bzw. außerhalb der Mischungslücke auf einem Kupfersubstrat abgeschreckt wurden, konnte die Form der Mischungslücke in der Gd-Ti Schmelze als Funktion der Temperatur und der Konzentration bestimmt werden. Diese erstreckt sich von 10 bis 80 At.% Gadolinium und ist wesentlich ausgedehnter als bisher vermutet. Ihre kritische Temperatur 1580 ◦C liegt bei der Zusammensetzung Gd20 Ti80. Im Gegensatz zu Gd-Ti konnte für Gd-Zr Schmelzen wegen der geringeren positiven Mischungsenthalpie keine stabile Mischungslücke gefunden werden. Jedoch deutet die simultane dendritische Kristallisation der Primärphasen Gadolinium und Zirkonium in bis zu 100 K unterkühlten Proben auf die Existenz einer metastabilen Mischungslücke unterhalb der eutektischen Temperatur hin. Eine durch CAL- PHAD Rechnungen vorhergesagte Mischungslücke in der Schmelze des quaternären Systems Gd-Ti-Cu-Al, für das dünne Bänder phasenseparierter Gläser mit dem Schmelzspinnverfahren hergestellt wurden, konnte nicht bestätigt werden. Die mit der elektromagnetischen Levitationsanlage erreichte minimale Abschrecktemperatur (920◦C) läßt aber keine endgültige Aussage zu. Ein weiteres Ziel der Arbeit ist es, die Wirkung geringer Anteile der Elemente Gadolinium, Kobalt und Rhenium auf eine Cu-Zr-Al Legierung mit guter Glasbildungsfähigkeit zu ermitteln. Die genannten Elemente zeichnen sich durch positive Mischungsenthalpie sowie Mischungslücken in Schmelzen mit unterschiedlichen Hauptkomponenten der binären Randsysteme Gd-Zr, Cu-Co bzw. Cu-Re der Basislegierung aus. Die Wirkung dieser Mikrolegierungselemente auf Glasbildungsfähigkeit, Struktur, thermische Stabilität und mechanische Eigenschaften erwiesen sich als abhängig vom Mikrolegierungselement, seiner Konzentration und den Abkühlbedingungen. Massive metallische Gläser mit Durchmessern 2 bis 6 mm der Zusammensetzung (Cu46Zr46Al8)100−xZx (x=0−4) konnten für Z=Gd, Co mit dem Spritzgießverfahren hergestellt werden. Dabei erhöht sich die Glasbildungsfähigkeit für geringe Gd-Beimischungen sogar bis 2 At.%, während sie für Kobalt nur leicht reduziert wird. In Abhängigkeit von x verringern sowohl Gadolinium als auch Kobalt die Kristallisationstemperatur der Cu46Zr46Al8 Basislegierung um bis zu 25 K, während die Glasbildungstemperatur Tg nahezu unverändert bleibt. Legieren mit optimalen Gehalten von Gadolinium und Kobalt bis zu 2 At.% führt zu einer plastischen Verformbarkeit im Vergleich zum spröden Verhalten des massiven metallischen Glases Cu46Zr46Al8. Im Druckversuch wurden z.B. Bruchdehnungen bis εf = 4% in (Cu46Zr46Al8)98Co2- bzw. (Cu46Zr46Al8)98Gd2-Proben mit 3mm Durchmesser erreicht. Die maximale Druckfestigkeit und der Elastizitätsmodul bleiben gegenüber der Basislegierung nahezu unverändert. Weite Gebiete der Bruchflächen solcher mikrolegierter Gläser zeigen die Abwesenheit von Scherbändern, was ein Zeichen für eine inhomogene Verformung ist und zum Versagen der Proben führt. Selbst geringe Zugaben von Rhenium (1 At.%) setzen die Glasbildungsfähigkeit drastisch herab. Es konnten nur amorphe Folien von ca. 40 μm Dicke durch Splat- Quenching hergestellt werden, obwohl sich die Kristallisationstemperatur für (Cu46Zr46Al8)98Re2 etwas erhöht. Gegossene massive Proben besitzen ein kristallines Gefüge bestehend aus Primärdendriten der intermetallischen Verbindung B2-CuZr und der kubischen Phase CuZrAl als Hauptbestandteile. Kleine Teilchen einer Rereichen Phase sind unregelmäßig in der Probe verteilt. Diese werden beim Erstarrungsprozess zuerst ausgeschieden und triggern offensichtlich die Kristallisation der B2-CuZr Phase, wie Gefügebilder beweisen. Die massiven Gussproben besitzen außergewöhnliche mechanische Eigenschaften, hohe Festigkeit verbunden mit plastischer Dehnung bis 4 % und einen ausgedehnten Bereich der Kaltverfestigung bei reduzierter Streckgrenze gegenüber den metallischen Gläsern. Diese Eigenschaften werden durch den hohen Volumenanteil der B2-CuZr Phase bestimmt. Das Mikrolegieren mit Elementen positiver Mischungsenthalpie sowie die gezielte Keimbildung stabiler bzw. metastabiler kristalliner Phasen durch Ausscheidungen in der Schmelze, die in dieser Arbeit verfolgt wurden, sind aussichtsreiche Konzepte zur Optimierung mechanischer Eigenschaften von Materialien auf der Basis von massiven metallischen Gla ̈sern. Die Bildung nanokristalliner Clusterstrukturen und der Mechanismus der Verbesserung der plastischen Verformbarkeit bedürfen zukünftig vertiefter wissenschaftlicher Untersuchungen.
4

