• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 45
  • 27
  • 17
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 220
  • 52
  • 51
  • 50
  • 41
  • 32
  • 30
  • 29
  • 28
  • 25
  • 21
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Development Of An Electric Discharge Oxygen-Iodine Laser And Modelling Of Low-Temperature M=4 Flow Deceleration By Magnetohydrodynamic Interaction

Bruzzese, John Reed 07 October 2008 (has links)
No description available.
62

Instabilidades MHD no Tokamak TCABR / MHD instabilities in TCABR tokamak

Fernandes, Tiago 13 May 2016 (has links)
Este trabalho descreve o estudo das instabilidades magneto-hidro-dinâmicas (MHD) comumente observadas nas descargas elétricas de plasma no tokamak TCABR, do Instituto de Física da USP. Dois diagnósticos principais foram empregados para observar essas instabilidades: um conjunto poloidal de 24 bobinas magnéticas (bobinas de Mirnov) colocadas próximas à borda do plasma e um medidor de emissões na faixa do Ultra Violeta e de raios X moles com 20 canais (sistema SXR), cujo circuito de condicionamento de sinais foi aprimorado como parte deste trabalho. Esses diagnósticos foram escolhidos porque fornecem informações complementares, uma vez que o sistema SXR observa a parte central da coluna de plasma, enquanto as bobinas de Mirnov detectam as instabilidades MHD na região mais externa da coluna. As informações coletadas por esses diagnósticos foram submetidas à análise espectral com resolução temporal e espacial, possibilitando determinar a evolução das características espectrais e espaciais das instabilidades MHD observadas. Essas análises revelaram que durante a etapa inicial da formação do plasma (quando a corrente de plasma ainda está aumentando) ilhas magnéticas com números de onda decrescente, identificadas como sendo modos kink de borda, são detectadas nas bobinas de Mirnov. Após a formação do plasma, quando os parâmetros de equilíbrio estão relativamente estáveis (platô), oscilações são detectadas tanto nas bobinas de Mirnov quanto no sistema de SXR, indicando a presença de instabilidades MHD em toda a coluna de plasma. Em geral as oscilações medidas nas bobinas de Mirnov tem baixa amplitude e correspondem a pequenas ilhas magnéticas que foram identificadas como sendo modos de ruptura (modos tearing). Por outro lado, as instabilidades na região central foram identificadas como dentes de serra, que correspondem a relaxações periódicas da região interna à superfície magnética com fator de segurança q=1 e que são acompanhadas de oscilações precursoras, cuja amplitude depende da fase do ciclo de relaxação. Devido à essa modulação de amplitude, aparecem picos de frequência satélite nos espectrogramas dos sinais do SXR. Além disso, devido ao fato dos ciclos de relaxação não serem sinusoidais, os harmônicos da frequência de relaxação também aparecem nesses espectrogramas. No entanto, em muitas descargas do TCABR, a intensidade das oscilações medidas nas bobinas de Mirnov aumentam significativamente durante o platô, com efeitos sobre a frequência de todas as instabilidades MHD, até mesmo sobre os dentes de serra localizados na região central da coluna. Em todos os casos, observou-se que durante o platô a frequência das ilhas magnéticas coincide com a frequência das oscilações precursoras do dente de serra, apesar de serem duas instabilidades distintas, localizadas em posições radiais muito diferentes. Essa coincidência de frequências possibilitou descrever a evolução em frequência de todas as oscilações detectadas em diversos diagnósticos com base em apenas duas frequências básicas: a dos ciclos de relaxação dente de serra e a das ilhas magnéticas. / This work describes the study of magneto-hydro-dynamic instabilities (MHD) commonly observed in plasma discharges in tokamak TCABR (at Instituto de Física da USP). Two main diagnostics were employed to observe these instabilities: a poloidal set of 24 magnetic coils (Mirnov coils) placed near the plasma border and a detector of emissions in the Ultra Violet and soft X-ray range with 20 channels (SXR system) which improvement of the signal conditioning circuit was done as part of this work. These diagnostics were chosen because they provide complementary information, since the SXR system measures the central part of the plasma column, while the Mirnov coils detect the MHD instabilities in the outer part of the column. The information collected by these diagnoses was submitted to spectral analysis with temporal and spatial resolution, making it possible to determine the evolution of the spectral and spatial characteristics of the observed MHD instabilities. These analyzes revealed that during the initial stage of the plasma formation (when the plasma current is still increasing) magnetic islands with decreasing wave numbers, identified as edge kink modes, are detected in the Mirnov coils. After the plasma formation, when the equilibrium parameters are relatively flat (plateau), oscillations are detected in both Mirnov coils and SXR system, indicating the presence of MHD instability in the whole plasma column. In general, the fluctuations measured by the Mirnov coils have low amplitude corresponding to small magnetic islands, which were identified as tearing modes. On the other hand, the instabilities at the central region were identified as sawteeth oscillations that correspond to periodic relaxations in the internal region of the magnetic surface with safety factor q = 1 and that are accompanied by precursor oscillations which amplitude depends on the phase of the relaxation cycles. Due to this amplitude modulation, frequency satellite peaks appear in the spectrograms of the SXR signals. Furthermore, due to the fact that relaxation cycles are not sinusoidal, harmonics of the relaxation frequency also appear in the spectrograms. However, in many TCABR discharges, the intensity of the oscillations measured by the Mirnov coils increase significantly during the plateau, with affects the frequency of all MHD instabilities, even over the sawteeth in the central region of the column. In all cases, it was observed that during the plateau the frequency of the magnetic islands coincides with the frequency of the sawtooth precursors, although they are two different instabilities located in separated radial positions. This coincidence of frequencies allowed describing the frequency evolution of all measured oscillations by considering only two basic frequencies: the cycles of sawtooth relaxation and the magnetic islands.
63

