• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 33
  • 25
  • 16
  • 10
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Avaliação do conhecimento sobre o uso de inaladores dosimetrados entre profissionais de saúde de um hospital pediátrico / Evaluation of the knowledge of health professionals at a pediatric hospital regarding the use of metered-dose inhalers

Muchão, Fabio Pereira 06 April 2009 (has links)
Existem evidências na literatura de que a administração de medicações, como corticosteróides inalatórios e broncodilatadores, utilizando inaladores pressurizados dosimetrados, é mais eficaz e segura do que com os nebulizadores convencionais. Entretanto, há evidências de que não só pacientes, mas também profissionais de saúde têm dificuldade no manejo dos inaladores pressurizados dosimetrados. A hipótese do presente estudo é que o conhecimento da técnica inalatória entre os profissionais da nossa Instituição é heterogêneo, sendo que não há informações sobre o nível deste conhecimento entre as diversas categorias profissionais. OBJETIVOS: Avaliar o conhecimento prático e teórico de profissionais da área médica, de enfermagem e fisioterapia sobre a utilização do inalador dosimetrado através de testes padronizados. MÉTODOS: Avaliações teóricas e práticas sobre o conhecimento do uso de inaladores pressurizados dosimetrados foram realizadas com médicos, fisioterapeutas, enfermeiras e auxiliares de enfermagem, atribuindo-se uma nota de 0 a 10 para cada avaliação. Calcularam-se as medianas das notas obtidas pelos profissionais de cada categoria, as questões com maiores e menores índices de erros e feita a comparação descritiva do desempenho das diversas categorias profissionais. Após as avaliações, instrução verbal e escrita sobre a utilização correta dos dispositivos foi fornecida a todos os participantes. A análise estatística foi feita através do método de Kruskal-Wallis de comparação de medianas. Também foi realizada a análise através de regressão logística múltipla seqüencial. RESULTADOS: foram avaliados 30 médicos residentes ou estagiários da pediatria, 23 médicos assistentes, 29 fisioterapeutas, 33 enfermeiras e 31 auxiliares de enfermagem, em um total de146 profissionais. Não foram entrevistados residentes ou assistentes do grupo de Pneumologia. Os médicos residentes, fisioterapeutas e os médicos assistentes obtiveram desempenho significativamente superior que os enfermeiros e auxiliares de enfermagem. Apenas os médicos residentes obtiveram mediana superior a seis. As questões práticas com maiores índices de erros foram as relativas à limpeza do espaçador. Questões relativas à agitação do inalador antes do uso e à limpeza da cavidade oral após a sua utilização também obtiveram alto índice de erros. A questão teórica mais errada foi a respeito do tempo necessário entre dois jatos em aplicações sucessivas do inalador pressurizado dosimetrado. CONCLUSÕES: O conhecimento teórico-prático dos profissionais de saúde da Instituição a respeito do uso de inaladores pressurizados dosimetrados é heterogêneo. Os médicos residentes, fisioterapeutas e médicos assistentes obtiveram desempenho significativamente melhor que os enfermeiros e auxiliares de enfermagem sendo que estes últimos estão diretamente envolvidos na aplicação prática destes dispositivos na rotina hospitalar. / There are data in the literature indicating that the administration of medications such as inhaled corticosteroids and bronchodilators, using metered-dose inhalers, is more effective and safer than its dispensation by conventional nebulizers. However, there is evidence that not only patients but also health care professionals have difficulty in dealing with pressurized dose inhalers. The hypothesis of the present study is that the knowledge of inhalation techniques among health professionals of our Institution is heterogeneous, and there is no information about this knowledge among the diverse categories of professionals. OBJECTIVE: To assess the practical and theoretical knowledge of medical professionals, nursing and physiotherapy on the use of metereddose inhalers by standardized testing. METHODS: Practical and written tests on the use of metered-dose inhalers were applied to physicians, physical therapists, nurses and nursing assistants. A score from 0 to 10 was assigned to each evaluation. Median scores were calculated for each professional category. Questions with higher and lower correct values were identified, and a descriptive comparison was made regarding the performance of the diverse professional categories. Following the examination, oral and written instructions on the correct use of the devices were provided for all participants. Statistical analysis was performed using the Kruskal-Wallis method for comparison of medians. A sequential logistic multiple regression analysis was also performed. RESULTS: A total of 146 professionals were assessed, including 30 fellows in pediatrics, 23 attending physicians, 29 physical therapists, 33 nurses and 31 nursing assistants. Fellows or attending physicians of the Pediatric Pulmonology Unit were not included in the study. Fellows, physical therapists and attending physicians performed significantly better than did nurses and nursing assistants. Only fellows had a median score greater than six. On the practical tests for infants and toddlers, the step most often missed was that related to cleaning the spacer. On practical tests, the steps related to shaking the inhaler and cleaning the mouth also presented high error indices. On the written tests, the question most often answered incorrectly was that related to the waiting time between puffs. CONCLUSIONS: The theoretical and practical knowledge of health professionals of our Institution on the use of metered-dose inhalers is heterogeneous. The performance of fellows, physical therapists and attending physicians was significantly better than that of nurses and nursing assistants who are directly involved in the practical application of these devices in the hospital routine.
12

