81 |
Numerical Investigations of Magnetohydrodynamic Hypersonic FlowsGuarendi, Andrew N. 14 June 2013 (has links)
No description available.
|
82 |
MHD simulations of coronal heatingTam, Kuan V. January 2014 (has links)
The problem of heating the solar corona requires the conversion of magnetic energy into thermal energy. Presently, there are two promising mechanisms for heating the solar corona: wave heating and nanoflare heating. In this thesis, we consider nanoflare heating only. Previous modelling has shown that the kink instability can trigger energy release and heating in large scale loops, as the field rapidly relaxes to a lower energy state under the Taylor relaxation theory. Two distinct experiments were developed to understand the coronal heating problem: the avalanche effect within a multiple loop system, and the importance of thermal conduction and optically thin radiation during the evolution of the kinked-unstable coronal magnetic field. The first experiment showed that a kink-unstable thread can also destabilise nearby threads under some conditions. The second experiment showed that the inclusion of thermal conduction and optically thin radiation causes significant change to the internal energy of the coronal loop. After the initial instability occurs, there is continual heating throughout the relaxation process. Our simulation results show that the data is consistent with observation values, and the relaxation process can take over 200 seconds to reach the final relaxed state. The inclusion of both effects perhaps provides a more realistic and rapid heating experiment compared to previous investigations.
|
83 |
Aspects of three-dimensional MHD : magnetic reconnection and rotating coronaeAl-Salti, Nasser S. January 2010 (has links)
Solutions of the magnetohydrodynamic (MHD) equations are very important for modelling laboratory, space and astrophysical plasmas, for example the solar and stellar coronae, as well as for modelling many of the dynamic processes that occur in these different plasma environments such as the fundamental process of magnetic reconnection. Our previous understanding of the behavior of plasmas and their associated dynamic processes has been developed through two-dimensional (2D) models. However, a more realistic model should be three-dimensional (3D), but finding 3D solutions of the MHD equations is, in general, a formidable task. Only very few analytical solutions are known and even calculating solutions with numerical methods is usually far from easy. In this thesis, 3D solutions which model magnetic reconnection and rigidly rotating magnetized coronae are presented. For magnetic reconnection, a 3D stationary MHD model is used. However, the complexity of the problem meant that so far no generic analytic solutions for reconnection in 3D exist and most work consists of numerical simulations. This has so far hampered progress in our understanding of magnetic reconnection. The model used here allows for analytic solutions at least up to a certain order of approximation and therefore gives some better insight in the significant differences between 2D and 3D reconnection. Three-dimensional numerical solutions are also obtained for this model. Rigidly rotating magnetized coronae, on the other hand, are modeled using a set of magnetohydrostatic (MHS) equations. A general theoretical framework for calculating 3D MHS solutions outside massive rigidly rotating central bodies is presented. Under certain assumptions, the MHS equations are reduced to a single linear partial differential equation referred to as the fundamental equation of the theory. As a first step, an illustrative case of a massive rigidly rotating magnetized cylinder is considered, which somehow allows for analytic solutions in a certain domain of validity. In general, the fundamental equation of the theory can only be solved numerically and hence numerical example solutions are presented. The theory is then extended to include a more realistic case of massive rigidly rotating spherical bodies. The resulting fundamental equation of the theory in this case is too complicated to allow for analytic solutions and hence only numerical solutions are obtained using similar numerical methods to the ones used in the cylindrical case.