Instabilidades MHD no Tokamak TCABR / MHD instabilities in TCABR tokamak

Tiago Fernandes 13 May 2016 (has links)
Este trabalho descreve o estudo das instabilidades magneto-hidro-dinâmicas (MHD) comumente observadas nas descargas elétricas de plasma no tokamak TCABR, do Instituto de Física da USP. Dois diagnósticos principais foram empregados para observar essas instabilidades: um conjunto poloidal de 24 bobinas magnéticas (bobinas de Mirnov) colocadas próximas à borda do plasma e um medidor de emissões na faixa do Ultra Violeta e de raios X moles com 20 canais (sistema SXR), cujo circuito de condicionamento de sinais foi aprimorado como parte deste trabalho. Esses diagnósticos foram escolhidos porque fornecem informações complementares, uma vez que o sistema SXR observa a parte central da coluna de plasma, enquanto as bobinas de Mirnov detectam as instabilidades MHD na região mais externa da coluna. As informações coletadas por esses diagnósticos foram submetidas à análise espectral com resolução temporal e espacial, possibilitando determinar a evolução das características espectrais e espaciais das instabilidades MHD observadas. Essas análises revelaram que durante a etapa inicial da formação do plasma (quando a corrente de plasma ainda está aumentando) ilhas magnéticas com números de onda decrescente, identificadas como sendo modos kink de borda, são detectadas nas bobinas de Mirnov. Após a formação do plasma, quando os parâmetros de equilíbrio estão relativamente estáveis (platô), oscilações são detectadas tanto nas bobinas de Mirnov quanto no sistema de SXR, indicando a presença de instabilidades MHD em toda a coluna de plasma. Em geral as oscilações medidas nas bobinas de Mirnov tem baixa amplitude e correspondem a pequenas ilhas magnéticas que foram identificadas como sendo modos de ruptura (modos tearing). Por outro lado, as instabilidades na região central foram identificadas como dentes de serra, que correspondem a relaxações periódicas da região interna à superfície magnética com fator de segurança q=1 e que são acompanhadas de oscilações precursoras, cuja amplitude depende da fase do ciclo de relaxação. Devido à essa modulação de amplitude, aparecem picos de frequência satélite nos espectrogramas dos sinais do SXR. Além disso, devido ao fato dos ciclos de relaxação não serem sinusoidais, os harmônicos da frequência de relaxação também aparecem nesses espectrogramas. No entanto, em muitas descargas do TCABR, a intensidade das oscilações medidas nas bobinas de Mirnov aumentam significativamente durante o platô, com efeitos sobre a frequência de todas as instabilidades MHD, até mesmo sobre os dentes de serra localizados na região central da coluna. Em todos os casos, observou-se que durante o platô a frequência das ilhas magnéticas coincide com a frequência das oscilações precursoras do dente de serra, apesar de serem duas instabilidades distintas, localizadas em posições radiais muito diferentes. Essa coincidência de frequências possibilitou descrever a evolução em frequência de todas as oscilações detectadas em diversos diagnósticos com base em apenas duas frequências básicas: a dos ciclos de relaxação dente de serra e a das ilhas magnéticas. / This work describes the study of magneto-hydro-dynamic instabilities (MHD) commonly observed in plasma discharges in tokamak TCABR (at Instituto de Física da USP). Two main diagnostics were employed to observe these instabilities: a poloidal set of 24 magnetic coils (Mirnov coils) placed near the plasma border and a detector of emissions in the Ultra Violet and soft X-ray range with 20 channels (SXR system) which improvement of the signal conditioning circuit was done as part of this work. These diagnostics were chosen because they provide complementary information, since the SXR system measures the central part of the plasma column, while the Mirnov coils detect the MHD instabilities in the outer part of the column. The information collected by these diagnoses was submitted to spectral analysis with temporal and spatial resolution, making it possible to determine the evolution of the spectral and spatial characteristics of the observed MHD instabilities. These analyzes revealed that during the initial stage of the plasma formation (when the plasma current is still increasing) magnetic islands with decreasing wave numbers, identified as edge kink modes, are detected in the Mirnov coils. After the plasma formation, when the equilibrium parameters are relatively flat (plateau), oscillations are detected in both Mirnov coils and SXR system, indicating the presence of MHD instability in the whole plasma column. In general, the fluctuations measured by the Mirnov coils have low amplitude corresponding to small magnetic islands, which were identified as tearing modes. On the other hand, the instabilities at the central region were identified as sawteeth oscillations that correspond to periodic relaxations in the internal region of the magnetic surface with safety factor q = 1 and that are accompanied by precursor oscillations which amplitude depends on the phase of the relaxation cycles. Due to this amplitude modulation, frequency satellite peaks appear in the spectrograms of the SXR signals. Furthermore, due to the fact that relaxation cycles are not sinusoidal, harmonics of the relaxation frequency also appear in the spectrograms. However, in many TCABR discharges, the intensity of the oscillations measured by the Mirnov coils increase significantly during the plateau, with affects the frequency of all MHD instabilities, even over the sawteeth in the central region of the column. In all cases, it was observed that during the plateau the frequency of the magnetic islands coincides with the frequency of the sawtooth precursors, although they are two different instabilities located in separated radial positions. This coincidence of frequencies allowed describing the frequency evolution of all measured oscillations by considering only two basic frequencies: the cycles of sawtooth relaxation and the magnetic islands.
64

Edge Localized Mode control by Resonant Magnetic Perturbations in tokamak plasmas