Avaliação do conhecimento sobre o uso de inaladores dosimetrados entre profissionais de saúde de um hospital pediátrico / Evaluation of the knowledge of health professionals at a pediatric hospital regarding the use of metered-dose inhalers

Fabio Pereira Muchão 06 April 2009 (has links)
Existem evidências na literatura de que a administração de medicações, como corticosteróides inalatórios e broncodilatadores, utilizando inaladores pressurizados dosimetrados, é mais eficaz e segura do que com os nebulizadores convencionais. Entretanto, há evidências de que não só pacientes, mas também profissionais de saúde têm dificuldade no manejo dos inaladores pressurizados dosimetrados. A hipótese do presente estudo é que o conhecimento da técnica inalatória entre os profissionais da nossa Instituição é heterogêneo, sendo que não há informações sobre o nível deste conhecimento entre as diversas categorias profissionais. OBJETIVOS: Avaliar o conhecimento prático e teórico de profissionais da área médica, de enfermagem e fisioterapia sobre a utilização do inalador dosimetrado através de testes padronizados. MÉTODOS: Avaliações teóricas e práticas sobre o conhecimento do uso de inaladores pressurizados dosimetrados foram realizadas com médicos, fisioterapeutas, enfermeiras e auxiliares de enfermagem, atribuindo-se uma nota de 0 a 10 para cada avaliação. Calcularam-se as medianas das notas obtidas pelos profissionais de cada categoria, as questões com maiores e menores índices de erros e feita a comparação descritiva do desempenho das diversas categorias profissionais. Após as avaliações, instrução verbal e escrita sobre a utilização correta dos dispositivos foi fornecida a todos os participantes. A análise estatística foi feita através do método de Kruskal-Wallis de comparação de medianas. Também foi realizada a análise através de regressão logística múltipla seqüencial. RESULTADOS: foram avaliados 30 médicos residentes ou estagiários da pediatria, 23 médicos assistentes, 29 fisioterapeutas, 33 enfermeiras e 31 auxiliares de enfermagem, em um total de146 profissionais. Não foram entrevistados residentes ou assistentes do grupo de Pneumologia. Os médicos residentes, fisioterapeutas e os médicos assistentes obtiveram desempenho significativamente superior que os enfermeiros e auxiliares de enfermagem. Apenas os médicos residentes obtiveram mediana superior a seis. As questões práticas com maiores índices de erros foram as relativas à limpeza do espaçador. Questões relativas à agitação do inalador antes do uso e à limpeza da cavidade oral após a sua utilização também obtiveram alto índice de erros. A questão teórica mais errada foi a respeito do tempo necessário entre dois jatos em aplicações sucessivas do inalador pressurizado dosimetrado. CONCLUSÕES: O conhecimento teórico-prático dos profissionais de saúde da Instituição a respeito do uso de inaladores pressurizados dosimetrados é heterogêneo. Os médicos residentes, fisioterapeutas e médicos assistentes obtiveram desempenho significativamente melhor que os enfermeiros e auxiliares de enfermagem sendo que estes últimos estão diretamente envolvidos na aplicação prática destes dispositivos na rotina hospitalar. / There are data in the literature indicating that the administration of medications such as inhaled corticosteroids and bronchodilators, using metered-dose inhalers, is more effective and safer than its dispensation by conventional nebulizers. However, there is evidence that not only patients but also health care professionals have difficulty in dealing with pressurized dose inhalers. The hypothesis of the present study is that the knowledge of inhalation techniques among health professionals of our Institution is heterogeneous, and there is no information about this knowledge among the diverse categories of professionals. OBJECTIVE: To assess the practical and theoretical knowledge of medical professionals, nursing and physiotherapy on the use of metereddose inhalers by standardized testing. METHODS: Practical and written tests on the use of metered-dose inhalers were applied to physicians, physical therapists, nurses and nursing assistants. A score from 0 to 10 was assigned to each evaluation. Median scores were calculated for each professional category. Questions with higher and lower correct values were identified, and a descriptive comparison was made regarding the performance of the diverse professional categories. Following the examination, oral and written instructions on the correct use of the devices were provided for all participants. Statistical analysis was performed using the Kruskal-Wallis method for comparison of medians. A sequential logistic multiple regression analysis was also performed. RESULTS: A total of 146 professionals were assessed, including 30 fellows in pediatrics, 23 attending physicians, 29 physical therapists, 33 nurses and 31 nursing assistants. Fellows or attending physicians of the Pediatric Pulmonology Unit were not included in the study. Fellows, physical therapists and attending physicians performed significantly better than did nurses and nursing assistants. Only fellows had a median score greater than six. On the practical tests for infants and toddlers, the step most often missed was that related to cleaning the spacer. On practical tests, the steps related to shaking the inhaler and cleaning the mouth also presented high error indices. On the written tests, the question most often answered incorrectly was that related to the waiting time between puffs. CONCLUSIONS: The theoretical and practical knowledge of health professionals of our Institution on the use of metered-dose inhalers is heterogeneous. The performance of fellows, physical therapists and attending physicians was significantly better than that of nurses and nursing assistants who are directly involved in the practical application of these devices in the hospital routine.
13