Control of nonmetallic inclusions in continuously cast steels in view of macro-cleanliness, castability, precipitation modification and grain refinement

Ma, Zhongting 20 April 2001 (has links)
Nichtmetallische Einschlüsse üben normalerweise auf die Gebrauchseigenschaften von Stählen einen schädlichen Einfluss aus. Sie können aber unter gewissen Bedingungen positiv sein. Hohe Gebrauchseigenschaften von Stählen können garantiert werden, wenn die Größe nichtmetallischer Einschlüsse unter einem kritischen Niveau gehalten wird. Die vorliegende Studie dient dem Zweck, die Verfahrenstechnik zur Erzeugung feiner Oxidteilchen nahe oder unter 1 mm Durchmesser, die als Keime für die Bildung feinverteilten Ferrits und feinverteilter Ausscheidungen dienen, zu entwickeln. Alternative Desoxidationstechniken sind ein erfolgversprechender Ansatz, die genannten Wirkungen zu erreichen. Die Einflüsse von Desoxidationsmitteln wie Al, Ti, Zr und Mn sowie der Abkühlungsgeschwindigkeit auf die Oxideinschlüsse sowie deren Größe, Verteilung und Anzahl werden untersucht. Die Keimbildungsmechanismen feinverteilten Ferrits und feinverteilter Ausscheidungen werden vorgestellt. Der physikalische Mechanismus des Nozzle Cloggings wird vorgestellt und quantativ interpretiert. Eine gute Vergießbarkeit wird durch die Erzeugung von feinverteilten sphärischen Einschlüssen mit glatter Oberfläche, hoher Dichte und kleinem Benetzungswinkel garantiert. Desweiteren wird auch ein modifizierter e-Formalismus zur exakten thermodynamischen Analyse metallischer Schmelzen und ein Modell zur Berechnung des Wachstums von Oxideinschlüssen in Stahlschmelzen während der Erstarrung entwickelt.
5

Phasenseparation und Einfluss von Mikrolegierungselementen in Systemen mit metallischer Glasbildung