Orain, Francois 28 November 2014 (has links)
Dans les tokamaks, les instabilités nommées ELMs (pour ``Edge Localized Modes'') génèrent des relaxations quasi-périodiques du plasma, potentiellement néfastes pour le divertor d'ITER. Une méthode de contrôle des ELMs prévue pour ITER est l'application de Perturbations Magnétiques Résonantes (RMPs), capables de mitiger ou supprimer les ELMs dans les tokamaks existants. Afin d'améliorer la compréhension de l'interaction entre les ELMs, les RMPs et les écoulements du plasma et de réaliser des prédictions fiables pour ITER, la simulation non-linéaire des ELMs et des RMPs est réalisée avec le code de MHD réduite JOREK, en géométrie réaliste. Les effets bi-fluides diamagnétiques, la friction poloidale néoclassique, une source de rotation parallèle et les RMPs ont été ajoutés dans JOREK pour simuler la pénétration des RMP en prenant en compte la réponse cohérente du plasma. Dans un premier temps, la réponse du plasma aux RMPs (sans ELMs) est étudiée dans le cas des tokamaks JET, MAST et ITER, pour des paramètres réalistes. Ensuite, la dynamique cyclique des ELMs (sans RMPs) est modélisée pour la première fois en géométrie réaliste. La compétition entre la stabilisation du plasma par la rotation diamagnétique et sa déstabilisation par la source de chaleur induit la reconstruction cyclique du piédestal. Enfin la mitigation et la suppression des ELMs sont obtenues pour la première fois dans nos simulations. Le couplage non-linéaire des RMPs avec des modes instables du plasma induit une activité MHD continue à la place des violentes relaxations d'ELMs. Au-delà d'un seuil de perturbation magnétique, la suppression totale des ELMs est également observée. / The growth of plasma instabilities called Edge Localized Modes (ELMs) in tokamaks results in the quasi-periodic relaxations of the edge plasma, potentially harmful for the divertor in ITER. One of the promising ELM control methods planned in ITER is the application of external resonant magnetic perturbations (RMPs), already efficient for ELM mitigation/suppression in current tokamak experiments. However a better understanding of the interaction between ELMs, RMPs and plasma flows is needed to make reliable predictions for ITER. In this perspective, non-linear modeling of ELMs and RMPs is done with the reduced MHD code JOREK, in realisitic geometry including the X-point and the Scrape-Off Layer. The two-fluid diamagnetic drifts, the neoclassical friction, a source of parallel rotation and RMPs have been implemented to simulate the RMP penetration consistently with the plasma response. As a first step, the plasma response to RMPs (without ELMs) is studied for JET, MAST and ITER realistic plasma parameters and geometry. Then the cyclic dynamics of the ELMs (without RMPs) is modeled for the first time in realistic geometry. After an ELM crash, the diamagnetic rotation is found to be instrumental to stabilize the plasma and to model the cyclic reconstruction and collapse of the plasma pressure profile. Last the ELM mitigation and suppression by RMPs is observed for the first time in modeling. The non-linear coupling of the RMPs with unstable modes is found to induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. Over a threshold in magnetic perturbation, the full ELM suppression is also observed.
65

L'origine des jets protostellaires à l'ère d'ALMA : de la modélisation aux observations / The origin of protostellar jets in the ALMA era : from modelling to observations

Tabone, Benoît 04 October 2018 (has links)
L’extraction du moment cinétique au sein des disques protostellaires est le processus clé qui détermine la masse finale accrétée par une étoile, ainsi que les conditions de formation de son cortège planétaire. Il a été proposé que les jets protostellaires pourraient jouer un rôle essentiel dans cette extraction, via un processus magnétohydrodynamique (MHD). L’objectif principal de ce travail de thèse est de mettre à profit le gain révolutionnaire en résolution et en sensibilité apporté par l’interféromètre submillimétrique ALMA afin de clarifier le processus d’accrétion-éjection à l’œuvre dans les protoétoiles. Cette pro- blématique est abordée selon trois axes complémentaires i) confrontation des modèles théoriques de vent de disque MHD à la dynamique du jet de HH212 observé par ALMA à haute résolution angulaire. Je présente la découverte de signatures de rotation en SO/SO2 dans le jet qui, avec la dynamique de SiO, sont cohérentes avec un vent de disque MHD lancé entre 0.05 et 40au. ii) étude analytique et numérique de l’impact de la variabilité d’un jet rapide pulsant sur un vent de disque. J’identifie des signatures observationnelles de la présence d’un vent de disque à partir de l’étude morphologique et cinématique des coquilles de choc d’étrave. iii) signatures chimiques d’un jet lancé en deçà de la région de sublimation des poussières (∼ 0.2 au). Je montre que malgré la forte irradiation du jet et l’absence de poussière, des molécules telles que SiO ou CO peuvent se former efficace- ment à partir d’une faible fraction de H2. Ce scénario pourra être confronté aux futures observations JWST. / The question of angular momentum extraction from protoplanetary disks (hereafter PPDs) is fundamental in understanding the accretion process in young stars and the formation conditions of planets. Pioneering semi-analytical work, followed by a growing body of magnetohydrodynamic (MHD) simulations, have shown that when a significant vertical magnetic field is present, MHD disk winds (hereafter MHD-DWs) can develop and ex- tract some or all of the angular momentum flux required for accretion. The aim of this PhD thesis is to exploit the unprecedented capabilities provided by ALMA to clarify the accretion-ejection process in protostars. This goal is achieved following three approaches: 1) comparison of MHD-DW models with the kinematics of HH 212 jet observed by ALMA at high angular resolution. I report the discovery of a rotating SO/SO2 wind consistent with a MHD-DWs launched out to ∼40 au with SiO tracing dust-free streamlines launched from 0.05−0.3 au. 2) Analytical and numerical study of the interaction between a pulsat- ing inner jet embedded in a stationary disk wind. Observational signatures are identified from the morphology and the kinematics of bow-shock shells. 3) Chemical signatures of a jet launched inside the dust sublimation radius (∼ 0.2 au). I show that despite the strong X-FUV field and the absence of dust, molecules like SiO or CO can form efficiently from a small fraction of H2. This scenario will be confronted to JWST observations.
66

