• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 88
  • 13
  • 10
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 246
  • 182
  • 165
  • 102
  • 88
  • 85
  • 75
  • 74
  • 67
  • 65
  • 64
  • 59
  • 53
  • 44
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

From Fast to Slow Degradation : Different Strategies to Characterise Polymer Degradation by Chromatographic Techniques

Gallet, Guillaume January 2001 (has links)
No description available.
22

High Throughput Analysis for On-site Sampling

Gomez-Rios, German Augusto January 2012 (has links)
Until recently, multiple SPME fibres could not be automatically evaluated in a single sequence without manual intervention. This drawback had been a critical issue until recently, particularly during the analysis of numerous on-site samples. Recently, GERSTEL® has developed and commercialized a Multi-Fibre Exchanger (MFX) system designed to overcome this drawback. In this research, a critical evaluation of the MFX performance in terms of storage stability and long term operation is presented. It was established in the course of our research that the MFX can operate continuously and precisely for over 200 extraction/injection cycles. However, when the effect of residence time of commercial fibres on the MFX tray was evaluated, the results have shown that amongst the evaluated fibre coatings, carboxen/polydimethylsiloxane (CAR/PDMS) was the only coating capable of efficient storage on the MFX tray for up to 24 hours after field sampling without suffering significant loss of analytes. Additionally, the MFX system capability for high-throughput analysis was demonstrated by the unattended desorption of multiple fibres after on-site sampling of two different systems, indoor air and biogenic emissions. Subsequently, a protocol based on a new, fast, reproducible, reusable and completely automated method that enables quick assessment of SPME coatings was developed. The protocol consists of an innovative in-vial standard generator containing vacuum pump oil doped with McReynolds probes and subsequently mixed with a polystyrene-divinylbenzene resin. According to our results, the protocol has proven to be a useful tool for the quick assessment of inter-fibre reproducibility prior to their application in on-site analysis. The implications of such protocols include, but are not limited to: time-saving, assurance of reliable and reproducible data, and a dependable guide for novice users of the technique. Finally, an innovative, reusable and readily deployable pen-like diffusive sampler for needle traps (PDS-NT) is proposed. Results have shown that the new PDS-NT is effective for air analysis of benzene, toluene, and o-xylene (BTX). In addition, no statistically significant effects of pen geometry on the uptake of analytes were found.
23

From Fast to Slow Degradation : Different Strategies to Characterise Polymer Degradation by Chromatographic Techniques

Gallet, Guillaume January 2001 (has links)
No description available.
24

Cold fiber solid phase microextraction in solid sample analysis

Guo, Jun 04 1900 (has links)
The cold fiber solid phase microextraction (SPME) system was improved by minimizing the coating temperature fluctuation range, and the performance of the system was evaluated by investigating the extraction of PAHs from spiked sand samples. The coating temperature can be made relatively constant and the relative standard division (RSD) for most compounds was smaller than 2%. A simplified cold fiber system without the solenoid valve was modified to connect CO2 delivery tubing directly to the liquid CO2 tank. The robustness of this system was evaluated with different sizes of CO2 delivery tubings. The system is stable, low cost and can be easily controlled, which provides a supplementary extraction strategy to the traditional cold fiber system. The extraction amount of the analyte in a specific system was calculated theoretically in advance. The extraction amount for the experiment agreed with that of the calculated result. By using theoretical calculations as a guide, desorption efficiency for aged spiked samples was investigated. In order to achieve better extraction efficiency for PAHs, a programmed coating temperature method was developed and optimized, which led to higher extraction efficiency for most studied analytes compared to the traditional methods. In real sample analysis, certified reference soils were analyzed using cold fiber SPME and the addition of diethylamine successfully realized the exhaustive extraction for volatile compounds and enhanced the recoveries for semi-volatile compounds. Satisfactory extraction amounts for all compounds were achieved by the proposed method after method optimization.
25