Schmitz, Steffen 09 October 2012 (has links)
In den letzten Jahren belegt eine stark ansteigende Anzahl experimenteller und theoretischer Resultate das große Interesse an Volumenmaterialien mit elektronischer, struktureller und/oder chemischer Heterogenität auf der Skala von 0,5 bis 2 nm. Solche Clustermaterialien lassen hervorragende Eigenschaften erwarten, wenn vorteilhafte strukturelle oder elektronische Konfigurationen kombiniert werden können. Ein interessanter neuer Ansatz zur Erzeugung von Heterogenitäten in metallischen Gläsern sind zusätzliche Legierungselemente mit positiven Mischungsenthalpien zwischen mindestens zwei der Komponenten. Die abstoßende Wechselwirkung zwischen zwei Hauptkomponenten kann zu einer Mischungslücke in der Schmelze und sogar zur Bildung phasenseparierter metallischer Gläser führen. Diese Gläser bestehen aus Volumenanteilen mit amorpher Struktur, aber unterschiedlicher Zusammensetzung. Es wurde bereits gezeigt, dass in massiven metallischen Gläsern in einigen Fällen eine verbesserte Plastizität und sogar eine erhöhte Glasbildungsfähigkeit erreicht werden kann, falls ein geringer Massenanteil eines Legierungselements mit positiver Mischungsenthalpie zugegeben wird. In der vorliegenden Arbeit wird die Herstellung von Clustermaterialien von Legierungen mit metallischer Glasbildungsfähigkeit und deren Eigenschaften untersucht. In Levitationsexperimenten wurde zunächst die Phasenseparation in unterkühlten Schmelzen der binären Systeme mit positiver Mischungsenthalpie Gd-Ti und Gd-Zr in einer elektromagnetischen Levitationsanlage experimentell aufgeklärt. Wenn Schmelzen unter die Binodale unterkühlt werden, entmischen sie in Bereiche mit unterschiedlicher Zusammensetzung. Aus den signifikanten Unterschieden der Gefüge von Proben, die von einem Zustand innerhalb bzw. außerhalb der Mischungslücke auf einem Kupfersubstrat abgeschreckt wurden, konnte die Form der Mischungslücke in der Gd-Ti Schmelze als Funktion der Temperatur und der Konzentration bestimmt werden. Diese erstreckt sich von 10 bis 80 At.% Gadolinium und ist wesentlich ausgedehnter als bisher vermutet. Ihre kritische Temperatur 1580 ◦C liegt bei der Zusammensetzung Gd20 Ti80. Im Gegensatz zu Gd-Ti konnte für Gd-Zr Schmelzen wegen der geringeren positiven Mischungsenthalpie keine stabile Mischungslücke gefunden werden. Jedoch deutet die simultane dendritische Kristallisation der Primärphasen Gadolinium und Zirkonium in bis zu 100 K unterkühlten Proben auf die Existenz einer metastabilen Mischungslücke unterhalb der eutektischen Temperatur hin. Eine durch CAL- PHAD Rechnungen vorhergesagte Mischungslücke in der Schmelze des quaternären Systems Gd-Ti-Cu-Al, für das dünne Bänder phasenseparierter Gläser mit dem Schmelzspinnverfahren hergestellt wurden, konnte nicht bestätigt werden. Die mit der elektromagnetischen Levitationsanlage erreichte minimale Abschrecktemperatur (920◦C) läßt aber keine endgültige Aussage zu. Ein weiteres Ziel der Arbeit ist es, die Wirkung geringer Anteile der Elemente Gadolinium, Kobalt und Rhenium auf eine Cu-Zr-Al Legierung mit guter Glasbildungsfähigkeit zu ermitteln. Die genannten Elemente zeichnen sich durch positive Mischungsenthalpie sowie Mischungslücken in Schmelzen mit unterschiedlichen Hauptkomponenten der binären Randsysteme Gd-Zr, Cu-Co bzw. Cu-Re der Basislegierung aus. Die Wirkung dieser Mikrolegierungselemente auf Glasbildungsfähigkeit, Struktur, thermische Stabilität und mechanische Eigenschaften erwiesen sich als abhängig vom Mikrolegierungselement, seiner Konzentration und den Abkühlbedingungen. Massive metallische Gläser mit Durchmessern 2 bis 6 mm der Zusammensetzung (Cu46Zr46Al8)100−xZx (x=0−4) konnten für Z=Gd, Co mit dem Spritzgießverfahren hergestellt werden. Dabei erhöht sich die Glasbildungsfähigkeit für geringe Gd-Beimischungen sogar bis 2 At.%, während sie für Kobalt nur leicht reduziert wird. In Abhängigkeit von x verringern sowohl Gadolinium als auch Kobalt die Kristallisationstemperatur der Cu46Zr46Al8 Basislegierung um bis zu 25 K, während die Glasbildungstemperatur Tg nahezu unverändert bleibt. Legieren mit optimalen Gehalten von Gadolinium und Kobalt bis zu 2 At.% führt zu einer plastischen Verformbarkeit im Vergleich zum spröden Verhalten des massiven metallischen Glases Cu46Zr46Al8. Im Druckversuch wurden z.B. Bruchdehnungen bis εf = 4% in (Cu46Zr46Al8)98Co2- bzw. (Cu46Zr46Al8)98Gd2-Proben mit 3mm Durchmesser erreicht. Die maximale Druckfestigkeit und der Elastizitätsmodul bleiben gegenüber der Basislegierung nahezu unverändert. Weite Gebiete der Bruchflächen solcher mikrolegierter Gläser zeigen die Abwesenheit von Scherbändern, was ein Zeichen für eine inhomogene Verformung ist und zum Versagen der Proben führt. Selbst geringe Zugaben von Rhenium (1 At.%) setzen die Glasbildungsfähigkeit drastisch herab. Es konnten nur amorphe Folien von ca. 40 μm Dicke durch Splat- Quenching hergestellt werden, obwohl sich die Kristallisationstemperatur für (Cu46Zr46Al8)98Re2 etwas erhöht. Gegossene massive Proben besitzen ein kristallines Gefüge bestehend aus Primärdendriten der intermetallischen Verbindung B2-CuZr und der kubischen Phase CuZrAl als Hauptbestandteile. Kleine Teilchen einer Rereichen Phase sind unregelmäßig in der Probe verteilt. Diese werden beim Erstarrungsprozess zuerst ausgeschieden und triggern offensichtlich die Kristallisation der B2-CuZr Phase, wie Gefügebilder beweisen. Die massiven Gussproben besitzen außergewöhnliche mechanische Eigenschaften, hohe Festigkeit verbunden mit plastischer Dehnung bis 4 % und einen ausgedehnten Bereich der Kaltverfestigung bei reduzierter Streckgrenze gegenüber den metallischen Gläsern. Diese Eigenschaften werden durch den hohen Volumenanteil der B2-CuZr Phase bestimmt. Das Mikrolegieren mit Elementen positiver Mischungsenthalpie sowie die gezielte Keimbildung stabiler bzw. metastabiler kristalliner Phasen durch Ausscheidungen in der Schmelze, die in dieser Arbeit verfolgt wurden, sind aussichtsreiche Konzepte zur Optimierung mechanischer Eigenschaften von Materialien auf der Basis von massiven metallischen Gla ̈sern. Die Bildung nanokristalliner Clusterstrukturen und der Mechanismus der Verbesserung der plastischen Verformbarkeit bedürfen zukünftig vertiefter wissenschaftlicher Untersuchungen.
6

Gemischte und einfache Parameteridentifikation mittels der Finiten-Elemente-Methode an Nanoindentationsmessungen

Lösch, Sören 25 January 2013 (has links) (PDF)
Die Anwendung des Verfahrens der inversen Parameteridentifikation auf die Nanoindentation mit einer neuen Materialklasse (amorphe Legierungen) ist Hauptgegenstand der vorliegenden Arbeit. Um die Methode auf ihre Zuverlässigkeit hin zu überprüfen, werden darüber hinaus die drei Härtevergleichsplatten HV240, HV400 und HV720 sowie das oxidische Glas BK7, deren Nanoindentationsmessungen von Dipl.-Ing. André Clausner schon zu einem früheren Zeitpunkt vorgenommen wurden, zur Berechnung herangezogen. Die Auswahl der Materialien erfolgte so, dass diese einen möglichst großen Bereich von Y abdecken, von BK7 bis hin zu HV240. Damit soll gezeigt werden, dass das Verfahren der inversen Parameteridentifikation für einen großen Bereich von natürlich vorkommenden Materialien genutzt werden kann. Der Schwerpunkt liegt dabei auf der Bestimmung des Fließverhaltens, das durch die Parameter Fließgrenze1 Y und Verfestigungsexponent n erfolgt. Ziel ist es, in Zukunft auf weitere Experimente, die bisher zur Bestimmung der mechanischen Materialeigenschaften genutzt wurden und häufig zur Zerstörung der Proben führten, verzichten zu können. Für viele Gläser, z.B. BK7, sind derartige zerstörende Versuche nicht anwendbar, weil spröde Materialien splittern statt plastisch zu fließen. Dieser Arbeit liegt die Methode der Finiten-Elemente zugrunde, um eine inverse Parameteridentifikation zu realisieren. Sie wird hier eingesetzt, weil es sich bei plastischer Verformung um einen nichtlinearen Prozess2 handelt, der analytisch nicht mehr geschlossen gelöst werden kann. Die Simulationssoftware ANSYS R und ein Optimierungsmodul (SPC-OPT) der Fakultät für Maschinenbau dienen zur Berechnung. Bei der Simulation werden dabei ein zweidimensionales Modell und ein realitätsnahes dreidimensionales Modell eingesetzt.
7