Turbulence à hautes fréquences dans le vent solaire : Modèle magnétohydrodynamique Hall et expériences numériques / High frequency turbulence in the solar wind : Hall magnetohydrodynamic model and numerical experiments

Meyrand, Romain 20 March 2013 (has links)
La turbulence tridimensionnelle se caractérise par sa capacité à transférer de l'énergie des grandes vers les petites échelles où elle est finalement dissipée. Lorsqu’elle se produit dans un plasma non-collisionnel comme le vent solaire, une modélisation cinétique semble a priori nécessaire. Toutefois, la complexité d’une telle approche limite les développements théoriques et condamne les expériences numériques à se restreindre à des nombres de Reynolds peu élevés. Dans quelles mesures un modèle mono-fluide comme la MHD Hall permet-il de rendre compte des phénomènes observés dans le vent solaire aux échelles sub-ioniques ? C’est la problématique à laquelle s’est attaquée cette thèse. L’idée directrice de ce travail est de tirer profit de la relative simplicité des modèles fluides et de la puissance algorithmique des méthodes pseudo-spectrales pour aborder la turbulence du vent solaire par des simulations numériques directes tridimensionnelles massivement parallèles à grands nombres de Reynolds. Ces simulations numériques ont permis de mettre en évidence l’existence d’une brisure spontanée de symétrie chirale en turbulence MHD Hall incompressible, ainsi que l’existence d’un nouveau régime appelé ion MHD (IMHD). Un modèle phénoménologique a été proposé pour rendre compte de ces résultats et de nouvelles prédictions ont été faites, puis confirmées numériquement. Enfin, l’étude de l’effet d’un fort champ magnétique uniforme sur la dynamique turbulente a permis de confirmer pour la première fois une ancienne conjecture. L’inertie des électrons a ensuite été prise en compte toujours dans un modèle fluide. Par une approche hydrodynamique classique, une loi universelle a été obtenue pour les fonctions de structure d’ordre trois. L’ensemble de ces résultats est qualitativement en accord avec les mesures in situ du vent solaire et remet en cause le paradigme selon lequel les raidissements successifs du spectre des fluctuations magnétiques sont provoqués nécessairement par des phénomènes d’origine cinétique. De manière plus générale, cette thèse soulève des questions fondamentales sur les processus non-collisionnels de dissipation dans les plasmas turbulents. / Three-dimensional turbulence is characterized by its capacity to transfer energy from large to small scales where it is finally dissipated. When it occurs in a non-collisional plasma like the solar wind, a kinetic modelisation is necessary a priori. The complexity of such an approach however limits the theoretical developments and forces numerical experiments to be restricted to low Reynolds numbers. To what extent does a single-fluid model such as MHD Hall account for the phenomena observed in the solar wind at ion sub-scales ? It is to this question that this thesis tries to answer. The main idea of this work is to take advantage of the relative simplicity of fluid models and of the high precision of pseudo spectral methods to tackle the problem of turbulence in solar wind by direct numerical simulations massively parallelized at high Reynolds numbers. These simulations have helped to highlight the existence of a spontaneous breaking of chiral symmetry in incompressible Hall MHD turbulence, as well as the existence of a new regime called ion MHD (HDMI). A phenomenological model has been proposed to account for these results and new predictions were made and confirmed numerically. The study of the effect of a strong uniform magnetic field on the turbulent dynamics confirmed an ancient conjecture for the first time. The inertia of the electrons was then taken into account in a still fluid model. By a classical hydrodynamic approach, a universal law has been obtained for the third order structure functions. All these results are in qualitative agreement with in situ measurements of the solar wind and challenge the paradigm according to which the successive steepening of the magnetic fluctuations spectrum is necessarily caused by phenomenon of kinetic origin. More generally, this thesis raises fundamental questions about the non-collisional dissipation process in turbulent plasmas.
67

Modélisation globale du contrôle des îlots magnétiques dans les tokamaks / Global modelling of magnetic island control in tokamaks

Février, Olivier 17 November 2016 (has links)
Dans les plasmas de tokamak peuvent se développer des instabilités MHD (Magneto-Hydro-Dynamiques) se manifestant sous la forme d’îlots magnétiques qui réduisent le confinement. Ces îlots peuvent être contrôlés par la génération localisée de courant dans le plasma. Dans cette thèse, nous nous intéressons à la modélisation des îlots magnétiques et de leur contrôle en utilisant une description fluide (MHD) du plasma, à l’aide du code XTOR. Nous détaillons l'inclusion d'une source de courant au sein du modèle MHD, ce qui nécessite l'ajout d'une équation supplémentaire pour modéliser la propagation de la densité de courant le long des lignes de champ magnétique. Cette implémentation est ensuite vérifiée sur la base de modèles analytiques, nous permettant de retrouver l'influence de paramètres tels que la largeur du dépôt ou son désalignement. Nous avons mis en évidence des effets non-décrits par les modèles asymptotiques, liés à la nature de la localisation spatiale de la source de courant. Nous nous sommes ensuite intéressés aux stratégies de contrôle envisageable pour la suppression des îlots. Nous avons ajouté au sein du code XTOR un système de contrôle qui ajuste le dépôt de courant selon les stratégies choisies. Des simulations MHD non-linéaires des différents schémas de contrôle ont été effectuées, et les différentes stratégies comparées, permettant de préciser pour chacune une gamme d’intérêt. / Magneto-Hydro-Dynamic (MHD) instabilities are susceptible to develop within a tokamak plasma. These instabilities manifest themselves as magnetic islands which reduce the plasma confinement. The islands can however be controlled by driving current inside them. In this thesis, we consider the modeling of the magnetic islands and their control using first principle approaches, which rely on a global MHD description of the plasma. We have detailed the inclusion a RF-driven current like source term in an MHD code, which requires special care to be given to the modeling of the current density evolution. The implementation has been benchmarked against the asymptotic models, allowing us to retrieve the influence of parameters such as deposition width or misalignment with respect to the island width and position. Beyond these aspects, we have evidenced new effects, linked to the 3D nature of the current deposition. We have observed a flip instability in which an island, reduced by the ECCD, brutally inverse its phase so that its X-Point faces the current deposition, allowing the mode the grow further. We then moved on to the topic of the best suitable control strategies for the control of the island. We have implemented in XTOR a control system that mimics the experimental ones and adapt the current deposition in function of a preset strategy. Nonlinear MHD simulations have been carried out using different control schemes, allowing us to quantify the gain to expect from each of these methods depending on the characteristics of the current deposition.
68