Evaluation of Sediment Toxicity Using a Suite of Assessment Tools

Kelley, Matthew A 02 October 2013 (has links)
Accurate characterization of risk of adverse ecological effects related to contaminated sediment presents a particularly difficult challenge. A series of studies has been conducted to investigate the utility of various tools for assessment of sediment toxicity. The goal of this research was to provide information which could help increase the accuracy with which predictions of toxicity could be made at hazardous sites. A calibration study was conducted using model PAHs, PCBs, a binary PAH mixture and a coal-tar mixture. This study was a collaborative effort among five university-based Superfund Research Programs (SRPs). Each program, with the help of funding through the NIEHS Superfund Research Program, has developed a chemical-class specific assay to estimate toxicity of contaminants in sediment. This suite of bioassays expands the range of data typically obtained through the use of standard aquatic toxicity assays. A series of caged in situ exposure studies has been conducted using juvenile Chinook salmon and Pacific staghorn sculpin in the Lower Duwamish Waterway. The study aimed to investigate the utility of selected biomarkers in evaluating the relationship between contaminants present in environmental samples and response in receptors following an in situ caged exposure. Results found that DNA adducts detected in exposed fish were significantly higher than controls in 2004 and 2006, and DNA adducts appear to be a reliable indicator of exposure, although no dose-response relationship was present. Western blot analysis of CYP1A1 was not indicative of exposure levels. The final study conducted was concerned with evaluating the utility of using solid phase microextraction (SPME) fibers in situ to evaluate contaminated sediment. Levels of PAHs and PCBs in sediment often exceeded sediment quality guidelines; however, results from aquatic toxicity bioassays using Hyalella azteca were mostly negative, thus levels of contaminants detected on SPME fibers could not be associated with adverse effects in Hyalella. However, regression analysis of total PAHs present in sediment and levels of PAHs detected in porewater SPME fiber samplers, which were placed 5 cm into the sediment for 30 days, revealed a strongly correlated linear relationship (R2 = .779). Normalization of the sediment data to total organic carbon was performed to determine if the trend would remain present, and the linear relationship was again confirmed (R2 =.709).
26

High Throughput Analysis for On-site Sampling

Gomez-Rios, German Augusto January 2012 (has links)
Until recently, multiple SPME fibres could not be automatically evaluated in a single sequence without manual intervention. This drawback had been a critical issue until recently, particularly during the analysis of numerous on-site samples. Recently, GERSTEL® has developed and commercialized a Multi-Fibre Exchanger (MFX) system designed to overcome this drawback. In this research, a critical evaluation of the MFX performance in terms of storage stability and long term operation is presented. It was established in the course of our research that the MFX can operate continuously and precisely for over 200 extraction/injection cycles. However, when the effect of residence time of commercial fibres on the MFX tray was evaluated, the results have shown that amongst the evaluated fibre coatings, carboxen/polydimethylsiloxane (CAR/PDMS) was the only coating capable of efficient storage on the MFX tray for up to 24 hours after field sampling without suffering significant loss of analytes. Additionally, the MFX system capability for high-throughput analysis was demonstrated by the unattended desorption of multiple fibres after on-site sampling of two different systems, indoor air and biogenic emissions. Subsequently, a protocol based on a new, fast, reproducible, reusable and completely automated method that enables quick assessment of SPME coatings was developed. The protocol consists of an innovative in-vial standard generator containing vacuum pump oil doped with McReynolds probes and subsequently mixed with a polystyrene-divinylbenzene resin. According to our results, the protocol has proven to be a useful tool for the quick assessment of inter-fibre reproducibility prior to their application in on-site analysis. The implications of such protocols include, but are not limited to: time-saving, assurance of reliable and reproducible data, and a dependable guide for novice users of the technique. Finally, an innovative, reusable and readily deployable pen-like diffusive sampler for needle traps (PDS-NT) is proposed. Results have shown that the new PDS-NT is effective for air analysis of benzene, toluene, and o-xylene (BTX). In addition, no statistically significant effects of pen geometry on the uptake of analytes were found.
27