Polyhedra-based analysis of computer simulated amorphous structures

Kokotin, Valentin 25 June 2010 (has links) (PDF)
Bulk metallic glasses represent a newly developed class of materials. Some metallic glasses possess combinations of very good or even excellent mechanical, chemical and/or magnetic properties uncovering a broad range of both industrial and vital applications. Besides all advantages metallic glasses have also significant drawbacks, which have to be overcome for commercial application. Apart from low critical thicknesses, brittleness and chemical inhomogeneity one important problem of metallic glasses is the lack of an appropriate theory describing their structure. Therefore, the search for new glass forming compositions as well as the improving of existing ones occurs at present by means of trial-and-error methods and a number of empirical rules. Empirical rules for good glass-forming ability of bulk metallic glasses have been established in recent years by Inoue and Egami. Two of these rules, (i) Preference of more than 3 elements and (ii) Need of more than 12 % radii difference of base elements, seem to be closely related to topological (geometrical) criteria. From this point of view topological parameters contribute essentially to the glass-forming ability. The third rule (iii) demands a negative mixing enthalpy of base elements and refers to the chemical interaction of the atoms. The generalized Bernal’s model (hard-sphere approximation) was used for the simulation of monatomic, binary and multi-component structures. Excluding chemical interaction, this method allows the investigation of topological criteria of the glass-forming ability. Bernal’s hard-sphere model was shown to be a good approximation for bulk metallic glasses and metallic liquids and yields good coincidence of experimental and theoretical results. • The Laguerre (weighted Voronoi) tessellation technique was used as the main tool for the structural analysis. Due to very complex structures it is impossible to determine the structure of bulk metallic glasses by means of standard crystallographic methods. • Density, radial distribution function, coordination number and Laguerre polyhedra analysis confirm amorphism of the simulated structures and are in a good agreement with available experimental results. • The ratio of the fractions of non-crystalline to crystalline Laguerre polyhedra faces was introduced as a new parameter . This parameter reflects the total non-crystallinity of a structure and the amount of atomic rearrangements necessary for crystallization. Thus, the parameter is related to the glass-forming ability. It depends strongly on composition and atomic size ratio and indicates a region of enhanced glass-forming ability in binary mixtures at 80 % of small atoms and atomic size ratio of 1.3. All found maxima of parameter for ternary mixtures have compositions and size ratios which are nearly the same as for the binary mixture with the maximum value of . • A new method of multiple-compression was introduces in order to test the tendency towards densification and/or crystallization of the simulated mixtures. The results of the multiple-compression of monatomic mixtures indicate a limiting value of about 0.6464 for the density of the amorphous state. Further densification is necessarily connected to formation and growth of nano-crystalline regions. • The results of the multiple-compression for binary mixtures shows a new maximum of the density at the size ratio of 1.3 and 30 % to 90 % of small atoms. This maximum indicates a local island of stability of the amorphous state. The maximal receivable density without crystallization in this region is enhanced compared to neighbouring regions. • The comparison of the parameter and the density to the distribution of known binary bulk metallic (metal-metal) glasses clearly shows that both parameters play a significant role in the glass-forming ability. • The polyhedra analysis shows regions with enhanced fraction of the icosahedral short-range order (polyhedron (0, 0, 12)) in the binary systems with the maximum at 80 % of small atoms and size ratio of 1.3. Comparison of the distribution of the (0, 0, 12) polyhedra to the distribution of known binary metallic (metal-metal) glasses and to the parameter shows that icosahedral short-range order is not related to the glass-forming ability and is a consequence of the high non-crystallinity (high values of ) of the mixtures and non vice versa. Results for the ternary mixtures confirm this observation. • A new approach for the calculation of the mixing enthalpy is proposed. The new method is based on the combination of Miedema’s semi-empirical model and Laguerre tessellation technique. The new method as well as 6 other methods including the original Miedema’s model were tested for more than 1400 ternary and quaternary alloys. The results show a better agreement with experimental values of the mixing enthalpy for the new model compared to all other methods. The new model takes into account the local structure at atom site and can be applied to all metallic alloys without additional extrapolations if the atomic structure of the considered alloy is known from a suitable atomistic structure model.
8

