• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 334
  • 266
  • 130
  • 28
  • 23
  • 20
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • Tagged with
  • 898
  • 224
  • 212
  • 165
  • 67
  • 55
  • 55
  • 55
  • 54
  • 49
  • 45
  • 43
  • 40
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Impact of Saccharomyces cerevisiae on the intestinal microbiota of dogs during antibiotic-induced dysbiosis

Arghavani, Sara 05 1900 (has links)
Le microbiote intestinal joue un rôle important dans la santé des chiens. Les changements dans la composition du microbiote conduisent au déséquilibre de ces micro-organismes qui est appelé dysbiose. Les objectifs de cette étude étaient d’évaluer l’impact de l’administration orale de Saccharomyces cerevisiae sur le microbiote fécal des chiens en bonne santé et d’évaluer le potentiel de Saccharomyces cerevisiae dans la prévention de la dysbiose induite par les antibiotiques. Les chiens ont été divisés en un groupe témoin (n=10) et un groupe probiotique (n=10). Le groupe probiotique a reçu 1 g/kg de S. cerevisiae par jour de D0 à D31. Les deux groupes ont reçu 15 mg/kg de métronidazole par voie orale toutes les 12h, de D11 à D17. Des écouvillons fécaux ont été prélevés sur les échantillons D0, 3, 11, 17, 20, 24 et 31 pour analyse du microbiote. Du sérum sanguin a été prélevé sur D0 et D24 pour des cytokines IL-2, IL-6, IL-8, IL-10, IL-12, IFN-Υ et TNF-α. Le séquençage de l’ADN pour l’analyse du microbiote a été effectué à l’aide de la plateforme Illumina MiSeq et les données ont été analysées à l’aide du logiciel Mothur. La supplémentation en S. cerevisiae a été associée à des changements dans la composition du microbiote après 3 jours (p-value=0,002). Comme on pouvait s’y attendre, le métronidazole a considérablement modifié la composition du microbiote des deux groupes à partir de D11 jusqu’à D17 (valeur p < 0,001). Même si les deux groupes ont changé de façon marquée de D11 à D17, il y avait une différence significative entre les groupes de D17 (p-value=0,012) et de D20 (p-value=0,036), suggérant que le probiotique utilisé a la capacité de moduler le microbiote des chiens confrontés à la dysbiose. Il n’y avait pas de différence significative entre les groupes pour le D24 (p-value=0,388), mais pour le D31, les chiens du groupe probiotique ressemblaient à leur microbiote de référence, tandis que certains animaux du groupe témoin demeuraient dans l’état dysbiotique (p-value=0,002). Le TNF-α avait considérablement diminué dans le groupe des probiotiques à partir de D0 jusqu’à D24 (p-value=0,002). La quantité de TNF-α observée dans le groupe témoin par rapport au groupe probiotique de D24 était également significativement plus élevée (p-value=0,04). Il n’y avait aucune différence significative entre les autres cytokines mesurées dans le sang. On a également observé qu’un sous-ensemble des échantillons de référence (avant la supplémentation en probiotiques) présentait une abondance plus élevée de pathobiogènes (bactéries potentiellement pathogènes comme Escherichia, Helicobacter et Pseudomonadaceae)., tandis que les autres chiens avaient une plus grande abondance d’organismes bénéfiques (tels que Fusobacteriaceae, Bacteroides, Faecalibacillus, Bacterioidaceae, et Ruminococcaceae). Trois jours après la supplémentation en probiotiques, les chiens transportant plus de pathobiogènes se sont rapprochés d’un profil microbiote plus sain. En conclusion, on a observé que l’utilisation de S. cerevisiae était associée à des changements dans la composition du microbiote chez un groupe de chiens malades. Il a également été observé que la supplémentation avec S. cerevisiae a été en mesure de moduler les changements dans le microbiote intestinal pendant la dysbiose induite par les antibiotiques chez les chiens. Mots clés : Saccharomyces cerevisiae, manipulation du microbiote, microbiote intestinal du chien, antibiotiques. / The gut microbiota plays an important role in the health of dogs. The changes in the microbiota composition lead to the imbalance of these microorganisms which is called dysbiosis. The objectives of this study were to evaluate the impact of oral administration of Saccharomyces cerevisiae on the fecal microbiota of healthy dogs and to evaluate the potential of S. cerevisiae in preventing dysbiosis induced by antibiotics. Dogs were divided in a control (n=10) and a probiotic group (n=10). The probiotic group received 1 g/kg of S. cerevisiae per day from D0 to D31. Both groups were given oral metronidazole 15 mg/kg every 12h from D11 to D17. Fecal swabs were collected on D0, 3, 11, 17, 20, 24, and 31 for microbiota analysis. Blood serum was collected on D0 and D24 for measurements of cytokines IL-2, IL-6, IL-8, IL-10, IL-12, IFN-Υ, and TNF-α. DNA sequencing for microbiota analysis was performed using the Illumina MiSeq platform and data was analyzed using the software Mothur. Supplementation with S. cerevisiae was associated with changes in the microbiota composition after 3 days (p-value=0.002). As expected, metronidazole markedly changed the microbiota composition of both groups from D11 to D17 (p-value<0.001). Even though both groups changed markedly from D11 to D17, there was a significant difference between groups on D17 (p-value=0.012) and on D20 (p-value=0.036), suggesting that the probiotic used has the capacity to modulate the microbiota of dogs facing dysbiosis. There was no significant difference between groups on D24 (p-value=0.388) but on D31, dogs from the probiotic group resembled their baseline microbiota while some animals from the control group remained in the dysbiotic state (p-value=0.002). TNF-α was significantly decreased in the probiotic group from D0 to D24 (p-value=0.002). The amount of observed TNF-α in the control group compared to the probiotic group on D24 was also significantly higher (p-value=0.04). There were no significant differences in the other measured cytokines from the blood. It was also observed that a subset of the dogs at baseline (before probiotic supplementation) carried higher abundances of pathobionts (potentially pathogenic bacteria such as Escherichia, Helicobacter, and Pseudomonadaceae), while the other dogs had higher abundances of beneficial organisms (such as Fusobacteriaceae, Bacteroides, Faecalibacillus, Bacterioidaceae, and Ruminococcaceae). Three days after probiotic supplementation, dogs carrying more pathobionts converted into a healthier microbiota profile. In conclusion, the use of S. cerevisiae was associated with beneficial shifts in the microbiota in a group of heathy dogs and the supplementation was able to modulate the dysbiosis caused by the use of antibiotics. Keywords: Probiotics, microbiota manipulation, intestinal dysbiosis, canine microbiome, antibiotics.
712