Efficiency of Aerosol Therapy through Jet Nebulizer, Breath-Actuated Nebulizer, and Pressurized Metered Dose Inhaler in a Simulated Spontaneous Breathing Adult

ALQarni, Abdullah 30 November 2011 (has links)
BACKGROUND: Aerosol therapy using albuterol is one of the most prescribed asthma treatments. The most frequently used methods of aerosol delivery are pneumatic jet nebulizer (JN), pressurized metered-dose inhaler (pMDI), and breath-actuated nebulizer (BAN). Choosing among these devices is usually not based on thorough comparison of efficiency or cost. We compare the efficiency of these three devices using a spontaneously breathing adult model. METHODS: We connected each aerosol generator—JN, BAN, or pMDI with a valved holding chamber (VHC)—to the face of an adult teaching manikin. Below the bifurcation, an elbow adaptor was connected to a corrugated tube and was angled to be at a lower level than the collecting filter to prevent droplets from dripping directly into the collecting filter. From the collecting filter, another corrugated tube was connected to a prevention filter, which was then connected to an adult breathing simulator. Spontaneous breathing parameters were VT 450 mL, RR 20/min, and I: E ratio 1:2. First, we compared JN, BAN (2.5 mg/3 mL), and pMDI (4 puffs); second, we compared JN and BAN 2.5 mg/0.5 mL plus 0.5 mL normal saline. Data were analyzed using spectrophotometry (276 nm). One-way ANOVA and independent sample t-tests were used (p<0.05). RESULTS: There were no differences in inhaled mass percentage (p=0.172) JN, BAN, and pMDI in the first experiment. Treatment time with BAN was significantly longer (p=0.0001) than with JN or pMDI. In the second experiment, BAN delivered more medication (p=0.004) than jet nebulizer. Treatment time was significantly less with JN (p=0.010). There was no difference in residual volume among JN and BAN in both experiment (p=0.765, p=0.115). CONCLUSIONS: All the devices that were compared using a 3 ml or 4 pMDI puffs delivered comparable amount of medication with no significant difference. However, BAN using 1ml fill volume delivers more drug compared to JN. Additionally, treatment time was longest with BAN. Even with reduction of its filling volume, BAN delivers a higher amount of medication to that of pMDI but was not statistically significant.
14