Análise enantiosseletiva da mirtazapina e seus metabólitos: técnicas modernas de microextração e análise e aplicação em estudos de disposição cinética / Enantioselective analysis of mirtazapine and its metabolites: modern techniques for microxtraction and analysis and application to kinetic disposition studies

Fernando José Malagueño de Santana 12 November 2008 (has links)
A necessidade de metodologias adequadas para análise de fármacos e seus metabólitos em matrizes biológicas complexas levaram a um crescente interesse no desenvolvimento de novas técnicas de preparação de amostras, particularmente as técnicas de microextração, por serem altamente seletivas e requererem o consumo mínimo de solventes orgânicos. Aliado a esses avanços, o emprego de modernas e eficientes tecnologias analíticas, como a eletroforese capilar (CE) e a cromatografia líquida de alta eficiência acoplada à espectrometria de massas (LC-MS-MS), tem resultado em um considerável avanço em qualidade nas metodologias analíticas disponíveis para bioanálises. Dentro desse cenário, destaca-se a utilização dessas técnicas para o desenvolvimento de metodologias enantiosseletivas, permitindo quantificar os enantiômeros de fármacos administrados como racematos. Sendo assim, propusemos o desenvolvimento e a validação de metodologias enantiosseletivas para a análise dos enantiômeros da mirtazapina (MRT) e de seus principais metabólitos em plasma e urina, utilizando a CE e a LC-MS-MS. Para a preparação das amostras foram empregadas a microextração em fase sólida (SPME) e a microextração em fase líquida (LPME). No primeiro método desenvolvido, a LPME foi utilizada para extrair os analitos das amostras de plasma (1 mL), previamente diluídas, alcalinizadas com 3,0 mL de uma solução tampão fosfato 0,5 mol L-1 (pH 8) e adicionadas de 15% (m/v) de cloreto de sódio. Éter n-hexílico e uma solução de ácido acético 0,01 moL L-1 foram utilizados como solvente extrator e fase aceptora, respectivamente. As análises cromatográficas foram feitas em uma coluna Chiralpak AD-RH, empregando acetonitrila:metanol:etanol (98:1:1, v/v/v) mais 0,2% de dietilamina como fase móvel, na vazão de 1 mL min-1. A detecção dos analitos foi conduzida por LC-MS-MS usando um analisador triplo-quadrupolo e ionização por eletrospray positivo. Nessas condições, foram obtidas recuperações de 18,3 a 45,5%, resposta linear na faixa de concentração de 1,25-125 ng mL-1 e limite de quantificação (LQ) de 1,25 ng mL-1 para todos os enantiômeros avaliados. Posteriormente, a CE e a LPME foram utilizadas para a análise da MRT e seus principais metabólitos em urina. Antes da extração, amostras de urina (1 mL) foram submetidas a hidrólise enzimática a 37 ºC por 16 horas. Então, a enzima foi precipitada com ácido tricloroacético, o pH foi ajustado para 8 com uma solução tampão fosfato 0,5 mol L-1 (pH 11) e 10% de NaCl também foi adicionado. Em seguida as amostras foram submetidas a extração de forma similar aquela realizada para as amostras de plasma. As análises eletroforéticas foram obtidas em uma solução tampão fosfato 50 mmol L-1 (pH 2,5) contendo 0,55% (m/v) de carboximetil-b-ciclodextrina (CM-b-CD). O método foi linear na faixa de concentração de 62,5-2500 ng mL-1 para cada enantiômero da MRT e 8-hidroximirtazapina (8-OHM) e 62,5-1250 ng mL-1 para cada enantiômero da desmetilmirtazapina (DMR). O LQ foi 62,5 ng mL-1 para todos os enantiômeros. A SPME também foi utilizada no desenvolvimento de um método para a determinação simultânea do fármaco e seus metabólitos em urina usando CE e LC-MS-MS. Os analitos de interesse foram transferidos da solução aquosa hidrolisada para uma fibra de polidimetilsiloxano-divinilbenzeno (PMDS-DVB) e então foram desorvidos em metanol. As recuperações médias foram de 12 % para os enantiômeros da MRT, 3,8 % para a DMR e 0,72 % para a 8-OHM. O método foi linear na faixa de concentração de 62,5-2500 ng mL-1 com adequado LQ (62,5 ng mL-1) para todos os enantiômeros. A precisão e exatidão foram menores que 15% para