• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 15
  • 12
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Διερεύνηση της μηχανικής συμπεριφοράς οστεοβλαστών κατά την προσκόλλησή τους σε υποστρώματα φυσικών βιοϋλικών

Μουτζούρη, Αντωνία 29 April 2015 (has links)
Η κατανόηση των φαινομένων που λαμβάνουν χώρα κατά την αλληλεπίδραση κυττάρου βιοϋλικού και η συσχέτιση μηχανικών παραμέτρων του κυττάρου με πολύπλοκες διεργασίες στο εξωκυττάριο (ECM) περιβάλλον οδηγεί το μέλλον στο σχεδιασμό των βιοϋλικών. Σκοπός της διατριβής ήταν η διερεύνηση της προσκόλλησης και των μεταβολών των μηχανικών ιδιοτήτων οστεοβλαστών στους αρχικούς χρόνους προσκόλλησης σε υπόστρωμα του βιοπολυμερούς χιτοζάνης. Η προετοιμασία υποστρωμάτων χιτοζάνης έγινε με ομοιοπολική πρόσδεση του βιοπολυμερούς σε επιφάνεια γυαλιού (επιφάνεια ελέγχου). Με φασματοσκοπία φωτοηλεκτρονίων από ακτίνες Χ επιβεβαιώθηκε η μεταβολή της επιφανειακής χημικής σύστασης. Η μέση επιφανειακή τραχύτητα, με χρήση Μικροσκοπίας Ατομικής Δύναμης, βρέθηκε 4 φορές μεγαλύτερη στη χιτοζάνη σε σύγκριση με το γυαλί, ενώ η μέση γωνία διαβροχής ήταν περίπου 3 φορές μεγαλύτερη στη χιτοζάνη. Ο αριθμός και η μέση επιφάνεια εξάπλωσης των προσκολλημένων κυττάρων, προσδιορίστηκαν από φωτογραφίες ηλεκτρονιακού μικροσκοπίου σάρωσης και χρήση λογισμικού ανάλυσης εικόνας. Μέχρι τα 30 λεπτά, ο αριθμός ήταν μεγαλύτερος στη χιτοζάνη, ενώ μετά τα 45 λεπτά, στο γυαλί. Σε όλους τους χρόνους, η μέση επιφάνεια εξάπλωσης ήταν μεγαλύτερη στη χιτοζάνη. Για την ποσοτικοποίηση της προσκόλλησης, χρησιμοποιήθηκε η τεχνική της μικροπιπέττας σε πειράματα αποκόλλησης μεμονωμένων οστεοβλαστών. Υπολογίστηκε η “ώθηση αποκόλλησης”, I, ως το ολοκλήρωμα της εφαρμοζόμενης δύναμης στο χρόνο (I=SFdt) για την πλήρη αποκόλληση ενός κυττάρου και βρέθηκε στατιστικά μεγαλύτερη στη χιτοζάνη σε όλους τους χρόνους. Με την τεχνική Ποσοτικής Αλυσιδωτής Αντίδρασης Πολυμεράσης, η έκφραση των γονιδίων ιντεγκρινών αν, α4, β1 και β3 βρέθηκε σημαντικά αυξημένη στη χιτοζάνη από τα 30 στα 120 λεπτά. Με συνεστιακό μικροσκόπιο σάρωσης, παρατηρήθηκε αυξημένη έκφραση της κινάσης εστιακής προσκόλλησης στη χιτοζάνη στα 30 και στα 120 λεπτά. Τέλος, χρησιμοποιήθηκε η τεχνική της μικροπιπέττας σε πειράματα εφελκυσμού και ερπυσμού των οστεοβλαστών και υπολογίστηκαν οι μεταβολές του μέτρου Young, Ε, και του φαινόμενου ιξώδους, η. Οι μέσες τιμές βρέθηκαν αυξημένες στην πορεία της προσκόλλησης στις δύο επιφάνειες, παρουσιάζοντας υψηλότερες τιμές στη χιτοζάνη. Η παρούσα διατριβή είναι μια ολοκληρωμένη φαινομενολογική προσέγγιση της μηχανικής συμπεριφοράς της οστεοβλάστης κατά την προσκόλληση. Η προσκόλληση στη χιτοζάνη συνοδεύεται από μεταβολές στη μηχανική συμπεριφορά και συνδέεται με κρίσιμες βιοχημικές διεργασίες. / The understanding of the phenomena that take place during cell-biomaterial interaction and the correlation of cell mechanical parameters with complicated processes at the extracellular environment (ECM) is driving the future of biomaterial design. The aim of the present study was the investigation of attachment and of alterations of mechanical properties of osteoblasts during the initial phase of attachment on chitosan biopolymer substrate. The preparation of the chitosan substrates was done with covalent immobilization of the biopolymer on glass surface (control substrate). X-Ray photolelectron spectroscopy confirmed the alteration of the surface chemical composition. Mean surface roughness, as measured by Atomic Force Microscopy, was increased 4-fold compared to glass, while the mean contact angle was found 3 times higher on chitosan substrate. The mean number and spreading area of the attached cells, were determined by Scanning Electron Microscopy images and the use of image processing program. Up to 30 minutes, the number of attached cells was higher on chitosan, while after 45 minutes, it was on glass. At all time points, the mean spreading area was greater on chitosan. To quantify attachment, the micropipette aspiration technique was used at experiments of detachment of individual osteoblasts. The ‘’detachment impulse’’, I, was calculated, as the integral of the applied force at time required (I=SFdt) for complete detachment of one cell, and it was found statistically higher on chitosan at all attachment times. With the quantified Polymerase Chain Reaction, the αν, α4, β1 and β3 gene integrin expression was found significantly increased from 30 to 120 minutes of attachment on chitosan. Using confocal scanning microscopy, higher expression of focal adhesion kinase was observed on chitosan at 30 and 120 minutes of attachment. Additionally, the micropipette aspiration technique was used at stretching and creep experiments so as to calculate the alterations of cell’s Young modulus, E, and apparent viscosity, η. Mean values were increased at the course of spreading for both surfaces, demonstrating greater values on chitosan. The present study is a complete phenomenological approach of the mechanical behavior of osteoblasts during attachment. Attachment on chitosan is accompanied by alterations of the mechanical behavior and is associated with critical biochemical processes.
32