"Teoria e modelamento computacional de aquecimento de plasma por ondas de alfvén no tokamak TCABR" / Theory and computer modelling of Alfvén wave heating in TCABR Tokamak

Sanabria, Edgar Rodolfo Rondán 10 August 2006 (has links)
Neste trabalho apresentamos o estudo da possivilidade de melhores regimes para o uso dos experimentos de aquecimento e geracao de corrente e fluxo de plasma no tokamak TCABR. Apresentamos um estudo dos efeitos de rotacao de plasma em baixa frequencia (low-frequency (LF)), penetração de campo eletromagnético, absorção e forças ponderomotoras no “Tokamak Chauffage Alfvén Brésilien" (TCABR) com ênfase na faixa de frequências de 0, 5–10, 0kHz. Os campos de LF são dirigidos pelo limitador magnético ergódico (ergodic magnetic limiter (EML)) no TCABR. Foi feito um estudo analítico das ondas de Alfvén e ressonância usando modelos simples. Um estudo num´erico tembém foi realizado utilizando três códigos, quais sejam, o código cinético toroidal, o código cilíndrico e o código ALTOK. / In this work we present the study of the determination the best regimes and parameters¶for the heating experiments and current generation and plasma flow in the tokamak TCABR. Study of effects of plasma rotation in low frequency (LF), field penetration, absorption and ponderomotive forces in “Tokamak Chauffage Alfvén Brésilien" (TCABR)is investigated with emphasis in the frequency range of 0, 5–10, 0kHz. The fields of LF are driven by the ergodic magnetic limiter (EML) in TCABR. A qualitative analytical study of the Alfvén waves and their resonances is performed using simple models. A numeric study was carried out using through three codes, called the kinetic totoidal code, the cylindrical code and the ALTOK code.
69

Numerical studies of diffusion and amplification of magnetic fields in turbulent astrophysical plasmas / Estudos numéricos de difusão e amplificação de campos magnéticos em plasmas astrofísicos turbulentos