todos os métodos desenvolvidos. Além disso, os métodos foram adequadamente aplicados em estudos preliminares de determinação dos enantiômeros da MRT, 8-OHM e DMR em amostras de plasma e urina obtidos após a administração oral de uma dose única de rac-MRT a voluntários sadios. / The need for appropriate methodology for the analysis of drugs and their metabolites in complex biological matrices led to a growing interest in developing new techniques for sample preparation, particularly microextraction techniques because they are highly selective and require a minimum consumption of organic solvents. Allied to these developments, the employment of modern and efficient analytical technologies, such as capillary electrophoresis (CE) and high-performance liquid chromatography coupled to mass spectrometry (LC-MS-MS), has resulted in a considerable improvement in quality in the analytical methodologies available for bioanalysis. In this context, it is worth to mention the use of such techniques to develop enantioselective methodologies, allowing the quantification of the enantiomers of drugs administered as racemates. Therefore, we proposed the development and validation of enantioselective methodologies for the analysis of the enantiomers of mirtazapine (MRT) and of its main metabolites in plasma and urine, using the CE and LC-MS-MS. Solid phase microextraction (SPME) and liquid phase microextraction (LPME) were used for sample preparation. In the first method, LPME was used to extract the analytes from plasma samples (1 ml), previously diluted, alkalinized with 3.0 mL 0.5 mol L-1 pH 8 phosphate buffer solution and supplemented with 15% (w/v) sodium chloride. N-hexyl ether and 0.01 mol L-1 acetic acid solution were used as solvent extractor and acceptor phase, respectively. The analyses were carried out on a CHIRALPAK AD-RH column and acetonitrile: methanol: ethanol (98:1:1, v / v / v) plus 0.2% of diethylamine was used as mobile phase, at a flow rate of 1 mL min-1. The detection was performed by LC-MS-MS equipped with a triple-quadrupole analyzer and ionization by eletrospray positive. Under these conditions, recoveries were from 18.3 to 45.5%; linear response over the 1,25-125 ng ml-1 concentration range and limit of quantification (LOQ) of 1.25 ng ml-1 for all enantiomers evaluated were obtained. CE and LPME were also used for the analysis of MRT and its main metabolites in urine. Before the extraction, urine samples (1 mL) were submitted to enzymatic hydrolysis at 37 ºC for 16 hours, the enzyme was precipitated with trichloroacetic acid, the pH was adjusted to 8 with 0.5 mol L-1 phosphate buffer solution (pH 11) and 10% (w/v) sodium chloride was further added. Then, the LPME extraction was performed according to the procedure previously developed. The electrophoretic analyses were carried out in 50 mmol L-1 phosphate buffer solution (pH 2.5) containing 0.55% (w/v) carboxymethyl-b-cyclodextrin (CM-b-CD). The method was linear over the concentration range of 62.5-2500 ng mL-1 for each MRT and 8-OHM enantiomer and 62.5-1250 ng mL-1 for each DMR enantiomer. The quantification limit (LOQ) was 62.5 ng mL-1 for all the enantiomers. A SPME method was also developed for the simultaneous enantioselective determination of MRT and its metabolites in urine using CE and LC-MS-MS. The target analytes were transferred from the hydrolyzed aqueous solution to the polydimetylsiloxane-divinylbenzene (PMDS-DVB) fiber coating and then desorbed in methanol. The means recoveries were 12 % for the enantiomers of MRT, 3.8 % for DMR and 0.72 % for 8-OHM. The method was linear over the concentration range of 62.5-2500 ng mL-1 with suitable LOQ (62.5 ng mL-1) for all the enantiomers. The precision and accuracy were lower than 15% for all developed methods. Moreover, the methods were successfully employed for the determination of MRT, 8-OHM and DMR enantiomers in plasma and urine samples obtained after oral administration of a single dose of rac-MRT to healthy volunteers.
28