Polyhedra-based analysis of computer simulated amorphous structures

Kokotin, Valentin 15 June 2010 (has links)
Bulk metallic glasses represent a newly developed class of materials. Some metallic glasses possess combinations of very good or even excellent mechanical, chemical and/or magnetic properties uncovering a broad range of both industrial and vital applications. Besides all advantages metallic glasses have also significant drawbacks, which have to be overcome for commercial application. Apart from low critical thicknesses, brittleness and chemical inhomogeneity one important problem of metallic glasses is the lack of an appropriate theory describing their structure. Therefore, the search for new glass forming compositions as well as the improving of existing ones occurs at present by means of trial-and-error methods and a number of empirical rules. Empirical rules for good glass-forming ability of bulk metallic glasses have been established in recent years by Inoue and Egami. Two of these rules, (i) Preference of more than 3 elements and (ii) Need of more than 12 % radii difference of base elements, seem to be closely related to topological (geometrical) criteria. From this point of view topological parameters contribute essentially to the glass-forming ability. The third rule (iii) demands a negative mixing enthalpy of base elements and refers to the chemical interaction of the atoms. The generalized Bernal’s model (hard-sphere approximation) was used for the simulation of monatomic, binary and multi-component structures. Excluding chemical interaction, this method allows the investigation of topological criteria of the glass-forming ability. Bernal’s hard-sphere model was shown to be a good approximation for bulk metallic glasses and metallic liquids and yields good coincidence of experimental and theoretical results. • The Laguerre (weighted Voronoi) tessellation technique was used as the main tool for the structural analysis. Due to very complex structures it is impossible to determine the structure of bulk metallic glasses by means of standard crystallographic methods. • Density, radial distribution function, coordination number and Laguerre polyhedra analysis confirm amorphism of the simulated structures and are in a good agreement with available experimental results. • The ratio of the fractions of non-crystalline to crystalline Laguerre polyhedra faces was introduced as a new parameter . This parameter reflects the total non-crystallinity of a structure and the amount of atomic rearrangements necessary for crystallization. Thus, the parameter is related to the glass-forming ability. It depends strongly on composition and atomic size ratio and indicates a region of enhanced glass-forming ability in binary mixtures at 80 % of small atoms and atomic size ratio of 1.3. All found maxima of parameter for ternary mixtures have compositions and size ratios which are nearly the same as for the binary mixture with the maximum value of . • A new method of multiple-compression was introduces in order to test the tendency towards densification and/or crystallization of the simulated mixtures. The results of the multiple-compression of monatomic mixtures indicate a limiting value of about 0.6464 for the density of the amorphous state. Further densification is necessarily connected to formation and growth of nano-crystalline regions. • The results of the multiple-compression for binary mixtures shows a new maximum of the density at the size ratio of 1.3 and 30 % to 90 % of small atoms. This maximum indicates a local island of stability of the amorphous state. The maximal receivable density without crystallization in this region is enhanced compared to neighbouring regions. • The comparison of the parameter and the density to the distribution of known binary bulk metallic (metal-metal) glasses clearly shows that both parameters play a significant role in the glass-forming ability. • The polyhedra analysis shows regions with enhanced fraction of the icosahedral short-range order (polyhedron (0, 0, 12)) in the binary systems with the maximum at 80 % of small atoms and size ratio of 1.3. Comparison of the distribution of the (0, 0, 12) polyhedra to the distribution of known binary metallic (metal-metal) glasses and to the parameter shows that icosahedral short-range order is not related to the glass-forming ability and is a consequence of the high non-crystallinity (high values of ) of the mixtures and non vice versa. Results for the ternary mixtures confirm this observation. • A new approach for the calculation of the mixing enthalpy is proposed. The new method is based on the combination of Miedema’s semi-empirical model and Laguerre tessellation technique. The new method as well as 6 other methods including the original Miedema’s model were tested for more than 1400 ternary and quaternary alloys. The results show a better agreement with experimental values of the mixing enthalpy for the new model compared to all other methods. The new model takes into account the local structure at atom site and can be applied to all metallic alloys without additional extrapolations if the atomic structure of the considered alloy is known from a suitable atomistic structure model.
9

Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites

Song, Kaikai 27 November 2013 (has links) (PDF)
In the past, it has been found that CuZr-based BMG composites containing B2 CuZr crystals in the glassy matrix display significant plasticity with obvious work hardening. In this work, it was tried to provide a strategy for pinpointing the formation of CuZr-based BMG composites, to modify the microstructures of these composites, and to clarify their yielding and deformation mechanisms. In order to pinpoint the formation of CuZr-based BMG composites, the phase formation and structural evolution of 11 kinds of CuZr-based alloy systems, altogether 36 different compositions, during heating and quenching processes were investigated. An endothermic event between the crystallization and melting peaks was found to be associated with a eutectoid transformation of the B2 CuZr phase. With the addition of elements to the CuZr-based alloys, this endothermic peak(s) shifts to lower or higher temperatures, implying that minor element additions can change the thermal stability of the B2 CuZr phase. By considering the thermal stability of the supercooled liquid, i.e. its resistance against crystallization, and the thermal stability of the B2 CuZr phase, a new strategy to select compositions, which form metastable CuZr-based composites consisting of an amorphous phase and B2 CuZr crystals, is proposed. It is characterized by a parameter, K = Tf /TL, where Tf and TL are the final temperature of the eutectoid transformation during heating and the liquidus temperature of the alloy, respectively. Based on this criterion, the present CuZr-based alloys are classified into three types. For Type I alloys with lower K values, it is difficult to obtain bulk metallic glass (BMG) composites. For Type III alloys with higher K values, BMG composites with larger dimensions are prone to be fabricated, whereas only moderate-sized BMG composites can be obtained for Type II possessing intermediate K values. Accordingly, CuZr-based BMG composites containing B2 CuZr phase in the glassy matrix for different alloy systems were successfully fabricated into different dimensions. For the sake of controlling the formation of the B2 CuZr phase in the glassy matrix and then changing the deformability of CuZr-based BMG composites, different methods were also used to fabricate these composites by: (1) introducing insoluable/high-melting particles; (2) appropriate re-melting treatments of master alloys; and (3) a new flash heating and quenching method. It was demonstrated that the volume fraction, size and distribution of the B2 phase in the glassy matrix can be controlled as well using the methods above. In order to clarify the excellent mechanical properties of CuZr-based BMG composites, the yielding and plastic deformation mechanisms of CuZr-based BMG composites were investigated based on SEM, XRD, and TEM observations. With the volume fraction of amorphous phase (famor) decreasing from 100 vol.% to 0 vol.%, a single-to-“double”-to-“triple”-double yielding transition was found. For the monolithic CuZr-based BMGs and their composites with the famor ³ 97.5 ± 0.5 vol.%, only one yielding at a strain of ~2% occurs, which is due to the formation of multiple shear bands in the glassy matrix, and the associative actions of the shear banding and the martensitic transformation (MT), respectively. When the famor is less than 97.5 ± 0.5 vol.%, a “yielding” occurs at a low strain of ~1%, which results from the yielding of B2 CuZr phase and the onset of the MT within B2 CuZr phase. When the famor is larger than 55 ± 3 vol.%, a “yielding” observed at strains >8% is ascribed from the operation of dislocations with a high density as well as partial de-twinning. It was also found that with the famor decreasing, the deformation mechanism gradually changes from a shear-banding dominated process, to a process being governed by the MT in the crystalline phase, resulting in different plastic strains. Owing to the importance of the MT and the shear banding to the deformation of CuZr-based BMG composites, the details of the MT and the shear banding process were investigated. On one hand, it was found that the MT temperatures of CuZr-based martensitic alloys have a clear relationship with the respective electronic structure and the lattice parameter of the equiatomic CuZr intermetallics. The MT temperatures of the studied alloys can be evaluated by the average concentration of valence electrons. Additional elements with larger atomic radius can affect the stacking fault energy and the electronic charge density redistribution, resulting in the difference of the electronic structures. On the other hand, the formation and multiplication of shear bands for CuZr-based BMG composites is associated with the storage and dissipation of the partial elastic energy during the plastic deformation. When microstructural inhomogeneities at different length scales are introduced into the glassy matrix, the elastic energy stored in the sample-machine system during the plastic deformation is redistributed, resulting in a transition of shear banding process from a chaotic behavior to a self-organized critical state. All in all, our studies and observations provide an understanding of the formation, deformation, and microstrcutural optimization of CuZr-based BMG composites and give guidance on how to improve the ductility/toughness of BMGs. / In letzter Zeit zeigte sich, dass massive Cu-Zr-basierte metallische Glaskomposite, welche B2 CuZr-Kristallite in der amorphen Matrix enthalten, eine ausgeprägte Plastizität mit klarer