Fabrication and Characterisation of iontronic micropipette

Hamrefors, Henrik January 2022 (has links)
The biological translation between biological and electrical signals have inspired scientists over the last decade and has opened new way of therapeutics. The group of Bioelectronics at the Laboratory of organic electronics (LOE) develops systems that utilizes this translation to reduce the gap between electronics and biology. A known example of devices that does this are called iontronic delivery devices. These devices allow very specific transport and delivery of charged compounds. The most basic iontronic delivery device is the organic electronic ion pump (OEIP). The OEIP have been developed and fabricated into many variations, for example the iontronic micropipette which is a device that has been developed at LOE. In this project, the fabrication and characterization of the iontronic micropipette have been developed to find fabrication parameters that generates stable, high performing and reproduceable devices together with good and reproduceable characterization protocols. The iontronic micropipette is fabricated in a cleanroom and characterized in two steps, optically in a microscope and then electrically by transporting ions through the membrane. Two different membrane materials were tested, 2- acrylamido-2-methylpropane sulfonic acid (AMPSA) and Hyperbranched polyglycerols (HPG). The results that were obtained from the fabrication of the AMPSA showed a reproducibility between many devices, but many AMPSA device broke during the fabrication so the protocol for the AMPSA still need improvement. Regarding the A-HPG fabrication, the results were much more positive and the yield from the fabrication were sufficient. The results that were obtained in the characterization of the AMPSA device showed that these devices had a very equal resistance between the device from the same batch. For the A-HPG, it was a much larger spread in the resistance between the device but the resistance were still much lower than for the AMPSA which is more preferable for most applications on living cells. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
33