Lima, Reinaldo Santos de 17 May 2013 (has links)
In this thesis we investigated two major issues in astrophysical flows: the transport of magnetic fields in highly conducting fluids in the presence of turbulence, and the turbulence evolution and turbulent dynamo amplification of magnetic fields in collisionless plasmas. The first topic was explored in the context of star-formation, where two intriguing problems are highly debated: the requirement of magnetic flux diffusion during the gravitational collapse of molecular clouds in order to explain the observed magnetic field intensities in protostars (the so called \"magnetic flux problem\") and the formation of rotationally sustained protostellar discs in the presence of the magnetic fields which tend to remove all the angular momentum (the so called \"magnetic braking catastrophe\"). Both problems challenge the ideal MHD description, usually expected to be a good approximation in these environments. The ambipolar diffusion, which is the mechanism commonly invoked to solve these problems, has been lately questioned both by observations and numerical simulation results. We have here investigated a new paradigm, an alternative diffusive mechanism based on fast magnetic reconnection induced by turbulence, termed turbulent reconnection diffusion (TRD). We tested the TRD through fully 3D MHD numerical simulations, injecting turbulence into molecular clouds with initial cylindrical geometry, uniform longitudinal magnetic field and periodic boundary conditions. We have demonstrated the efficiency of the TRD in decorrelating the magnetic flux from the gas, allowing the infall of gas into the gravitational well while the field lines migrate to the outer regions of the cloud. This mechanism works for clouds starting either in magnetohydrostatic equilibrium or initially out-of-equilibrium in free-fall. We estimated the rates at which the TRD operate and found that they are faster when the central gravitational potential is higher. Also we found that the larger the initial value of the thermal to magnetic pressure ratio (beta) the larger the diffusion process. Besides, we have found that these rates are consistent with the predictions of the theory, particularly when turbulence is trans- or super-Alfvénic. We have also explored by means of 3D MHD simulations the role of the TRD in protostellar disks formation. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low mass stars. Previous studies showed that an enhanced microscopic diffusivity of about three orders of magnitude larger than the Ohmic diffusivity would be necessary to enable the formation of a rotationally supported disk. However, the nature of this enhanced diffusivity was not explained. Our numerical simulations of disk formation in the presence of turbulence demonstrated the efficiency of the TRD in providing the diffusion of the magnetic flux to the envelope of the protostar during the gravitational collapse, thus enabling the formation of rotationally supported disks of radius ~ 100 AU, in agreement with the observations. The second topic of this thesis has been investigated in the framework of the plasmas of the intracluster medium (ICM). The amplification and maintenance of the observed magnetic fields in the ICM are usually attributed to the turbulent dynamo action which is known to amplify the magnetic energy until close equipartition with the kinetic energy. This is generally derived employing a collisional MHD model. However, this is poorly justified a priori since in the ICM the ion mean free path between collisions is of the order of the dynamical scales, thus requiring a collisionless-MHD description. We have studied here the turbulence statistics and the turbulent dynamo amplification of seed magnetic fields in the ICM using a single-fluid collisionless-MHD model. This introduces an anisotropic thermal pressure with respect to the direction of the local magnetic field and this anisotropy modifies the MHD linear waves and creates kinetic instabilities. Our collisionless-MHD model includes a relaxation term of the pressure anisotropy due to the feedback of the mirror and firehose instabilities. We performed 3D numerical simulations of forced transonic turbulence in a periodic box mimicking the turbulent ICM, assuming different initial values of the magnetic field intensity and different relaxation rates of the pressure anisotropy. We showed that in the high beta plasma regime of the ICM where these kinetic instabilities are stronger, a fast anisotropy relaxation rate gives results which are similar to the collisional-MHD model in the description of the statistical properties of the turbulence. Also, the amplification of the magnetic energy due to the turbulent dynamo action when considering an initial seed magnetic field is similar to the collisional-MHD model, particularly when considering an instantaneous anisotropy relaxation. The models without any pressure anisotropy relaxation deviate significantly from the collisional-MHD results, showing more power in small-scale fluctuations of the density and velocity field, in agreement with a significant presence of the kinetic instabilities; however, the fluctuations in the magnetic field are mostly suppressed. In this case, the turbulent dynamo fails in amplifying seed magnetic fields and the magnetic energy saturates at values several orders of magnitude below the kinetic energy. It was suggested by previous studies of the collisionless plasma of the solar wind that the pressure anisotropy relaxation rate is of the order of a few percent of the ion gyrofrequency. The present study has shown that if this is also the case for the ICM, then the models which best represent the ICM are those with instantaneous anisotropy relaxation rate, i.e., the models which revealed a behavior very similar to the collisional-MHD description. / Nesta tese, investigamos dois problemas chave relacionados a fluidos astrofísicos: o transporte de campos magnéticos em plasmas altamente condutores na presença de turbulência, e