Kaltverfestigung aufweisen. Im Rahmen dieser Arbeit wurde versucht, eine Strategie zur zielgenauen Einstellung der Phasenbildung und des dazugehörigen Gefüges von massiven CuZr-basierten Glas-Matrix-Kompositen bereitzustellen, sowie deren Fließ- und Verformungsmechanismen aufzuklären. Es wurden elf verschiedene CuZr-basierte Legierungssysteme, insgesamt 36 verschiedene Zusammensetzungen, während Heiz- und Abschreckprozessen untersucht, um die Phasenbildung samt Gefüge von massiven CuZr-basierten Glas-Matrix-Kompositen zielgenau einzustellen. Bei CuZr-basierten metallischen Gläsern kann eine endotherme Reaktion zwischen Kristallisation und Schmelzvorgang der eutektoiden Umwandlung von B2 CuZr zugeordnet werden. Mit Zugabe verschiedener Elemente zur CuZr-Basislegierung kann diese Umwandlung zu höheren bzw. niedrigeren Temperaturen verschoben werden. Bereits geringe Beimischungen beeinflussen die thermische Stabilität der B2 CuZr-Phase. Unter Berücksichtigung der thermischen Stabilität, sowie des Widerstands gegen Kristallisation der unterkühlten Schmelze und der B2 CuZr-Phase wurde eine neue Strategie zur Auswahl des Zusammensetzungsgebiets metastabiler CuZr-Legierungen verschiedener Durchmesser vorgeschlagen. Dieser Widerstand kann durch den Parameter K=Tf/TL beschrieben werden, wobei Tf die Endtemperatur der eutektoiden Umwandlung und TL die Liquidustemperatur sind. Basierend auf diesem Parameter können die untersuchten CuZr-basierten Legierungen in drei Klassen unterteilt werden. Für Legierungen vom Typ I mit niedrigeren K-Werten, ist es schwer massive metallische Glas-Komposite (BMG-Komposite) zu erhalten. Im Gegensatz dazu lassen sich für Legierungen vom Typ III, mit höheren K-Werten, BMG-Komposite mit größeren Probendurchmessern herstellen und Legierungen vom Typ II mit einem mittleren K-Wert mit moderaten Probendurchmessern erzeugt werden. Folglich wurden CuZr-basierte Glas-Matrix-Komposite verschiedener Legierungssysteme mit B2-Phase in der amorphen Matrix erfolgreich in unterschiedlichen Geometrien hergestellt. Zur Kontrolle der Ausbildung der B2-Phase in der amorphen Matrix wurden unterschiedliche Methoden verwendet, um duktile CuZr-basierte BMG-Komposite herzustellen: (1) Einbringen von unlöslichen, hochschmelzenden Partikeln; (2) geeignete Wiederaufschmelzbehandlungen der Vorlegierungen; (3) eine neue Schnellerhitzungs- und -Abschreckmethode. Es konnte gezeigt werden, dass der Volumenanteil, sowie die Größe und Verteilung der B2-Phase in der amorphen Matrix durch die oben genannten Methoden kontrolliert werden können. Um die mechanischen Eigenschaften hinsichtlich des Fließens und der plastischen Deformationsmechanismen von CuZr-basierten BMG-Kompositen aufzuklären, wurden diese näher mittels Rasterelektronenmikroskopie, Röntgenbeugung und Durchstrahlungs-elektronenmikroskopie untersucht. Mit sinkendem Volumenanteil der amorphen Phase (famor) von 100 vol.% auf 0 vol.% kann ein Übergang von einer über zwei zu drei Fließgrenzen beobachtet werden. Für monolithische CuZr-basierte BMGs und ihre Komposite mit einem Anteil famor ≥ 97.5 ± 0.5vol.% erfolgt das Fließen ab einer Stauchung von ~2% durch Ausbildung von mehreren Scherbänden in der amorphen Matrix bzw. dem Zusammenwirken des dazugehörigen Scherens und der Martensitumwandlung. Bei einem Anteil famor unter 97.5 ± 0.5 vol.% findet ein Fließen bei niedrigerer Stauchung von ~1% statt. Dies geschieht aufgrund des Fließens und der beginnenden martensitischen Umwandlungen der B2 CuZr-Phase. Bei einem Anteil famor größer als 55 ± 3 vol.% kann ein Fließen oberhalb einer Stauchung von 8% durch die Interaktion von Versetzungen bei hoher Versetzungsdichte sowie partiellem „Entzwillingen“, beobachtet werden. Es wurde herausgefunden, dass mit sinkendem famor der Verformungsmechanismus schrittweise von einem Scherband dominierten zu einem von der martensitischen Umwandlung dominierten Mechanismus übergeht. Dieser Übergang führt zu Unterschieden in der plastischen Verformung. Da für das Verformungsverhalten von CuZr-basierten BMG-Kompositen die deformationsinduzierte martensitische Umwandlung und die Entstehung sowie Ausbreitung von Scherbändern von herausragender Bedeutung sind, wurden sie näher untersucht. Einerseits wurde herausgefunden, dass die Umwandlungstemperatur der martensitischen Umwandlung von CuZr-basierten martensitischen Legierungen in klarer Beziehung zur entsprechenden Elektronenstruktur und der Gitterkonstanten der äquiatomaren intermetallischen CuZr-Phasen stehen. Die martensitischen Umwandlungstemperaturen der untersuchten Legierungen können über die mittlere Valenzelektronenkonzentration ausgewertet werden. Zusätzliche Elemente mit größerem Atomradius können die Stapelfehlerenergie und die Ladungsdichteverteilung ändern, was in unterschiedliche Elektronenstrukturen mündet. Andererseits ist die Entstehung und Vervielfachung von Scherbändern in CuZr-basierten BMG-Kompositen verbunden mit der Speicherung und Dissipation der partiellen elastischen Energie während der plastischen Verformung. Durch das Einbringen von Gefügeinhomogenitäten unterschiedlicher Größe in die Glasmatrix, wird die elastische Energie, die im System Probe-Maschine gespeichert ist, während der plastischen Deformation umverteilt. Dies führt zu einem Übergang des Schervorgangs von chaotischem Verhalten zu einem selbstorganisierten kritischen Zustand. Insgesamt stellen unsere Untersuchungen und Beobachtungen ein Verständnis der Ausbildung, Verfomung und Gefügeoptimierung von CuZr-basierten BMG-Kompositen bereit und sollen als Leitfaden zur Verbesserung der Duktilität bzw. Zähigkeit von BMGs dienen.
10