Physical and Biological Properties of Synthetic Polycations in Alginate Capsules

Kleinberger, Rachelle 04 1900 (has links)
The use of cell transplantation to treat enzyme deficiency disorders is limited by the immune response targeted against foreign tissue or the use of life-long immunosuppressants. Hiding cells from the immune system in an encapsulation device is promising. Cells encapsulated within an anionic calcium alginate hydrogel bead are protected through a semi-permeable membrane formed by polycation, poly-L-lysine (PLL). A final layer of alginate is added to hide the cationic PLL surface but this has proved to be difficult creating capsules which are prone to fibrotic overgrowth, blocking exchange of nutrients, waste and therapeutic enzymes through the capsule. For long term applications these capsules need to be both biocompatible and mechanically robust. This thesis aims to address the biocompatibility issue of high cationic surface charge by synthesizing polycations of reduced charge using N-(3- aminopropyl)methacrylamide hydrochloride (APM) and N-(2- hydroxypropyl)methacrylamide (HPM) and study the associated mechanical properties of the capsules using micropipette aspiration. Micropipette aspiration was applied and validated for alginate based capsules (gel and liquid core) to quantify stiffness. Varying ratios of APM were used to control the overall charge of the polycations formed while HPM was incorporated as a neutral, hydrophilic, nonfouling comonomer. The molecular weight (MW) was controlled by using reversible addition-fragmentation chain transfer (RAFT) polymerization. The biocompatibility of these polymers was tested by cell adhesion and proliferation of 3T3 fibroblasts onto APM/HPM copolymer functionalized surfaces and by solution toxicity against C2C12 myoblasts. The ability for the APM/HPM copolymers to bind to alginate and form capsules was also assessed, along with the integrity and stiffness of the capsule membrane with or without additional covalent cross-linking by reactive polyanion, poly(methacrylic acid-co-2-vinyl-4,4- dimethylazlactone) (PMV60). Thermo-responsive block copolymers of N-isopropylacrylamide (NIPAM) and 2- hydroxyethylacrylamide (HEA) were also synthesized as potential drug delivery nanoparticles, showing control over micelle morphology with varying NIPAM to HEA ratios. / Thesis / Doctor of Science (PhD) / The treatment of enzyme deficiency disorders by cell transplantation is limited by the immune attack of foreign tissue in absence of immunosuppressants. Cells protected in an encapsulation device has shown promise. Poly-L-lysine, a widely used membrane material in these protective capsules, binds to the anionic gel entrapping living cells because it is highly cationic. The high cationic charge is difficult to hide causing the immune system to build tissue around the capsule, preventing the encapsulated cells from exchanging nutrients and therapeutic enzymes. This thesis aims to replace poly-L-lysine by synthesizing a series of more biocompatible materials of decreasing cationic charge. These materials were studied for the ability to support tissue growth and form stable capsules. The membrane strength was measured using an aspiration method validated for these types of capsules. Reducing the cationic charge of the materials increased the biocompatibility of the capsule membrane but also made for weaker membranes.
34