a evolução da turbulência e amplificação de campos magnéticos pelo dínamo turbulento em plasmas não-colisionais. O primeiro tópico foi explorado no contexto de formação estelar, onde duas questões intrigantes são intensamente debatidas na literatura: a necessidade da difusão de fluxo magnético durante o colapso gravitacional de nuvens moleculares, a fim de explicar as intensidades dos campos magnéticos observadas em proto-estrelas (o denominado \"problema do fluxo magnético\"), e a formação de discos proto-estelares sustentados pela rotação em presença de campos magnéticos, os quais tendem a remover o seu momento angular (a chamada \"catástrofe do freamento magnético\"). Estes dois problemas desafiam a descrição MHD ideal, normalmente empregada para descrever esses sistemas. A difusão ambipolar, o mecanismo normalmente invocado para resolver estes problemas, vem sendo questionada ultimamente tanto por observações quanto por resultados de simulações numéricas. Investigamos aqui um novo paradigma, um mecanismo de difusão alternativo baseado em reconexão magnética rápida induzida pela turbulência, que denominamos reconexão turbulenta (TRD, do inglês turbulent reconnection diffusion). Nós testamos a TRD através de simulações numéricas tridimensionais MHD, injetando turbulência em nuvens moleculares com geometria inicialmente cilíndrica, permeadas por um campo magnético longitudinal e fronteiras periódicas. Demonstramos a eficiência da TRD em desacoplar o fluxo magnético do gás, permitindo a queda do gás no poço de potencial gravitacional, enquanto as linhas de campo migram para as regiões externas da nuvem. Este mecanismo funciona tanto para nuvens inicialmente em equilíbrio magneto-hidrostático, quanto para aquelas inicialmente fora de equilíbrio, em queda livre. Nós estimamos as taxas em que a TRD opera e descobrimos que são mais rápidas quando o potencial gravitacional é maior. Também verificamos que quanto maior o valor inicial da razão entre a pressão térmica e magnética (beta), mais eficiente é o processo de difusão. Além disto, também verificamos que estas taxas são consistentes com as previsões da teoria, particularmente quando a turbulência é trans- ou super-Alfvénica. Também exploramos por meio de simulações MHD 3D a influência da TRD na formação de discos proto-estelares. Sob condições MHD ideais, a remoção do momento angular do disco progenitor pelo campo magnético da nuvem pode evitar a formação de discos sustentados por rotação durante a fase principal de acreção proto-estelar de estrelas de baixa massa. Estudos anteriores mostraram que uma super difusividade microscópica aproximadamente três ordens de magnitude maior do que a difusividade ôhmica seria necessária para levar à formação de um disco sustentado pela rotação. No entanto, a natureza desta super difusividade não foi explicada. Nossas simulações numéricas da formação do disco em presença de turbulência demonstraram a eficiência da TRD em prover a diffusão do fluxo magnético para o envelope da proto-estrela durante o colapso gravitacional, permitindo assim a formação de discos sutentados pela rotação com raios ~ 100 UA, em concordância com as observações. O segundo tópico desta tese foi abordado no contexto dos plasmas do meio intra-aglomerado de galáxias (MIA). A amplificação e manutenção dos campos magnéticos observados no MIA são normalmente atribuidas à ação do dínamo turbulento, que é conhecidamente capaz de amplificar a energia magnética até valores próximos da equipartição com a energia cinética. Este resultado é geralmente derivado empregando-se um modelo MHD colisional. No entanto, isto é pobremente justificado a priori, pois no MIA o caminho livre médio de colisões íon-íon é da ordem das escalas dinâmicas, requerendo então uma descrição MHD não-colisional. Estudamos aqui a estatística da turbulência e a amplificação por dínamo turbulento de campos magnéticos sementes no MIA, usando um modelo MHD não-colisional de um único fluido. Isto indroduz uma pressão térmica anisotrópica com respeito à direção do campo magnético local. Esta anisotropia modifica as ondas MHD lineares e cria instabilidades cinéticas. Nosso modelo MHD não-colisional inclui um termo de relaxação da anisotropia devido aos efeitos das instabilidades mirror e firehose. Realizamos simulações numéricas 3D de turbulência trans-sônica forçada em um domínio periódico, mimetizando o MIA turbulento e considerando diferentes valores iniciais para a intensidade do campo magnético, bem como diferentes taxas de relaxação da anisotropia na pressão. Mostramos que no regime de plasma com altos valores de beta no MIA, onde estas instabilidades cinéticas são mais fortes, uma rápida taxa de relaxação da anisotropia produz resultados similares ao modelo MHD colisional na descrição das propriedades estatísticas da turbulência. Além disso, a amplificação da energia mangética pela ação do dínamo turbulento quando consideramos um campo magnético semente, é similar ao modelo MHD colisional, particularmente quando consideramos uma relaxação instantânea da anisotropia. Os modelos sem qualquer relaxação da anisotropia de pressão mostraram resultados que se desviam significativamente daqueles do MHD colisional, mostrando mais potências nas flutuações de pequena escala da densidade e velocidade, em concordância com a presença significativa das instabilidades cinéticas nessas escalas; no entanto, as flutuações do campo magnético são, em geral, suprimidas. Neste caso, o dínamo turbulento também falha em amplificar campos magnéticos sementes e a energia magnética satura em valores bem abaixo da energia cinética. Estudos anteriores do plasma não-colisional do vento solar sugeriram que a taxa de relaxação da anisotropia na pressão é da ordem de uma pequena porcentagem da giro-frequência dos íons. O presente estudo mostrou que, se este também é o caso para o MIA, então os modelos que melhor representam o MIA são aqueles com taxas de relaxação instantâneas, ou seja, os modelos que revelaram um comportamento muito similar à descrição MHD colisional.
70

