• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 424
  • 171
  • 55
  • 40
  • 15
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 5
  • Tagged with
  • 945
  • 113
  • 112
  • 96
  • 93
  • 89
  • 85
  • 72
  • 69
  • 60
  • 55
  • 54
  • 48
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Biogeochemical factors affecting mercury methylation in high arctic soils on Devon Island, Canada

Oiffer, Lindsay 02 January 2008
Recent research has shown that the Arctic may be a sink for mercury, however, the fate of this deposited mercury in the environment is not known. The objective of this project was to determine the factors affecting methyl mercury (MeHg) production in Arctic organic soil on the Truelove Lowlands, Devon Island, Canada. In the field we observed a steady decrease in MeHg over time, with MeHg concentration at many sampling locations declining below detection limits. This decrease did not correlate to any chemical or biophysical parameter measured. During the study the Lowlands appeared to be mildly reducing with dissolved Fe(II) being present in the porewater, however, no correlation was observed between MeHg production and the variables measured. The dissolved organic matter concentration of the porewater was quite high, the pH was circumneutral and it would seem that in the absence of more highly reducing conditions that mercury would be unavailable for methylation.<p> It seems likely under field conditions MeHg was much more bioavailable then inorganic mercury. This would lead to a higher rate of demethylation then methylation and a net decrease in MeHg. Little research has been done on demethylation and the effect of environmental conditions on demethylation, especially in arctic environments. However, it is possible that the rate of demethylation was not affected by changes in temperature or any other parameter measured over the course of the field study. <p> Laboratory microcosm studies using saturated soil from the organic horizons demonstrated little potential for unspiked organic soil to produce significant amounts of MeHg. The spiked treatment, however, had an eight fold increase in MeHg concentration and the sterile treatment showed no change in MeHg concentration over 40 days of freeze (-5 0C) and 59 days of thaw (4 oC). <p> Our data suggests that a combination of atmospheric and in-situ processes maintain a cycle of MeHg production (spring) and loss (summer) in arctic soils. It would seem that Arctic wetland soils are not a significant source of MeHg to the Arctic ecosystem and that snowmelt is the dominant source.
332

Development of a Genetic Modification System in <i>Clostridium scatologenes</i> ATCC 25775 for Generation of Mutants

Parthasarathy, Prasanna Tamarapu 01 December 2010 (has links)
3-Methyl indole (3-MI) is a malodorant in food and animal waste and Clostridium scatologenes ATCC 25775 is the model organism for the study of 3-MI production. 3-MI is an anaerobic degradation product of L-tryptophan and can cause pulmonary disorders and death in cattle and goats. To elucidate the 3-MI biosynthesis pathway and the underlying genes, it is necessary to develop a system to allow genetic modification in Clostridium scatologenes ATCC 25775. Bacteriophages and transposons are useful tools to achieve this goal. Isolation of Clostridium scatologenes ATCC 25775 bacteriophage was attempted by prophage induction and enrichments using environmental sources. To induce prophages, cultures of Clostridium scatologenes ATCC 25775 were exposed to an effective concentration of mitomycin C at 2μg/ml and 5μg/ml. Induction with temperature was performed at 42ºC and 55ºC. Bacteriophage liberation, determined by a decrease in optical density was not observed in response to mitomycin C or by different growth temperatures. Nineteen environmental samples were tested for the presence of a bacteriophage that could infect Clostridium scatologenes ATCC 25775. The first cycle of enrichments suggested a decrease in cell density, consistent with the presence of a bacteriophage but this was not observed in further iterations. Plaque assays were performed to confirm the presence of phage, but no plaques were observed. Although, different experimental conditions were tested, a transducing bacteriophage capable of infecting Clostridium scatologenes ATCC 25775 was not isolated. Transposons have been successfully used to generate mutants in Clostridium difficle. Therefore, we attempted to introduce transposons Tn5 and Tn916 into Clostridium scatologenes ATCC 25775 using electroporation. Transposon mutagenesis using Tn916 did not yield antibiotic resistant colonies. In contrast, commercially available transposon Tn5 gave antibiotic resistant colonies. However, further screening of the colonies using transposon specific primers in PCR reactions, did not yield any PCR product. We were unsuccessful in developing a genetic modification system in Clostridium scatologenes ATCC 25775 using bacteriophage or transposons.
333