Theoretical and Experimental Behavior of Suspension Pressurized Metered Dose Inhalers

Sheth, Poonam January 2014 (has links)
Pressurized metered dose inhalers (pMDIs) are widely utilized to manage diseases of the lungs, such as asthma and chronic obstructive pulmonary disease. They can be formulated such that the drug and/or nonvolatile excipients are dissolved or dispersed in the formulation, rendering a solution or suspension formulation, respectively. While the formulation process for solution pMDIs is well defined, the formulation process of pMDIs with any type of suspended entity can be lengthy and empirical. The use of suspended drug or the addition of a second drug or excipient in a suspension pMDI formulation may non-linearly impact the product performance of the drug of interest in the formulation; this requires iterative testing of a series of pMDIs in order to identify a formulation with the most potential for success. One of the primary attributes used to characterize the product performance and quality control of inhaled medications is the residual aerodynamic particle size distribution (APSD) of the aerosolized drug. Along with clinical factors, formulation and device parameters have a significant impact on APSD. In this study, a computational model was developed using the principles of statistics and physical chemistry to predict the residual APSD generated by suspension pMDIs based on formulation, device, and raw drug or excipient substance considerations. The formulations modeled and experimentally evaluated consist of a suspended drug or excipient with/without a dissolved drug or excipient in a cosolvent-propellant system. The in silico model enables modeling a process that is difficult to delineate experimentally and contributes to understanding the link between pMDI formulation and device to product performance. The ability to identify and understand the variables that affect atomization and/or aerosol disposition , such as initial droplet size, suspended micronized drug or excipient size, and drug or excipient concentration, facilitates defining the design space for suspension pMDIs during development and improves recognizing the sensitive of the APSD is on each hardware and formulation variable. This model can later be applied to limit batch-to-batch variation in the manufacturing process and selecting plausible suspension pMDI formulations with quality design as the end goal.
15

The physical chemistry of pMDI formulations derived from hydrofluoroalkane propellants : a study of the physical behaviour of poorly soluble active pharmaceutical ingredients : bespoke analytical method development leading to novel formulation approaches for product development

Telford, Richard January 2013 (has links)
Active Pharmaceutical Ingredients (APIs) are frequently prepared for delivery to the lung for local topical treatment of diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, or for systemic delivery. One of the most commonly used devices for this purpose is the pressurised metered dose inhaler (pMDI) whereby drugs are formulated in a volatile propellant held under pressure. The compound is aerosolised to a respirably sized dose on actuation, subsequently breathed in by the user. The use of hydrofluoroalkanes (HFAs) in pMDIs since the Montreal Protocol initiated a move away from chlorofluorocarbon (CFC) based devices has resulted in better performing products, with increased lung deposition and a concomitant reduction in oropharyngeal deposition. The physical properties of HFA propellants are however poorly understood and their capacity for solubilising inhaled pharmaceutical products (IPPs) and excipients used historically in CFCs differ significantly. There is therefore a drive to establish methodologies to study these systems in-situ and post actuation to adequately direct formulation strategies for the production of stable and efficacious suspension and solution based products. Characterisation methods have been applied to pMDI dosage systems to gain insight into solubility in HFAs and to determine forms of solid deposits after actuation. A novel quantitative nuclear magnetic resonance method to investigate the physical chemistry of IPPs in these preparations has formed the centrepiece to these studies, accessing solubility data in-situ and at pressure for the first time in HFA propellants. Variable temperature NMR has provided thermodynamic data through van’t Hoff approaches. The methods have been developed and validated using budesonide to provide limits of determination as low as 1 μg/mL and extended to 11 IPPs chosen to represent currently prescribed inhaled corticosteroids (ICS), β2-adrenoagonists and antimuscarinic bronchodilators, and have highlighted solubility variations between the classes of compounds with lipophilic ICSs showing the highest, and hydrophilic β2- agonist/antimuscarinics showing the lowest solubilities from the compounds under study. To determine solid forms on deposition, a series of methods are also described using modified impaction methods in combination with analytical approaches including spectroscopy (μ-Raman), X-ray diffraction, SEM, chromatography and thermal analysis. Their application has ascertained (i) physical form/morphology data on commercial pMDI formulations of the ICS beclomethasone dipropionate (QVAR®/Sanasthmax®, Chiesi) and (ii) distribution assessment in-vitro of ICS/β2-agonist compounds from combination pMDIs confirming co-deposition (Seretide®/Symbicort®, GlaxoSmithKline/AstraZeneca). In combination, these methods provide a platform for development of new formulations based on HFA propellants. The methods have been applied to a number of ‘real’ systems incorporating derivatised cyclodextrins and the co-solvent ethanol, and provide a basis for a comprehensive study of solubilisation of the ICS budesonide in HFA134a using two approaches: mixed solvents and complexation. These new systems provide a novel approach to deliver to the lung, with reduced aerodynamic particle size distribution (APSD) potentially accessing areas suitable for delivery to peripheral areas of the lung (ICS) or to promote systemic delivery.
16