α-Mangostin: Friend or Foe of the Immune System and the Gut Microbiota?

Gutierrez Orozco, Fabiola 18 September 2014 (has links)
No description available.
713

Association of gut luminal metabolites and allergic responses

Fallata, Ghaith Mohammed January 2017 (has links)
No description available.
714

Understanding the gut transcriptome responses to lactobacillus probiotics and investigating the impact of nutrition and rotavirus infection on the infant gut microbiome

Kumar, Anand January 2015 (has links)
No description available.
715

Snacking, Childhood Obesity, and Colon Carcinogenesis.

Xu, Jinyu, Xu 28 September 2016 (has links)
No description available.
716

THE INFLUENCE OF HOST STRESS ON THE GASTROINTESTINAL TRACT AND THE MICROBIOTA

Park, Amber J. 10 1900 (has links)
<p>Stress is known to play an important role in the natural history of gastrointestinal diseases, and functional disorders in particular. In health, activation of the stress response serves to maintain homeostasis in response to harmful stimuli. However, prolonged activation of the stress response can become maladaptive and contribute to the initiation and maintenance of symptoms in disorders such as irritable bowel syndrome (IBS). The mechanisms underlying this detrimental effect are unclear. This thesis investigates this relationship by examining the influence of 10 days of water avoidance stress on a murine model of acute bacterial gastroenteritis; a known trigger in a subset of IBS patients. Results indicate that stress can increase the level of the stress hormone norepinephrine in the gut. However, the overall influence of host stress during infection proves to be beneficial in this model, with decreased colonic inflammation and earlier clearance of the pathogen. Next, we utilized the olfactory bulbectomy (OBx) model of depression comorbid anxiety, which shows a heightened stress response, to examine mechanism underlying stress-mediated susceptibility in a more chronic setting. OBx resulted in increased neural activity and motility in the gut, and a change in composition of gut microbiota. These responses were not accompanied by changes in gut permeability or immune activation. Thus stress alters the habitat of commensal bacteria via a neurally mediated change in colonic motility. These results have bearing on the ability of stress to alter the microbiota: a feature of functional GI disorders.</p> / Doctor of Philosophy (Medical Science)
717