Characterization of [11C]Methyl-Losartan as a Novel Radiotracer for PET Imaging of the AT1 Receptor

Antoun, Rawad 09 March 2011 (has links)
The Angiotensin II Type 1 (AT1) receptor is the main receptor responsible for the effects of the renin-angiotensin system, and its expression pattern is altered in several diseases. [11C]Methyl-Losartan has been developed based on the clinically used AT1 receptor antagonist Losartan. The aim of this work is to characterize the pharmacokinetics, repeatability and reliability of measurements, binding specificity and selectivity of [11C]Methyl-Losartan in rats using in vivo small animal positron emission tomography (PET) imaging, ex vivo biodistribution and in vitro autoradiography methods. Also, we aim to measure the presence of metabolites in the kidney and plasma using high-performance liquid chromatography. We have demonstrated in vivo that [11C]Methyl-Losartan is taken up in the AT1 receptor-rich kidneys and that it is displaceable by selective AT1 receptor antagonists. Using ex vivo biodistribution, we have confirmed these results and demonstrated that [11C]Methyl-Losartan binds selectively to the AT1 receptor over the AT2, Mas and β-adrenergic receptors. In vitro autoradiography results confirmed these renal binding selectivity studies. [11C]Methyl-Losartan was also shown to have one and two C-11 labeled metabolites in the plasma and kidneys, respectively. In conclusion, [11C]Methyl-Losartan is a promising agent for studying the AT1 receptor in rat models with normal and altered AT1 receptor expression using small animal PET imaging.
334

Qualitative and Quantitative Analysis of Biodiesel Deposits Formed on a Hot Metal Surface

Westberg, Emilie January 2013 (has links)
This thesis aims to investigate the formation of deposits from thermally degraded biodiesel on a hot metal surface under the influence of sodium or copper contaminations. Biodiesel or Fatty Acid Methyl Esters (FAMEs) is a widely utilized biofuel with the potential to replace fossil fuels, however, issues regarding the thermal and oxidative stability prevent the progress of biodiesel for utilization as vehicle fuel. The thermal degradation of biodiesel causes formation of deposits often occurring in the fuel injectors, which could result in reduced engine efficiency, increased emissions and engine wear. However, still have no standard method for evaluation of a fuels’ tendency to form deposits been developed. In this study biodiesel deposits have been formed on aluminum test tubes utilizing a Hot Liquid Process Simulator (HLPS), an instrument based on the principle of the Jet Fuel Thermal Oxidation Tester (JFTOT). Quantitative and qualitative analyses have been made utilizing an array of techniques including Scanning Electron Microscopy (SEM), Gas Chromatography Mass Spectrometry (GCMS) and Attenuated Total Reflectance Fourier Transform Infrared Spectrometry (ATR-FTIR). A multi-factorial trial investigating the effects of sodium hydroxide and copper contaminations at trace levels and the impact of a paraffin inhibitor copolymer additive on three different FAME products, two derived from rapeseed oil and one from waste cooking oil as well as a biodiesel blend with mineral diesel, was conducted.The results exhibited that FAMEs are the major precursor to deposit formation in diesel fuel. The SEM analyses exploited the nature of FAME deposits forming porous structures on hot metal surfaces. Sodium hydroxide proved to participate in the deposit formation by forming carboxylic salts. However, the copper contamination exhibited no enhancing effect on the deposits, possibly due to interference of the blank oil in which copper was received. The paraffin inhibitor functioning as a crystal modifier had significant reducing effect on the deposit formation for all biodiesel samples except for the FAME product derived from waste cooking oil. Further studies are needed in order to investigate the influence of glycerin and water residues to the biodiesel deposit formation. Mechanisms involving oxidative or thermal peroxide formation, polymerization and disintegration have been suggested as degradation pathways for biodiesel. The involvement of oxidation intermediates, peroxides, was confirmed by the experiments performed in this thesis. However, the mechanisms of biodiesel deposit formation are complex and hard to study as the deposits are seemingly insoluble. Nevertheless, ATR-FTIR in combination with JFTOT-processing has potential as standard method for evaluation of deposit forming tendencies of biodiesel.
335