In Vitro Effect of Nonconventional Accessory Devices on Throat Deposition and Respirable Mass

Hammer, Carrie L., Bertsch, Matthew D., Myrdal, Paul B., Sheth, Poonam January 2012 (has links)
Class of 2012 Abstract / Specific Aims: To evaluate the in vitro throat deposition and respirable mass of the QVAR® pressurized metered-dose inhaler (pMDI) alone or coupled to an accessory device, such as the AeroChamber Valved Holding ChamberTM or various nonconventional accessory devices. Methods: The performance of the AeroChamber and nonconventional accessory devices, including a toilet paper roll, paper towel roll, rolled paper, plastic bottle spacer, plastic bottle reverse-flow holding chamber, and nebulizer reservoir tubing, were compared to no accessory device. Throat deposition and respirable mass were evaluated using a United States Pharmacopeia (USP) inlet ("throat") coupled to instrumentation for particle size analysis. Each configuration was tested with three actuations and repeated in quadruplicate. The amount of drug deposition was quantified using high-performance liquid chromatography. The data were analyzed using multiple independent t-tests assuming unequal variances. An a priori α-threshold of 0.05 was used with a Bonferroni corrected α of 0.007. Main Results: Compared to the pMDI alone, all of the accessory devices had significantly lower throat deposition (p < 0.001) and significantly higher respirable fraction (p < 0.001). Differences in respirable mass were not significant for any accessory device (p ≥ 0.049), except the paper towel roll and the nebulizer reservoir tubing (p < 0.001). Conclusions: Under these testing circumstances, nonconventional accessory devices, such as the toilet paper roll, rolled paper, plastic bottle spacer, and plastic bottle reverse-flow holding chamber, effectively reduce throat deposition and maintain respirable mass compared to a QVAR pMDI alone. Therefore, they may be suitable alternatives to commercial spacers.
17

Cosolvent Effect on Droplet Evaporation Time, Aerodynamic Particle Size Distribution, and Differential Throat Deposition for Pressurized Metered Dose Inhalers

Matthew Grimes, Myrdal, Paul, Sheth, Poonam January 2015 (has links)
Class of 2015 Abstract / Objectives: To evaluate the in vitro performance of various pressurized metered dose inhaler (pMDI) formulations by cascade impaction primarily focusing on throat deposition, fine particle fraction (FPF), and mass-median aerodynamic diameter (MMADR) measurements Methods: Ten solution pMDIs were prepared with varying cosolvent species in either low (8% w/w) or high (20% w/w) concentration. The chosen cosolvents were either alcohol (ethanol, n-propanol) or acetate (methyl-, ethyl-, and butyl acetate) in chemical nature. All formulations used HFA-134a propellant and 0.3% drug. The pMDIs were tested by cascade impaction with three different inlets to determine the aerodynamic particle size distribution (APSD), throat deposition, and FPF of each formulation. Theoretical droplet evaporation time (DET), a measure of volatility, for each formulation was calculated using the MMADR. Results: Highly volatile formulations with short DET showed consistently lower throat deposition and higher FPF than their lower volatility counterparts when using volume-constrained inlets. However, FPF values were not significantly different for pMDI testing with a non-constrained inlet. The MMADR values generated with volume-constrained inlets did not show any discernible trends, but MMADR values from the non-constrained inlet correlated with DET. Conclusions: Formulations with shorter DET exhibit lower throat deposition and higher FPF, indicating potentially better inhalational performance over formulations with longer DET. There appear to be predictable trends relating both throat deposition and FPF to DET. The shift in MMADR values for volume-constrained inlets suggests that large diameter drug particles are preferentially collected in these inlets.
18

The Physical Chemistry of pMDI Formulations Derived from Hydrofluoroalkane Propellants. A Study of the Physical Behaviour of Poorly Soluble Active Pharmaceutical Ingredients; Bespoke Analytical Method Development Leading to Novel Formulation Approaches for Product Development.