|
84 |
Modélisation et simulation de l'interaction multi-échelles entre îlots magnétiques et la microturbulence dans les plasmas de fusion magnétisésMuraglia, Magali 19 October 2009 (has links) (PDF)
Un tokamak est le siège de diverses instabilités qui peuvent être à l'origine d'une dégradation du confinement magnétique. Cette thèse porte sur l'étude de la dynamique d'un îlot magnétique en présence de turbulence dans les plasmas magnétisés. Plus précisément, il s'agit de comprendre la nature de l'interaction multi-échelle entre la turbulence, générée par un gradient de pression et la courbure du champ magnétique, et un îlot magnétique formé par un mode de déchirement classique. Grâce à la déduction d'un modèle 2D prenant en compte ces deux sources d'instabilité, des études linéaires analytiques et numériques permettent de comprendre l'effet de la pression sur la phase de croissance linéaire d'un îlot magnétique et mettent en évidence la stabilisation des modes interchanges en présence d'un champ magnétique. Ensuite, des simulations non-linéaires du modèle sont présentées pour comprendre comment le mécanisme d'interchange affecte la dynamique non-linéaire d'un îlot magnétique. De façon générale, le gradient de pression et la courbure du champ magnétique affectent fortement l'évolution non-linéaire de l'îlot magnétique permettant l'apparition de bifurcations dynamiques dont la nature doit être caractérisée suivant les situations dans lesquelles on se place. Enfin, la dernière partie de cette thèse est dédiée à l'étude de la rotation poloïdale de l'îlot magnétique. La déduction d'un modèle permettant de mettre en évidence les différentes origines possibles de la rotation est présentée. Il apparaît clairement que la rotation non-linéaire de l'îlot magnétique peut être gouvernée par l'écoulement poloïdal E x B et/ou par l'écoulement non-linéaire diamagnétique.
|
85 |
Electric arc-contact interaction in high current gasblast circuit breakersNielsen, Torbjörn January 2001 (has links)
No description available.
|
86 |
Turbulence à hautes fréquences dans le vent solaire : Modèle magnétohydrodynamique Hall et expériences numériquesMeyrand, Romain 20 March 2013 (has links) (PDF)
La turbulence tridimensionnelle se caractérise par sa capacité à transférer de l'énergie des grandes vers les petites échelles où elle est finalement dissipée. Lorsqu'elle se produit dans un plasma non-collisionnel comme le vent solaire, une modélisation cinétique semble a priori nécessaire. Toutefois, la complexité d'une telle approche limite les développements théoriques et condamne les expériences numériques à se restreindre à des nombres de Reynolds peu élevés. Dans quelles mesures un modèle mono-fluide comme la MHD Hall permet-il de rendre compte des phénomènes observés dans le vent solaire aux échelles sub-ioniques ? C'est la problématique à laquelle s'est attaquée cette thèse. L'idée directrice de ce travail est de tirer profit de la relative simplicité des modèles fluides et de la puissance algorithmique des méthodes pseudo-spectrales pour aborder la turbulence du vent solaire par des simulations numériques directes tridimensionnelles massivement parallèles à grands nombres de Reynolds. Ces simulations numériques ont permis de mettre en évidence l'existence d'une brisure spontanée de symétrie chirale en turbulence MHD Hall incompressible, ainsi que l'existence d'un nouveau régime appelé ion MHD (IMHD). Un modèle phénoménologique a été proposé pour rendre compte de ces résultats et de nouvelles prédictions ont été faites, puis confirmées numériquement. Enfin, l'étude de l'effet d'un fort champ magnétique uniforme sur la dynamique turbulente a permis de confirmer pour la première fois une ancienne conjecture. L'inertie des électrons a ensuite été prise en compte toujours dans un modèle fluide. Par une approche hydrodynamique classique, une loi universelle a été obtenue pour les fonctions de structure d'ordre trois. L'ensemble de ces résultats est qualitativement en accord avec les mesures in situ du vent solaire et remet en cause le paradigme selon lequel les raidissements successifs du spectre des fluctuations magnétiques sont provoqués nécessairement par des phénomènes d'origine cinétique. De manière plus générale, cette thèse soulève des questions fondamentales sur les processus non-collisionnels de dissipation dans les plasmas turbulents.
|
87 |
PARTICLE ACCELERATION AND THE ORIGIN OF X-RAY FLARES IN GRMHD SIMULATIONS OF SGR A*Ball, David, Özel, Feryal, Psaltis, Dimitrios, Chan, Chi-kwan 25 July 2016 (has links)
Significant X-ray variability and flaring has been observed from Sgr A* but is poorly understood from a theoretical standpoint. We perform general relativistic magnetohydrodynamic simulations that take into account a population of non-thermal electrons with energy distributions and injection rates that are motivated by PIC simulations of magnetic reconnection. We explore the effects of including these non-thermal electrons on the predicted broadband variability of Sgr A* and find that X-ray variability is a generic result of localizing non-thermal electrons to highly magnetized regions, where particles are likely to be accelerated via magnetic reconnection. The proximity of these high-field regions to the event horizon forms a natural connection between IR and X-ray variability and accounts for the rapid timescales associated with the X-ray flares. The qualitative nature of this variability is consistent with observations, producing X-ray flares that are always coincident with IR flares, but not vice versa, i.e., there are a number of IR flares without X-ray counterparts.