Synthesis of Vertically-Aligned Zinc Oxide Nanowires and Their Applications as Photocatalysts

Zhou, Qiong January 2013 (has links)
Zinc oxide (ZnO) nanostructures, especially nanowires, have been one of the most important semiconductive materials used for photocatalysis due to their unique material properties and remarkable performance. In this project, vertically-aligned ZnO nanowires on glass substrate have been synthesized by using the facile hydrothermal methods with the help of pre-coated ZnO seeding layer. The crystalline structure, morphology and UV-Vis transmission spectra of the as-synthesized sample were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Ultra-violet Visible (UV-Vis) Spectrophotometer. The photocatalytic activity of the sample was examined for the photocatalytic degradation of methyl orange (MO) as the test dye in aqueous solution under UV-A irradiation. The extent of direct hydrolysis of the MO dye under UV light without the photocatalysts was first measured to eliminate the possible contribution from the undesired variables to the overall efficiency. The effects of pH and initial concentration of the MO solution, as well as the nanowire growth time, on the photocatalytic efficiency have been investigated, in order to determine the optimal conditions for photocatalytic applications of ZnO nanowires in the industry. Furthermore, the reproducibility of the experimental methods used in this project was tested to ensure the reliability of the experimental results obtained; and the reusability of the prepared ZnO nanowire arrays were also evaluated to investigate the stability of the products for photocatalytic applications in a large scale. In addition, a micro-chamber based microfluidic device with integrated ZnO nanowire arrays has been fabricated and used for photodegradation studies of MO solution under continuous-flow conditions. As expected, the micro-chamber based approach exhibited much improved photodegradation efficiency as compared to the conventional method using bulk dye solution. The effects of the flow rate and chamber height of the microfluidic device have also been investigated in order to determine the optimal experimental conditions for photodegradation reactions in microfluidic devices.
336

Application of Niobium Compounds Towards the One-Step Synthesis of Methyl Isobutyl Ketone (MIBK) via Catalytic Distillation