Telford, Richard January 2013 (has links)
Embargoed until July 2016. / Active Pharmaceutical Ingredients (APIs) are frequently prepared for delivery to the lung for local topical treatment of diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, or for systemic delivery. One of the most commonly used devices for this purpose is the pressurised metered dose inhaler (pMDI) whereby drugs are formulated in a volatile propellant held under pressure. The compound is aerosolised to a respirably sized dose on actuation, subsequently breathed in by the user. The use of hydrofluoroalkanes (HFAs) in pMDIs since the Montreal Protocol initiated a move away from chlorofluorocarbon (CFC) based devices has resulted in better performing products, with increased lung deposition and a concomitant reduction in oropharyngeal deposition. The physical properties of HFA propellants are however poorly understood and their capacity for solubilising inhaled pharmaceutical products (IPPs) and excipients used historically in CFCs differ significantly. There is therefore a drive to establish methodologies to study these systems in-situ and post actuation to adequately direct formulation strategies for the production of stable and efficacious suspension and solution based products. Characterisation methods have been applied to pMDI dosage systems to gain insight into solubility in HFAs and to determine forms of solid deposits after actuation. A novel quantitative nuclear magnetic resonance method to investigate the physical chemistry of IPPs in these preparations has formed the centrepiece to these studies, accessing solubility data in-situ and at pressure for the first time in HFA propellants. Variable temperature NMR has provided thermodynamic data through van’t Hoff approaches. The methods have been developed and validated using budesonide to provide limits of determination as low as 1 μg/mL and extended to 11 IPPs chosen to represent currently prescribed inhaled corticosteroids (ICS), β2-adrenoagonists and antimuscarinic bronchodilators, and have highlighted solubility variations between the classes of compounds with lipophilic ICSs showing the highest, and hydrophilic β2- agonist / antimuscarinics showing the lowest solubilities from the compounds under study. To determine solid forms on deposition, a series of methods are also described using modified impaction methods in combination with analytical approaches including spectroscopy (μ-Raman), X-ray diffraction, SEM, chromatography and thermal analysis. Their application has ascertained (i) physical form / morphology data on commercial pMDI formulations of the ICS beclomethasone dipropionate (QVAR® / Sanasthmax®, Chiesi) and (ii) distribution assessment in-vitro of ICS / β2-agonist compounds from combination pMDIs confirming co-deposition (Seretide® / Symbicort®, GlaxoSmithKline / AstraZeneca). In combination, these methods provide a platform for development of new formulations based on HFA propellants. The methods have been applied to a number of ‘real’ systems incorporating derivatised cyclodextrins and the co-solvent ethanol, and provide a basis for a comprehensive study of solubilisation of the ICS budesonide in HFA134a using two approaches: mixed solvents and complexation. These new systems provide a novel approach to deliver to the lung, with reduced aerodynamic particle size distribution (APSD) potentially accessing areas suitable for delivery to peripheral areas of the lung (ICS) or to promote systemic delivery.
19