Alterations in the Intestinal Microbiota Can be Detected by and Influence Specific Brain Regions

Collins, Josh 10 1900 (has links)
<p>Emerging evidence indicates that the commensal microbiota communicates with the brain and influences behavior. In animal models, perturbation of the microbiota is accompanied by changes in brain-derived neurotrophic factor (BDNF) levels in the brain. However, underlying mechanisms are unknown. We investigated whether vagal-parasympathetic and sympathetic branches of the autonomic nervous system are involved in the microbiota-gut-brain signalling and attempt to identify specific brain regions that are responsive to alterations in the intestinal microbiota. Specific pathogen-free Balb/c mice, with or without surgical vagotomy or chemical sympathectomy, received oral non-absorbable antimicrobials (ATM) <em>ad libitum</em> for 7 days. Behavior was tested on day 7 in the light/dark preference and step-down latency tests. Specific brain regions were sectioned and stained for the neuronal activation marker, <em>c-fos</em>. Perturbation of the microbiota significantly enhanced the exploratory behavior of mice in both tests and increased the expression of <em>c-fos</em> and phosphorylated <em>c-fos</em> in the hippocampus and dentate gyrus. <em>c-fos</em> expression in the nucleus of the solitary tract was unaffected and neither vagal-parasympathetic nor sympathetic neurotransmission were required for induction of the behavioral change following perturbation of the microbiota. Instability of the commensal microbiota enhances the activation of the hippocampal formation and influences host behavior in a manner that is independent of vagal-parasympathetic and sympathetic autonomic neurotransmission.</p> / Master of Health Sciences (MSc)
718

Influence of intestinal microbiota on the postnatal development of enterochromaffin cells and the enteric nervous system

Mungovan, Kal A. 01 September 2014 (has links)
<p>At birth the gastrointestinal (GI) tract is rapidly colonized by microbial organisms which exhibit considerable fluctuations in composition across the first two years of life. During this period, the enteric nervous system (ENS) continues to undergo significant structural and functional changes. In the present study, we investigated whether exposure to intestinal microbiota influences the postnatal development of the ENS. We focused our investigations on dopaminergic neurons as they are among the latest populations of neurons to differentiate during enteric development. The myenteric plexus of specific pathogen-free (SPF) and germ-free (GF) mice were examined in whole-mount preparations of the small and large intestine at three time-points: postnatal day 1 (P1), P7, and P28. The density of dopaminergic neurons did not differ significantly between SPF and GF mice in any region of the intestine examined at P1. However, at P7, GF mice had significantly fewer myenteric dopaminergic neurons in the ileum than did SPF mice, and this difference was maintained at P28.</p> <p>The proportion of enteric dopaminergic neurons has been shown to be dependent upon the availability of serotonin. In the GI tract, serotonin can be of neuronal or enterochromaffin (EC) cell origin. We therefore tested the hypothesis that reductions in myenteric dopaminergic neuron densities in the ileum of GF mice were secondary to changes in enteric serotonergic neuron densities or EC cell frequencies. Neither serotonergic neurons nor EC cell numbers were affected by GF status during the postnatal period. The reduction in dopaminergic neurons seen in GF mice must therefore be attributable to a mechanism that has yet to be determined.</p> <p>These findings are consistent with the notion that enteric microbiota can influence the development of late-born neuronal populations. The reduced proportion of dopaminergic neurons in the ileum of GF mice at P7 and P28 may contribute to the previously described altered motility patterns in postnatal GF mice.</p> / Master of Science (MSc)
719