O'Keefe, William Kevin 04 December 2008 (has links)
Dispersed niobia catalysts were prepared via a non-aqueous synthesis route. The effects of the type of oxide support, the support thermal pre-treatment, the calcination temperature and the niobia loading on the activity and selectivity for mesityl oxide (MO) synthesis at 160C were investigated in an autoclave reactor. The morphological and chemical properties of the catalysts were characterized via EDXRF, XRD, BET and Raman spectroscopy. The strength and nature of the acid sites were elucidated via in situ DRIFT spectra of the adsorption of pyridine as well as the temperature programmed desorption of NH3 interacting with the surface oxide phase. All four catalyst parameters had significant effects on the catalytic properties. Significantly, the nature of the acidity was clearly linked to the catalyst activity and particularly the catalyst stability. Catalysts exhibiting predominantly Lewis acidity invariably deactivated despite good initial activity, with the final acetone conversion dependent on the catalyst formulation. In contrast, catalysts exhibiting Bronsted acidity showed no evidence of catalyst deactivation after 8 hours of reaction. A plausible mechanism which explains these observations is proposed. Catalysts exhibiting Lewis acidity were more active when the supports were first activated at elevated temperature, likely due to a stronger support-surface oxide interaction as a consequence of increased surface coordinative unsaturation of the support. SiO¬2 supported catalysts exhibiting Bronsted acidity were more active if the supports were initially activated at 100C. Evidently, the hydroxyl groups on the oxide support contribute to the generation of Bronsted acidity. Different oxide supports gave rise to distinct acidic and catalytic properties in the niobia overlayer. The most striking example of this was the direct comparison of niobia dispersed onto two kinds of silica supports following the same preparative method. Unique and very strong acid sites were observed in niobia dispersed onto a commercial SiO¬2 catalyst carrier that were not observed in niobia dispersed onto fumed SiO¬2. For SiO2 catalysts, the activity increased linearly with niobia loading regardless of calcination temperature. In contrast, Al2O3 catalysts exhibited an initial increase in activity for MO synthesis with niobia loading followed by a decrease in activity after reaching a maximum activity below 1/3 monolayer coverage. The effect was more pronounced for catalysts exhibiting Bronsted acidity. It is proposed that adlineation sites are primarily responsible for catalytic activity in Nb2O5/-Al2O3 catalysts exhibiting Bronsted acidity. Niobia catalysts were developed using commercially available catalyst carriers as supports. The macrokinetics of MO and MIBK syntheses were investigated in a benchtop fixed bed flow reactor. The catalysts showed excellent activity for MO and MIBK syntheses at 160°C, typically 0.9 to 1.3 [g/hr*gcat]. However, the MIBK selectivity was constrained from 82 to 85% due to the coproduction of 2-propanol and diisobutyl ketone. The productivity for MO synthesis was found to be strongly dependent on the space velocity suggesting product inhibition. The intrinsic kinetics of the one-step synthesis of MIBK over a 15.2 wt% Pd/Nb2O5/SiO2 catalyst was investigated in an autoclave reactor. A kinetic model was developed and is reported. The one step synthesis of MIBK was investigated at the pilot plant scale via catalytic distillation (CD). An important finding was that while operating at 100% reflux, the accumulation of water in the reactive section resulted in the suppression of the DAA dehydration reaction. The in situ removal of water from the reactive section via an overhead distillate stream operating at 83 to 97% reflux directly resulted in an increase in MIBK productivity and hydrogen uptake efficiency by factors of about 20 yielding a moisture free reboiler product stream with as high as 53 wt% MIBK. The process was found to be controlled by the external mass transfer of hydrogen. Interestingly, the results suggest that the catalyst wetting efficiency affects the transport of hydrogen to the active sites as evidenced by the dependence of MO conversion on the reflux flow rate. The condition of minimum reflux flow rate and maximum hydrogen flow rate resulted in 97% MO conversion and 90 wt% MIBK selectivity.
337