|
88 |
Stellar models with magnetism and rotation : mixing length theories and convection simulationsIreland, Lewis George January 2018 (has links)
Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. In this thesis, we explore this possibility using a combination of 1D stellar models, 2D and 3D simulations, and analytical theory. First, we examine this issue using 1D stellar models constructed using the Modules for Experiments in Stellar Astrophysics (MESA) code. We begin by considering standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modelled by decreasing a depth-independent mixing length theory (MLT) parameter αMLT. We provide formulae linking changes in αMLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson (1979) and MacDonald and Mullan (2014) respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald and Mullan (2014), could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent αMLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterises rotation and/or magnetism using the two formulations above. We provide formulae linking the radially-variable αMLT to these putative MLT reformulations. We make further comparisons between MLT and simulations of convection, to establish how heat transport and stellar structure are influenced by rotation and magnetism, by looking at the entropy content of 2D local and 3D global convective calculations. Using 2D “box in a star” simulations, created using the convection code Dedalus, we investigate changes in bulk properties of the specific entropy for increasingly stratified domains. We observe regions stable against convection near the bottom boundary, resulting in the specific entropy in the bulk of the domain exceeding the bottom boundary value: this could be a result of physical effects, such as increased amounts of viscous dissipation for more supercritical, highly stratified cases, but may also be influenced by the artificial boundary conditions imposed by these local simulations. We then turn to 3D global simulations, created using the convection code Rayleigh, and investigate these same properties as a function of rotation rate. We find the average of the shell-averaged specific entropy gradient in the middle third of the domain to scale with rotation rate in a similar fashion to the scaling law derived via MLT arguments in Barker et al. (2014), i.e., |⟨ds/dr⟩| ∝ Ω^4/5.
|
89 |
Copper electrodeposition in a magnetic fieldTakeo, Hiroshi 01 January 1985 (has links)
The effect of a magnetic field on copper electrodeposition was investigated. Copper was electrodeposited onto square copper cathodes 1 sq cm in area from an aqueous solution (0.5 M CuSO4, 0.5 M H2SO. A glass cell was placed between the pole pieces of an electromagnet, and the magnetic fields applied were in the range from 0 to 12.5 kG. The current density was in the range from 80 mA/sq cm to 880 mA/sq cm. In each of the experiments, cell current, cell voltage, and cell temperature were monitored with a microcomputer. The weight change, deposit surface and cross section morphology, and the hardness were also found. Anodes used in the experiments were studied to see the effect of various conditions on the surface finish. Copper was also electrodeposited onto copper grids in order to study how the uniformity of the deposit is affected by an applied magnetic field.
|
90 |
The influence of Hall currents, plasma viscosity and electron inertia on magnetic reconnection solutionsSenanayake, Tissa January 2007 (has links)
Abstract This thesis examines magnetic reconnection in the solar corona. Magnetic reconnection is the only mechanism which allows the magnetic topology of magnetized plasmas to be changed. Many of the dynamic processes in the Sun's atmosphere are believed to be driven by magnetic reconnection and studying the behaviour of such phenomena is a key step to understanding the reconnection mechanism. In Chapters 1 to 3, we discuss the physical and mathematical framework on which current magnetohydrodynamic reconnection models are based. The aim of the thesis is to investigate theoretical models of magnetic reconnection using variety of analytic and numerical techniques within the theoretical frame work of magnetohydrodynamics (MHD). In Chapter 4 we use a line-tied X-point collapse model for compressible plasmas to investigate the role of viscosity on the energy release mechanism. This model also provides the basis for the investigation of Chapter 5 which explores the impact of Hall currents in the transient X-point energy dissipation. Chapter 6 is concerned with how reconnection is modified in the presence of generalized Ohm's law which includes both Hall current and electron inertia contributions. In contrast to the closed X-point collapse geometry adopted for compressible plasmas previously, we find it more convenient to explore this problem using an open incompressible geometry in which plasma is continually entering and exiting the reconnection region. Specially, we find the scaling of the Hall-MHD system size analytically, rather than numerically as in the X-point problem of Chapter 5. Chapter 7 summarizes the results of investigations in Chapters 4, 5 and 6.
|
Page generated in 0.0466 seconds