Fast Detection and Chemical Characterization of Gunshot Residues by CMV-GC-MS and LIBS

Tarifa, Anamary 06 November 2015 (has links)
Gunshot residue (GSR) is the term used to describe the particles originating from different parts of the firearm and ammunition during the discharge. A fast and practical field tool to detect the presence of GSR can assist law enforcement in the accurate identification of subjects. A novel field sampling device is presented for the first time for the fast detection and quantitation of volatile organic compounds (VOCs). The capillary microextraction of volatiles (CMV) is a headspace sampling technique that provides fast results (< 2 min. sampling time) and is reported as a versatile and high-efficiency sampling tool. The CMV device can be coupled to a Gas Chromatography-Mass Spectrometry (GC-MS) instrument by installation of a thermal separation probe in the injection port of the GC. An analytical method using the CMV device was developed for the detection of 17 compounds commonly found in polluted environments. The acceptability of the CMV as a field sampling method for the detection of VOCs is demonstrated by following the criteria established by the Environmental Protection Agency (EPA) compendium method TO-17. The CMV device was used, for the first time, for the detection of VOCs on swabs from the hands of shooters, and non-shooters and spent cartridges from different types of ammunition (i.e., pistol, rifle, and shotgun). The proposed method consists in the headspace extraction of VOCs in smokeless powders present in the propellant of ammunition. The sensitivity of this method was demonstrated with method detection limits (MDLs) 4-26 ng for diphenylamine (DPA), nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and ethyl centralite (EC). In addition, a fast method was developed for the detection of the inorganic components (i.e., Ba, Pb, and Sb) characteristic of GSR presence by Laser Induced Breakdown Spectroscopy (LIBS). Advantages of LIBS include fast analysis (~ 12 seconds per sample) and good sensitivity, with expected MDLs in the range of 0.1-20 ng for target elements. Statistical analysis of the results using both techniques was performed to determine any correlation between the variables analyzed. This work demonstrates that the information collected from the analysis of organic components has the potential to improve the detection of GSR.
29

Detection of Illicit Drugs in Various Matrices Via Total Vaporization Solid-Phase Microextraction