ANAEROBIC BIODEGRADATION OF A NAPHTHENIC ACID UNDER DENITRIFYING CONDITIONS

2013 August 1900 (has links)
Oil sand deposits in the Athabasca Basin in Alberta represent one of the largest global oil reserves. The bitumen contents of oil sand shallow deposits are recovered by surface mining using modified version of the Clark hot water process. Extraction of bitumen results in extremely large volumes of process water, which are contaminated with naphthenic acids. Various ex-situ treatment techniques including ozonation, advanced oxidation, adsorption, and bioremediation have been evaluated for the treatment of these waters. Previous studies conducted by Paslawski et al. (2009) investigated aerobic biodegradation of naphthenic acids in properly designed and carefully operated bioreactors. In the current work, anaerobic biodegradation of naphthenic acids under denitrifying condition was examined as a potential approach to eliminate the aeration cost in ex-situ treatment and as an alternative for application of in-situ treatment of oil sand process water in stabilization ponds was examined. Using trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA), a microbial mixed culture developed in earlier works (Paslawski et al., 2009), and nitrate as an electron acceptor, anaerobic biodegradation of trans-4MCHCA were studied in batch and continuous bioreactors: continuous stirred tank reactor (CSTR) and biofilm system. Effects of naphthenic acid concentration, temperature, and loading rate on biodegradation process were investigated. The batch studies showed that initial concentration of trans-4MCHCA influenced the biodegradation rate where the increase in initial concentration of trans-4MCHCA from 100 to 250 mg L-1 led to a higher rate but further increase in concentration did not have a marked effect. Moreover, batch experiments at temperatures ranging from 10° to 35°C demonstrated that the optimum temperature was in the range of 20 - 24°C. Continuous anaerobic biodegradation in the CSTR showed that increase in loading rate of trans-4MCHCA caused an increase in removal rate of both trans-4MCHCA and nitrate. Rates were decreased as the system approached the cell washout. The maximum biodegradation rate and nitrate removal rate, achieved at trans-4MCHCA loading rate of 157.8 mg L-1 h-1, were 105.4 mg L-1 h-1 and 144.5 mg L-1 h-1, respectively. A similar dependency between the loading and removal rates was also observed in the biofilm reactor. The maximum removal rate of trans-4MCHCA and nitrate in the biofilm reactor, operated at room temperature (24 ± 2ºC) were 2,028.1 mg L-1 h-1 and 3,164.7 mg L-1 h-1, respectively and obtained at trans-4MCHCA loading rate of 2,607.9 mg L-1 h-1. Comparison of the results from aerobic batch systems obtained by Paslawski et al. (2009) and the current results showed similar profile where increase in initial concentration of naphthenic acid increased the biodegradation rate of trans-4MCHCA. As far as the effect of temperature is concerned, room temperature (20 - 24ºC) was identified as optimum temperature regardless of mode of biodegradation. Under continuous mode of operation (CSTR and biofilm reactors), anaerobic biodegradation was much faster than its aerobic counterpart. For instance the maximum anaerobic removal rate of trans-4MCHCA in the CSTR was 105.4 mg L-1 h-1, while the highest removal rate achieved in the aerobic CSTR was 9.6 mg L-1 h-1. Similarly, anaerobic biofilm reactor achieved a higher maximum removal rate of 2,028.1 mg L-1 h-1 compared to a 924.4 mg L-1 h-1 removal rate in the aerobic biofilm reactor. The overall finding indicated that biodegradation of trans-4MCHCA can be achieved effectively under anaerobic condition with the rates markedly higher than those for aerobic system.
338

Designing star-like block-copolymers as compartmentalized nanostructures for drug delivery applications

Engstrand, Johanna January 2010 (has links)
This thesis describes syntheses and characterization of star-like amphiphilic block copolymers consisting of poly(ethylene glycol) (PEG) as the hydrophilic block,polycarbonate as the hydrophobic block and an amine-containing dendrimer as the core molecule. The macromolecules were synthesized by either a convergent or adivergent approach that includes tandem click reactions and ring opening polymerizations (ROP) of methyl trimethyl carbonates (MTC) with differentfunctionalities. The ROP of MTC monomers was performed using organocatalysts that allow mild reaction condition and reasonable molecular weight distribution(PDI~1.3). These synthetic approaches provide the resultant polymers with three different conformations, which are; mikto-arm type, comb-block with short PEGbrushes, and linear block with long PEG chain. The star-like polymers that were synthesized were all water soluble and most of them formed nano aggregates inwater. Different morphologies were observed in AFM study depending on the polymer conformation. Interestingly, some of them had indications pointing towards alower critical solution temperature.
339

Application of Niobium Compounds Towards the One-Step Synthesis of Methyl Isobutyl Ketone (MIBK) via Catalytic Distillation