Tarmmikrobiotans inverkan påtryptofanmetabolismen : med efterföljande effekt på depression

Arvidsson, Fanny January 2024 (has links)
Flera miljoner människor världen över är idag drabbade av depression vilket skapar ett stort lidande. Depression leder även många gånger till självmord. Känt är att tarmmikrobiotan är en viktig del i sjukdomsförloppet [MB1] och att kunna karakterisera tarmmikrobiota som är av psykobiotisk karaktär blir därför viktigt i ett behandlande syfte men också för att kunna ställa diagnos mer objektivt. Syftet med den här litteraturstudien är att genom artikelgranskning i PubMed undersöka vad senaste forskningen säger om tarmmikrobiotans roll i tryptofanmetabolismen med efterföljande effekt på depression. Skiljer sig tarmmikrobiotan och tryptofanmetabolismen mellan individer med och utan depression och kan tarmmikrobiotan och tryptofanmetaboliter användas som biomarkörer för att diagnostisera depression? Resultatet visar att tarmmikrobiotan och vissa tryptofanmetaboliter skiljer sig signifikant åt mellan friska individer och individer med depression. Studiens slutsats är att tarmmikrobiota och tryptofans metaboliter skulle kunna användas som biomarkörer för att kunna diagnostisera depression mer objektivt. Dock förekommer flera olika potentiella confounders som bör tas i beaktning. / Several million people worldwide are today affected by depression, which creates a lot of suffering. Depression also often leads to suicide. It is known that the gut microbiota is an important part of the course of the disease and being able to characterize gut microbiota that is of a psychobiotic nature therefore becomes important for a treatment purpose but also to be able to make a diagnosis more objectively. The aim of this literature study is to examine, through article review in PubMed, what the latest research says about the role of gut microbiota in tryptophan metabolism with subsequent effect on depression. Do gut microbiota and tryptophan metabolism differ between individuals with and without depression and can gut microbiota and tryptophan metabolites be used as biomarkers to diagnose depression? The results show that the gut microbiota and certain tryptophan metabolites differ significantly between healthy individuals and individuals with depression. The study's conclusion is that gut microbiota and tryptophan metabolites could be used as biomarkers to diagnose depression more objectively. However, there are several different potential confounders that should be taken into account.
720

Clostridioides difficile: Identification of Rival Organisms & Evaluation of Non-Antibiotic Treatment Implementation

Davis, Justin 01 January 2024 (has links) (PDF)
Clostrioides difficile is a common cause of nosocomial (hospital-acquired) infections. Patients receiving antibiotic treatment experience dysbiosis of gut microbiota, and C. difficile, normally held in check by the various other organisms, takes this opportunity to propagate. Symptoms of infection generally include diarrhea, colitis, dehydration, and fever. Understanding that C. difficile generally only causes illness when it is the dominant bacterium (i.e. when growth is relatively unchecked by other microbes), it is appropriate to investigate potential competitive organisms that may be introduced after antibiotic courses or during active C. difficile infection to effectively displace it. Fecal samples from the University of Central Florida Lift fecal collection station were aseptically plated onto modified cycloserine cefoxitin fructose agar (CCFA). Visually remarkable colonies (certain colonies that looked unique in comparison to others) were restreaked on new plates of the same media to verify growth, then transferred to brain heart infusion-supplemented (BHIS) plates for propagation. Colonies were inoculated in glycerol stocks for storage, then grown in BHIS liquid media to prepare for identification. Genomic extraction was performed on each sample, and spectrophotometric quantification and gel electrophoresis were executed to confirm successful extraction. Genomic samples will be sent to an external laboratory for identification via polymerase chain reaction and Sanger sequencing. We hypothesize that at least one bacterial strain from the fecal collection station will potentially inhibit C. difficile infection. Should such an organism be identified, it follows that the efficacy of its application in conventional hospital settings may be examined. Current regulation of fecal microbiota transplants, an effective therapeutic practice, is cumbersome, and changing the classification of fecal transplants may improve timeliness and effectiveness of treatment.

Page generated in 0.0647 seconds