Davis, Kymeri Elizabeth 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In Headspace Solid-Phase Microextraction (Headspace SPME), a sample is heated to encourage a portion of the analyte into the headspace of a vial. A coated fiber is introduced into the sample headspace and the analyte is adsorbed onto the fiber coating. Total Vaporization Solid-Phase Microextraction (TV-SPME) is a technique that is derived from this technique. In TV-SPME, liquid samples are completely vaporized allowing for better adsorption and fewer matrix effects. This method does not require any sample preparation, utilizes minimal supplies and can be automated, making it both an efficient and cost-effective method. Chapter 1 will discuss the theory of SPME and TV-SPME. In Chapter 2, the detection of ɣ-hydroxybutyric acid (GHB) and ɣ-butyrolactone (GBL) in beverages is discussed. The detection of these compounds in beverages is of importance because these drugs may be used to facilitate sexual assault. This crime utilizes substances that cause sedation and memory loss. The derivatization of GHB as well as the properties that make GHB difficult to detect will be discussed. Chapter 3 will discuss the detection of methamphetamine and amphetamine (as their trifluoroacetyl derivatives), GBL, and the trimethylsilyl derivative of GHB in human urine. Amphetamine is a metabolite of methamphetamine, therefore, both drugs should be identified within biological samples. GHB and GBL are metabolites of one another and interconvert when in aqueous solution. This interconversion will be discussed. Chapter 4 will cover method optimization of the Total Vaporization Solid-Phase Microextraction method. Analytes of interest for these analyses were methamphetamine, amphetamine, GHB, and GBL. The optimal extraction temperature ranging from 60-160°C of each drug will be discussed as well as why higher temperatures may not be suitable for this method. A limit of detection study for methamphetamine and amphetamine will also be covered. Chapter 5, the future work chapter, will discuss future analyses using the Total Vaporization Solid-Phase Microextraction method including the analysis of powder materials, plant material, and toxicological samples. Powder material will include the analysis of individual powdered drugs as well as realistic drug mixtures. Some analyses on individual powder samples has already been completed and will be shown. Plant material will include the analysis of naturally occurring compounds found in marijuana plants as well as synthetic cannabinoids. Toxicological samples will expand on previously mentioned urine samples to include drugs such as benzoylecgonine and THC-COOH.
30

A detailed justification for the selection of a novel mine tracer gas and development of protocols for GC-ECD analysis of SPME sampling in static and turbulent conditions for assessment of underground mine ventilation systems

Underwood, Susanne Whitney 24 January 2013 (has links)
Tracer gas surveys are a powerful means of assessing air quantity in underground mine ventilation circuits.  The execution of a tracer gas style ventilation survey allows for the direct measurement of air quantity in locations where this information is otherwise unattainable.  Such instances include inaccessible regions of the mine or locations of irregular flow.  However, this method of completing a mine ventilation survey is an underused tool in the industry.  This is largely due to the amount of training required to analyze survey results. As well, the survey is relatively slow because of the time required to perform analysis of results and the time required to allow for the total elution of tracer compounds from the ventilation circuit before subsequent tracer releases can be made.  These limitations can be mitigated with the development of a protocol for a novel tracer gas which can be readily implemented with existing technology.  Enhanced tracer gas techniques will significantly improve the flexibility of ventilation surveys.  The most powerful means to improve tracer gas techniques applied to mine ventilation surveys is to alter existing protocols into a method that can be readily applied where tracer surveys already take place. One effective method of enhancing existing tracer gas survey protocols is to simply add a second tracer gas that can be detected on a gas chromatograph -- electron capture detector (GC-ECD) using the same method as with the existing industry standard tracer, sulfur hexafluoride (SF6).  Novel tracer gases that have been successfully implemented in the past called for complex analysis methods requiring special equipment, or were designed for inactive workings.  Experimentation with perfluoromethylcyclohexane (PMCH) and SF6 allowed for ideal chromatographic results.  PMCH is a favorable selection for a novel tracer to work in tandem with SF6 due to its chemical stability, similar physical properties and detection limits to SF6, and its ability to be applied and integrated into an existing system.  Additionally, PMCH has been successfully utilized in other large-scale tracer gas studies. Introduction of a novel tracer gas will make great strides in improving the versatility of underground tracer gas ventilation surveys, but further improvement to the tracer gas technique can be made in simplifying individual steps.  One such step which would benefit from improvement is in sampling.  Solid phase microextraction (SPME) is a sampling method that is designed for rapid sampling at low concentrations which provides precise results with minimal training.  A SPME extracting phase ideal for trace analysis of mine gases was selected and a GC-ECD protocol was established.  The protocol for fiber selection and method optimization when performing trace analysis with SPME is described in detail in this thesis.  Furthermore, the impact of sampling with SPME under varying turbulent conditions is explored, and the ability of SPME to sample multiple trace analytes simultaneously is observed. / Master of Science

Page generated in 0.1959 seconds