O'Keefe, William Kevin 04 December 2008 (has links)
Dispersed niobia catalysts were prepared via a non-aqueous synthesis route. The effects of the type of oxide support, the support thermal pre-treatment, the calcination temperature and the niobia loading on the activity and selectivity for mesityl oxide (MO) synthesis at 160C were investigated in an autoclave reactor. The morphological and chemical properties of the catalysts were characterized via EDXRF, XRD, BET and Raman spectroscopy. The strength and nature of the acid sites were elucidated via in situ DRIFT spectra of the adsorption of pyridine as well as the temperature programmed desorption of NH3 interacting with the surface oxide phase. All four catalyst parameters had significant effects on the catalytic properties. Significantly, the nature of the acidity was clearly linked to the catalyst activity and particularly the catalyst stability. Catalysts exhibiting predominantly Lewis acidity invariably deactivated despite good initial activity, with the final acetone conversion dependent on the catalyst formulation. In contrast, catalysts exhibiting Bronsted acidity showed no evidence of catalyst deactivation after 8 hours of reaction. A plausible mechanism which explains these observations is proposed. Catalysts exhibiting Lewis acidity were more active when the supports were first activated at elevated temperature, likely due to a stronger support-surface oxide interaction as a consequence of increased surface coordinative unsaturation of the support. SiO¬2 supported catalysts exhibiting Bronsted acidity were more active if the supports were initially activated at 100C. Evidently, the hydroxyl groups on the oxide support contribute to the generation of Bronsted acidity. Different oxide supports gave rise to distinct acidic and catalytic properties in the niobia overlayer. The most striking example of this was the direct comparison of niobia dispersed onto two kinds of silica supports following the same preparative method. Unique and very strong acid sites were observed in niobia dispersed onto a commercial SiO¬2 catalyst carrier that were not observed in niobia dispersed onto fumed SiO¬2. For SiO2 catalysts, the activity increased linearly with niobia loading regardless of calcination temperature. In contrast, Al2O3 catalysts exhibited an initial increase in activity for MO synthesis with niobia loading followed by a decrease in activity after reaching a maximum activity below 1/3 monolayer coverage. The effect was more pronounced for catalysts exhibiting Bronsted acidity. It is proposed that adlineation sites are primarily responsible for catalytic activity in Nb2O5/-Al2O3 catalysts exhibiting Bronsted acidity. Niobia catalysts were developed using commercially available catalyst carriers as supports. The macrokinetics of MO and MIBK syntheses were investigated in a benchtop fixed bed flow reactor. The catalysts showed excellent activity for MO and MIBK syntheses at 160°C, typically 0.9 to 1.3 [g/hr*gcat]. However, the MIBK selectivity was constrained from 82 to 85% due to the coproduction of 2-propanol and diisobutyl ketone. The productivity for MO synthesis was found to be strongly dependent on the space velocity suggesting product inhibition. The intrinsic kinetics of the one-step synthesis of MIBK over a 15.2 wt% Pd/Nb2O5/SiO2 catalyst was investigated in an autoclave reactor. A kinetic model was developed and is reported. The one step synthesis of MIBK was investigated at the pilot plant scale via catalytic distillation (CD). An important finding was that while operating at 100% reflux, the accumulation of water in the reactive section resulted in the suppression of the DAA dehydration reaction. The in situ removal of water from the reactive section via an overhead distillate stream operating at 83 to 97% reflux directly resulted in an increase in MIBK productivity and hydrogen uptake efficiency by factors of about 20 yielding a moisture free reboiler product stream with as high as 53 wt% MIBK. The process was found to be controlled by the external mass transfer of hydrogen. Interestingly, the results suggest that the catalyst wetting efficiency affects the transport of hydrogen to the active sites as evidenced by the dependence of MO conversion on the reflux flow rate. The condition of minimum reflux flow rate and maximum hydrogen flow rate resulted in 97% MO conversion and 90 wt% MIBK selectivity.
340

Novel Cellulose Nanoparticles for Potential Cosmetic and Pharmaceutical Applications