Influência do verapamil na farmacocinética e na perfusão cerebral da oxcarbazepina e dos enantiômeros do metabólito 10-hidroxicarbazepina em voluntários sadios / Influence of verapamil on the pharmacokinetics and cerebral perfusion of oxcarbazepine and the enantiomers of its metabolite 10- hydroxycarbazepine in healthy volunteers

Antunes, Natalicia de Jesus 25 November 2014 (has links)
A oxcarbazepina (OXC) é indicada como terapia adjuvante ou monoterapia no tratamento de crises epilépticas parciais ou crises tônico-clônicas generalizadas em adultos e crianças. A OXC sofre rápida eliminação pré-sistêmica com formação do metabólito ativo 10-hidroxicarbazepina (MHD), o qual possui como enantiômeros o R-(-)- e o S-(+)-MHD. A OXC e o MHD são substratos da glicoproteína-P (P-gp), que pode ser inibida pelo verapamil. O presente estudo avalia a influência do verapamil na farmacocinética e perfusão cerebral da OXC e dos enantiômeros do MHD em voluntários sadios. Os voluntários sadios (n=12) receberam em uma ocasião doses de 300 mg/12h de OXC e em outra ocasião doses de 300 mg/12h de OXC associadas com 80 mg/8h de verapamil. As amostras de sangue foram coletadas no estado de equilíbrio durante 12 horas e a avaliação da perfusão cerebral realizada utilizando a tomografia computadorizada por emissão de fóton único (SPECT) antes do início do tratamento e nos tempos 4, 6 ou 12h após a administração da OXC. As concentrações plasmáticas total e livre da OXC e dos enantiômeros do MHD foram avaliadas por LC-MS/MS. A análise farmacocinética não compartimental foi realizada com o programa WinNonlin e a farmacocinética populacional foi desenvolvida utilizando a modelagem não-linear de efeitos mistos com o programa NONMEM. Os limites de quantificação obtidos foram de 12,5 ng OXC/mL de plasma e 31,25 ng de cada enantiômero MHD/mL de plasma para a análise da concentração total, enquanto foi de 4,0 ng de OXC/mL de plasma e de 20,0 ng de cada enantiômero do MHD/mL de plasma para a determinação da concentração livre. Os coeficientes de variação obtidos nos estudos de precisão e a porcentagem de inexatidão inter e intra-ensaios foram inferiores a 15%, assegurando a reprodutibilidade e repetibilidade dos resultados. A análise farmacocinética não compartimental da OXC em monoterapia resultou nos seguintes parâmetros: concentração plasmática máxima (Cmax) de 1,35 ?g/mL como valor total e 0,32 ?g/mL como concentração livre em 1,0 h, área sob a curva concentração plasmática versus tempo (AUC0-12) de 3,98 ?g.h/mL e meia-vida de eliminação de 2,45 h, volume de distribuição aparente (Vss/F) de 352,17 L e clearance aparente (CLss/F) de 75,58 L/h. A disposição cinética do MHD é enantiosseletiva, com observação de maior proporção para o enantiômero S-(+)-MHD em relação ao R-(-)-MHD (razão AUC0-12 S-(+)/R-(-) de 4,26). A fração livre avaliada no tmax da OXC foi 0,26 para a OXC, 0,42 para o R-(-)-MHD e 0,38 para o S- (+)-MHD, mostrando enantiosseletividade na ligação às proteínas plasmáticas do MHD. O tratamento com o verapamil reduziu o tempo médio de residência (MRT) (4,71 vs 3,83 h) e Cmax como concentração livre (0,32 vs 0,53 ?g/mL) da OXC e aumentou os valores para ambos os enantiômeros do MHD de Cmax como valor total (2,60 vs 3,27 ?g/mL para o R-(-)- e 11,05 vs 11,94 ?g/mL para o S-(+)-MHD), Cmax como concentração livre (3,11 vs 4,14 ?g/mL para o S-(+)-MHD), Cmédia (2,11 vs 2,42 ?g/mL para o R-(-)- e 8,10 vs 9,07 ?g/mL para o S-(+)-MHD) e AUC0-12 (25,36 vs 29,06 ?g.h/mL para o R-(-)- e 97,19 vs 111,37 ?g.h/mL para o S-(+)-MHD). A ii farmacocinética populacional da OXC foi melhor descrita por modelo de dois compartimentos com eliminação de primeira ordem e com um conjunto de três compartimentos de trânsito para descrever o perfil de absorção da OXC. A disposição de ambos os enantiômeros do MHD foi caracterizada por modelo de um compartimento. Os valores de CLss/F estimados na monoterapia foram de 84,9 L/h para a OXC e de 2,0 L/h para ambos enantiômeros do MHD, enquanto os valores de Vss/F foram de 587 L para a OXC, 23,6 L para o R-(-)-MHD e 31,7 L para o S-(+)- MHD. Concluindo, a associação do verapamil aumentou a biodisponibilidade da OXC em 12% (farmacocinética populacional) e aumentou os valores de AUC de ambos os enantiômeros do metabólito MHD (farmacocinética não compartimental), o que está provavelmente relacionado com a inibição da P-gp no trato intestinal. A associação do verapamil aumentou as concentrações cerebrais preditas de ambos os enantiômeros do MHD em maior extensão do que aquelas observadas no plasma. As mudanças no fluxo sanguíneo cerebral (SPECTs realizados 6h após a administração da OXC) associadas à coadministração de verapamil provavelmente foram causadas pelo aumento dos níveis cerebrais de ambos os enantiômeros do MHD. A confirmação dessa observação requer um braço experimental adicional com SPECTs realizados também após a administração do verapamil em monoterapia. / Oxcarbazepine (OXC) is indicated as adjunctive therapy or monotherapy for the treatment of partial or generalized tonic-clonic seizures in adults and children. OXC undergoes rapid pre-systemic reduction with formation of the active metabolite 10- hydroxycarbazepine (MHD), which has the enantiomers R-(-)- and S-(+)-MHD. OXC and MHD are substrates of P-glycoprotein (P-gp), which can be inhibited by verapamil. The present study evaluates the influence of verapamil on the pharmacokinetics and cerebral perfusion of OXC and the MHD enantiomers in healthy volunteers. The healthy volunteers (n=12) received on one occasion doses of 300 mg/12h OXC and on another occasion they received doses of 300 mg/12h OXC associated with 80 mg/8h of verapamil. Blood samples were collected at steady state for 12 hours and the assessment of cerebral perfusion was performed using a single-photon emission computed tomography (SPECT) before the beginning of treatment and at times 4, 6 or 12 hours after OXC administration. The total and free plasma concentrations of OXC and MHD enantiomers were assessed by LC-MS/MS. The non-compartmental pharmacokinetics analysis was performed using the WinNonlin program, and population pharmacokinetics was developed using nonlinear mixed effects modelling with NONMEM.The limits of quantification obtained were 12.5 ng/mL plasma for OXC and 31.25 ng of each MHD enantiomer/mL plasma for total concentration analysis, while it was 4.0 ng OXC/mL plasma and 20.0 ng of each MHD enantiomer/mL plasma for the free concentration determination. The coefficients of variation obtained in studies of accuracy and the percentage of inaccuracy inter and intra-assay were less than 15%, ensuring the result reproducibility and repeatability. The non-compartmental pharmacokinetic analysis of OXC in monotherapy treatment, resulted in the following parameters: maximum plasma concentration (Cmax) of 1.35 ?g/mL as total concentration and 0.32 mg/mL as free concentration in 1.0 h, area under the plasma concentration vs time curve (AUC0-12) was 3.98 ?g.h/mL, half-life of 2.45 h, apparent volume of distribution (Vss/F) of 352.17 L and the apparent clearance (CLSS/F) of 75.58 L/h. The MHD kinetic disposition is enantioselective, with observation of a greater proportion of the S-(+)-MHD enantiomer compared to R-(-)-MHD (ratio AUC0-12 S-(+)/R-(-) of 4.26). The free fraction measured in the tmax of OXC was 0.26 for OXC, 0.42 for R-(-)-MHD and 0.38 for S-(+)-MHD, showing enantioselectivity in the plasma protein binding of MHD. Verapamil treatment reduced the mean residence time (MRT) (4.71 vs 3.83 h) and Cmax (0.26 vs 0.31 ?g/mL) as free concentration for OXC and increased the both MHD enantiomers values of Cmax (2.60 vs 3.27 ?g/mL for R-(-)- and 11.94 vs 11.05 ?g/mL for S-(+)-MHD) as total concentration, Cmax (3.11 vs 4,14 ?g/mL for S- (+)-MHD) as free concentration, Cavg (2.11 vs 2.42 ?g/mL for R-(-)- and 8.10 vs 9.07 ?g/mL for S-(+)-MHD) and AUC0-12 (25.36 vs 29.06 ?g.h/mL for R-(-)- and 97.19 vs 111.37 ?g.h/mL for S-(+)-MHD). The population pharmacokinetics of oxcarbazepine was best described by a two-compartment model with first-order elimination and a iv set of three transit compartments to describe the absorption profile of the parent compound. The disposition of both MHD enantiomers was characterised by onecompartment model. The CLss/F estimates in monotherapy were 84.9 L/h for OXC and 2.0 L/h for both MHD enantiomers, whereas the values of Vss/F were 587 L for OXC, 23.6 L for R-(-)-MHD and 31.7 L for S-(+)-MHD. In conclusion, verapamil coadministration increased the OXC bioavailability in 12% (population pharmacokinetics) and increased the AUC of both metabolite MHD enantiomers (non-compartmental pharmacokinetics), which is probably related to the inhibition of P-gp in the intestinal tract. Verapamil co-administration increased the predicted brain concentrations of both MHD enantiomers in a greater extent than those observed in plasma. Changes in cerebral blood flow (SPECTs performed 6h after administration of OXC) associated with co-administration of verapamil were probably caused by an increase in brain levels of both MHD enantiomers. Confirmation of this observation requires additional experimental arm with SPECTs also performed after administration of verapamil in monotherapy.

Page generated in 0.053 seconds