Integrated Optimal Dispatch, Restoration and Control for Microgrids

Jain, Akshay Kumar 22 May 2024 (has links)
Electric grids across the world are experiencing an ever increasing number of extreme events ranging from extreme weather events to cyberattacks. Such extreme events have the potential to cause widespread power outages and even a blackout. A vast majority of power outages impacting the U.S. electric grid impact the distribution system. There are an estimated five million miles of distribution lines in the US electric grid. A majority of these lines are low-clearance overhead lines making them even more susceptible to damage during extreme events. However, this vital component of the U.S. electric grid remained neglected until recently. In recent decades, the integration of distributed energy resources (DERs) such as solar photovoltaic systems and battery energy storage systems at the grid edge have provided a major opportunity for enhancing the resilience of distribution systems. These DERs can be used to restore power supply when the bulk grid becomes unavailable. However, managing the interactions among different types of DERs has been challenging. Low inertia and significant differences in time constants of operation between conventional generation and inverter based resources (IBRs) are some of these challenges. Widespread deployment of microgrid controller capabilities can be a promising solution to manage these interactions. However, due to interoperability and integration challenges of optimization and dynamics control systems, power conversion systems and communication systems, the adoption of microgrids especially in underserved communities has been slow. The research presented in this dissertation is a significant step forward in this direction by proposing an approach which integrates optimal dispatch, sequential microgrid restoration and control algorithms. Potential cyberattack paths are identified by creating a detailed cyber-physical system model for microgrids. A two-tiered intrusion detection system is developed to detect and mitigate cyberattacks within the cyber layer itself. The developed sequential microgrid restoration algorithm coordinates optimal DER dispatch with the operation of legacy devices with no remote control or communication capabilities and net-metered loads with limited communications. By better utilizing the control capabilities of IBRs, reliance on low-latency centralized control algorithms has also been reduced. The developed approach systematically ensures adequate availability of control during dispatch and restoration to maintain microgrid stability. This research can thus pave the way for faster and more cost-effective deployment of microgrids. / Doctor of Philosophy / A U.S. National Academy of Engineering report has described the power grid as the greatest engineering achievement of the 20th century. The power grid is a complex interconnected system consisting of the power transmission system and the distribution system. The power transmission system consists of the power lines seen while driving on the freeways and the large power generating stations consisting of renewable, coal or nuclear power plants. Ensuring the reliable operation of the transmission system has always been a priority. The distribution system on the other hand consists of pole top transformers seen closer to homes which reduce the voltage to levels safe for electrical appliances. It also consists of the millions of miles of low-clearance overhead distribution lines deployed across the U.S. that provide electricity to every household. This critical part of U.S. electricity infrastructure had remained neglected which is the reason why 90% of power outages impact the distribution system. In recent decades, the integration of renewable energy sources like solar systems and battery storage systems has created an unprecedented opportunity for increasing the resilience of distribution systems against extreme events. These energy sources can provide power supply when the transmission system becomes unavailable. However, ensuring safe and reliable integrated operation of these sources with conventional diesel generators especially while isolated from the transmission system is challenging. This is where microgrids, which are self-sufficient miniature power grids, can help. Microgrids provide required control, communication and cybersecurity features necessary for reliable integrated operation of renewable and conventional energy sources. However, the challenges involved with interoperability of these systems has slowed down the deployment of microgrids especially in underserved communities. This is the research gap addressed in this dissertation. This research provides an approach for integrating the optimization, control, power electronics and cybersecurity systems. Reliance on expensive low-latency communication systems is reduced by utilizing the emerging capabilities of power electronics devices used for integrating the renewable energy sources with the electric power grid. Voltage control devices already deployed in the distribution systems which do not have remote control or communication capabilities have also been coordinated with energy sources. The research presented in this dissertation is a significant step forward for increasing access to power supply during outages and for reducing the time and cost of deployment of microgrids.
20

Issues of trust, fairness and efficacy: a qualitative study of information provision for newly metered households in England.

Knamiller, C., Sharp, Liz January 2009 (has links)
No / There is widespread agreement among agencies governing UK water management that more extensive domestic water metering combined with additional measures will deliver a more efficient domestic water usage. This paper argues that qualitative research is needed to select and hone additional measures. According to theory, cooperation to reduce water use is more likely if people: a) believe in the necessity to reduce use; b) feel costs are fairly shared; and c) believe their actions can affect the situation. The case study of Lydd, Kent, is presented. Lydd is the first location in which compulsory water metering has been imposed in the UK. Qualitative information was collected to inform the communication strategies being implemented by the water supply company. The investigation found that none of the three factors predicted by theory were completely present. The paper concludes by providing some recommendations for improving the water company's communications strategy for encouraging a reduction in domestic water use. The key role of qualitative information in assisting in the targeting and design of water demand management programmes is highlighted.

Page generated in 0.0756 seconds