Dhar, Neha January 2010 (has links)
Cellulose is one of the most abundant biopolymers found in nature. Cellulose based derivatives have a number of advantages including recyclability, reproducibility, biocompatibility, biodegradability, cost effectiveness and availability in a wide variety of forms. Due to the benefits of cellulose based systems, this research study was aimed at developing novel cellulosic nanoparticles with potential pharmaceutical and personal care applications. Two different cellulosic systems were evaluated, each with its own benefits and proposed applications. The first project involves the synthesis and characterization of polyampholyte nanoparticles composed of chitosan and carboxymethyl cellulose (CMC), a cellulosic ether. EDC carbodiimide chemistry and inverse microemulsion technique was used to produce crosslinked nanoparticles. Chitosan and carboxymethyl cellulose provide amine and carboxylic acid functionality to the nanoparticles thereby making them pH responsive. Chitosan and carboxymethyl cellulose also make the nanoparticles biodegradable and biocompatible, making them suitable candidates for pharmaceutical applications. The synthesis was then extended to chitosan and modified methyl cellulose microgel system. The prime reason for using methyl cellulose was to introduce thermo-responsive characteristics to the microgel system. Methyl cellulose was modified by carboxymethylation to introduce carboxylic acid functionality, and the chitosan-modified methyl cellulose microgel system was found to be pH as well as temperature responsive. Several techniques were used to characterize the two microgel systems, for e.g. potentiometric and conductometric titrations, dynamic light scattering and zeta potential measurements. FTIR along with potentiometric and conductometric titration was used to confirm the carboxymethylation of methyl cellulose. For both systems, polyampholytic behaviour was observed in a pH range of 4-9. The microgels showed swelling at low and high pH values and deswelling at isoelectric point (IEP). Zeta potential values confirmed the presence of positive charges on the microgel at low pH, negative charges at high pH and neutral charge at the IEP. For chitosan-modified methyl cellulose microgel system, temperature dependent behaviour was observed with dynamic light scattering. The second research project involved the study of binding interaction between nanocrystalline cellulose (NCC) and an oppositely charged surfactant tetradecyl trimethyl ammonium bromide (TTAB). NCC is a crystalline form of cellulose obtained from natural sources like wood, cotton or animal sources. These rodlike nanocrystals prepared by acid hydrolysis of native cellulose possess negatively charged surface. The interaction between negatively charged NCC and cationic TTAB surfactant was examined and it was observed that in the presence of TTAB, aqueous suspensions of NCC became unstable and phase separated. A study of this kind is imperative since NCC suspensions are proposed to be used in personal care applications (such as shampoos and conditioners) which also consist of surfactant formulations. Therefore, NCC suspensions would not be useful for applications that employ an oppositely charged surfactant. In order to prevent destabilization, poly (ethylene glycol) methacrylate (PEGMA) chains were grafted on the NCC surface to prevent the phase separation in presence of a cationic surfactant. Grafting was carried out using the free radical approach. The NCC-TTAB polymer surfactant interactions were studied via isothermal titration calorimetry (ITC), surface tensiometry, conductivity measurements, phase separation and zeta potential measurements. The major forces involve in these systems are electrostatic and hydrophobic interactions. ITC and surface tension results confirmed two kinds of interactions: (i) electrostatically driven NCC-TTAB complexes formed in the bulk and at the interface and (ii) hydrophobically driven TTAB micellization on the NCC rods. Conductivity and surface tension results confirmed that the critical micelle concentration of TTAB (CMCTTAB) shifted to higher values in the presence of NCC. Phase separation measurements allowed us to identify the formation of large aggregates or hydrophobic flocs depending on the TTAB concentration. Formation of NCC-TTAB complexes in aqueous solutions was confirmed by a charge reversal from negative to positive charge on the NCC rods. The effect of electrolyte in shielding the negative charges on the NCC was observed from ITC, surface tensiometry and phase separation experiments. Several mechanisms have been proposed to explain the above results. Grafting of PEGMA on the NCC surface was confirmed using FTIR and ITC experiments. In phase separation experiments NCC-g-PEGMA samples showed greater stability in the presence of TTAB compared to unmodified NCC. By comparing ITC and phase separation results, an optimum grafting ratio (PEGMA : NCC) for steric stabilization was also proposed.

Page generated in 0.0449 seconds