Phase separation and structure formation in gadolinium based liquid and glassy metallic alloys

Han, Junhee 20 May 2014 (has links) (PDF)
In this PhD research the liquid-liquid phase separation phenomena in Gd-based alloys was investigated in terms of phase equilibria, microstructure formation upon quenching the melt and corresponding magnetic properties of phase-separated metallic glasses. The phase diagrams of the binary subsystems Gd-Zr and Gd-Ti were experimentally reassessed. Especially the phase equilibria with the liquid phase could be determined directly by combining in situ high energy synchrotron X-ray diffraction with electrostatic levitation of the melt. The Gd-Zr system is of eutectic type with a metastable miscibility gap. The eutectic composition at 18 ± 2 at.% Zr, the liquidus line and the coexistence of bcc-Zr and bcc-Gd at elevated temperature could be determined. The Gd-Ti system is a monotectic system. The experimental observations in this work led to improved new Gd-Zr and Gd-Ti phase diagrams. The phase equilibria of the ternary Gd-Ti-Co system were analyzed for two alloy compositions. The XRD patterns for molten Gd35Ti35Co30 gave direct evidence for the coexistence of two liquid phases formed by liquid-liquid phase separation. The first experimental and thermodynamic assessment of the ternary Gd–Ti–Co system revealed that the stable miscibility gap of binary Gd–Ti extends into the ternary Gd–Ti–Co system (up to about 30 at.% Co). New phase-separated metallic glasses were synthesized in Gd-TM-Co-Al (TM = Hf, Ti or Zr) alloys. The microstructure was characterized in terms of composition and cooling rate dependence of phase separation. Due to large positive enthalpy of mixing between Gd on the one side and Hf, Ti or Zr on the other side, the alloys undergo liquid-liquid phase separation during rapid quenching the melt. The parameters determining the microstructure development during phase separation are the thermodynamic properties of the liquid phase, kinetic parameters and quenching conditions. By controlling these parameters and conditions the microstructure can be tailored both at microscopic and macroscopic length scales. This includes either droplet-like or interconnected microstructures at the microscopic level and glass-glass or glass-crystalline composites at the macroscopic level. Essential parameter for the quenched in microstructure is the temperature dependence of liquid-liquid phase separation, which is determined by the chemical composition of the alloy: on the one hand, earlier and/or later stages of spinodal decomposition or almost homogeneous glassy states are obtained if the critical temperature of miscibility gap Tc is close to the glass transition temperature Tg; and on the one hand, coarsening and secondary precipitations of the liquids are obtained if Tc is much higher than Tg. Finally, the influence of the microstructure developed by phase separation on their magnetic properties had been investigated. The saturation magnetization σS depends on the overall amount of Gd atoms in the alloys and is not remarkably affected by phase separation processes. The Curie temperature TCurie of the magnetic transition is influenced by the changed chemical composition of the Gd-rich glassy phases compared to that of monolithic Gd-Co-Al glasses. / In dieser Doktorarbeit wurde die flüssig-flüssig Phasenentmischung von Gd-basierten Legierungen hinsichtlich der Phasengleichgewichte, der Gefügeentwicklung während der Schmelzabschreckung und dazugehöriger magnetischer Eigenschaften, untersucht. Die Zustandsdiagramme der binären Untersysteme Gd-Zr undGd-Ti wurden experimentell ermittelt.. Insbesondere konnten die Phasengleichgewichte mit der flüssigen Phase mittels in-situ Röntgenbeugungsmessunngen an elektrostatisch levitierten Schmelzen direkt, bestimmt werden. Das Gd-Zr System stellt ein ein eutektisches Phasendiagram dar und besitzt eine metastabile Mischungslücke. Die eutektische Zusammensetzung wurde mit 18 ± 2 at.%Zr bestimmt und der Verlauf der Liquiduslinie bei erhöhten Temperaturen wurde experimentell ermittelt. Experimentell wurde die Koexistenz von kubisch-raumzentrierten Zr und Gd in einem Bereich bei hohen Temperaturen nachgewiesen. Das Gd-Ti-System ist von monotektischer Art. Die experimentellen Beobachtungen dieser Arbeit trugen wesentlich zur Verbesserung der Beschreibung der Phasendiagaramme Gd-Zr- und Gd-Ti-Phasenbei. Die Phasengleichgewichte des ternären Gd-Ti-Co-Systems wurde anhand zweier Legierungszusammensetzungen untersucht. Die Röntgenbeugungsdiffraktogramme der geschmolzenen Legiereung Gd35Ti35Co30 sind ein direkter Beleg für die Koexistenz zweier flüssiger Phasen, aufgrund der flüssig-flüssig Phasenentmischung. Die erste experimentelle und thermodynamische Auswertung des ternären Gd-Ti-Co-Systems zeigt, dass sich die stabile Mischungslücke des binären Gd-Ti-Systems ins ternäre Gd-Ti-Co-System bis zu ungefähr 30 at.% Co erstreckt. Es wurden neue Gd-TM-Co-Al (TM = Hf, Ti oder Zr)-basierte metallische Gläser, die separierte Phasen besitzen, hergestellt. Ihr Gefüge wurden hinsichtlich Zusammensetzung- und Abkühlratenabhängigkeit der Phasenentmischung charakterisiert. Aufgrund der großen positiven Mischungsenthalpie zwischen Gd auf der einen und Hf, Ti oder Zr auf der anderen Seite, weisen diese Legierungen eine flüssig-flüssig Phasenentmischung während der Abschreckung aus der Schmelze auf. Die Einflussgrößen, die die Gefügeentwicklung während der Phasenentmischung bestimmen, sind die thermodynamischen Eigenschaften der flüssigen Phase, die kinetische Parameter und die Abschreckbedingungen. Indem diese Parameter und Bedingungen kontrolliert werden, kann das Gefüge auf makro- sowie mikroskopischer Längenskala maßgeschneidert werden. Dies beinhaltet entweder tropfenförmige oder miteinander verbundene Gefüge auf einer mikroskopischen Skala und Glas-Glas oder Glas-Kristall Komposite auf einer makroskopischen Längenskala. Ein wesentlicher Parameter für das abgeschreckte Gefüge ist die Temperatur-Abhängigkeit der flüssig-flüssig Phasenentmischung, die durch die chemische Zusammensetzung der Legierung bestimmt wird. Frühere und/oder spätere Stadien der spinodalen Entmischung oder nahezu homogene amorphe Zustände können abhängig von dem Temperaturunterschied zwischen kritischer Temperatur der flüssig-flüssig Phasenentmischung und der Glasübergangstemperatur erhalten werden. Wenn die kritische Temperatur der Mischungslücke, Tc, viel höher ist als die des Glasübergangs, Tg, können makroskopische Vergröberungen der tropfenförmigen Verteilung der flüssigen Phase und sekundäre flüssige oder kristalline Ausscheidungen in den gebildeten amorphen Phasen erhalten werden. Durch die Phasenentmischung und die erhaltenen heterogenen Gefüge werden die magnetischen Eigenschaften beeinflusst.. Die Sättigungsmagnetisierung,σS, hängt von der gesamten Anzahl der Gd-Atome der Legierung ab und wird nicht bemerkenswert vom Phasenentmischungsprozess beeinflusst. Die Curie Temperatur TCurie wird im Vergleich zu monolithischen Gd-Co-Al Gläsern, und abhängig von der chemischen Zusammensetzung der Gd-reichen Phase, verändert.

Page generated in 0.0695 seconds