Role of Caveolae in Membrane Tension

Köster, Darius Vasco 30 September 2010 (has links)
Caveolae sind charakteristische Plasmamembraneinstülpungen, die in vielen Zelltypen vorkommen und deren biologische Funktion umstritten ist. Ihre besondere Form und ihre Häu gkeit in Zellen, die stets mechanischen Belastungen ausgesetzt sind, führten zu der Annahme, dass Caveolae die Plasmamembran vor mechanischen Belastungen schützen und als Membranreservoir dienen. Dies sollte mit dieser Dissertation experimentell geprüft werden. Zunächst wurde der Ein uss der Caveolae auf die Membranspannung von Zellen im Normalzustand untersucht. Dann wurden die Zellen mechanisch belastet. Mit Fluoreszensmikroskopie wurde das Verschwinden von Caveolae nach Strecken der Zellen oder nach einem hypo-osmotischen Schock beobachtet. Messungen der Membranspannung vor und unmittelbar nach dem hypo-osmotischem Schock zeigten, dass Caveolae einen Anstieg der Membranspannung verhindern, unabhängig von ATP und dem Cytoskelett. Die Erzeugung von Membranvesikel mit Caveolae erlaubte es, diesen Effekt der Caveolae in einem vereinfachten Membransystem zu beobachten. Schliesslich wurden Muskelzellen untersucht. Zellen, die genetisch bedingt weniger Caveolae haben und mit Muskelschwundkrankheiten in Verbingung stehen, waren mechanisch weniger belastbar als gesunde Zellen. Zusammenfassend wird mit dieser Dissertation die These bestärkt, dass Caveolae einem Anstieg der Membranspannungen entgegenwirken. Dass dies in Zellen und in Vesikeln unabhängig von Energie und Cytoskelett geschieht, lässt auf einen passiven, mechanisch getriebenen Prozess schliessen. Diese Erkenntnis trägt zum Verständnis der Rolle von Caveolae in Zellen bei und kann dem besseren Verständnis von Krankheiten bedingt durch Caveolin-Mutationen, wie z.B. Muskelschwundkrankheiten, dienen.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212 / Caveolae, the characteristic plasma membrane invaginations present in many cells, have been associated with numerous functions that still remain debated. Taking into account the particular abundance of caveolae in cells experiencing mechanical stress, it was proposed that caveolae constitute a membrane reservoir and bu er the membrane tension upon mechanical stress. The present work aimed to check this proposition experimentally. First, the in uence of caveolae on the membrane tension was studied on mouse lung endothelial cells in resting conditions using tether extraction with optically trapped beads. Second, experiments on cells upon acute mechanical stress showed that caveolae serve as a membrane reservoir bu ering surges in membrane tension in their immediate, ATP- and cytoskeleton-independent attening and disassembly. Third, caveolae incorporated in membrane vesicles also showed the tension bu ering. Finally, in a physiologically more relevant case, human muscle cells were studied, and it was shown that mutations with impaired caveolae which are described in muscular dystrophies render muscle cells less resistant to mechanical stress. In Summary the present work provides experimental evidence for the hypothesis that caveolae bu er the membrane tension upon mechanical stress. The fact that this was observed in cells and membrane vesicles in an ATP and cytoskeleton independent manner reveals a passive, mechanically driven process. This could be a leap forward in the comprehension of the role of caveolae in the cell, and in the understanding of genetic diseases like muscular dystrophies.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212 / Cavéoles sont des invaginations caractéristiques de la membrane plas- mique présents dans beaucoup de types cellulaires. Ils sont liées à plusieurs fonctions cellulaires, ce qui sont encore débattues. Prenant compte de l importance des cavéoles dans les cellules soumises au stress mécanique, les cavéoles sont proposées de constituer un réservoir membranaire et de tamponner la tension membranaire pendant des stresses mécaniques. Cette étude a eu le but de tester cette hypothèse expérimentalement. En premier, l in uence des cavéoles sur la tension membranaire au repos a été étudiée sur des cellules endothéliales du poumon de la souris. Puis, on a montré que les cavéoles tamponnent l augmentation de la tension membranaire après l application d un stress mécanique. En suite, la réalisation des vésicules membranaires contenant des cavéoles a permit de montrer leur rôle comme réservoir membranaire dans un système simpli é. Finalement, dans un contexte physiologiquement plus relevant, l étude des cellules musculaires a montrée que les mutations du cavéolin associées aux dystrophies musculaires rendent les cellules moins résistante aux stresses mécaniques. En conclusion, cette étude supporte l\''hypothèse que les cavéoles tamponnent la tension membranaire pendant des stresses mécaniques. Le fait que cela se passe dans les cellules et les vésicules indépendamment d ATP et du cytosquelette révèlent un processus passif et mécanique. Cela pourrait servir à une meilleure compréhension du rôle des cavéoles dans la cellule et les maladies génétiques comme les dystrophies musculaires.:I Introduction 9 1 Physical Description of Cellular Membranes 11 1.1 Membrane Physics at Equilibrium . . . . . . . . . . . . . . . . 11 1.1.1 Elastic Membrane Properties . . . . . . . . . . . . . . 13 1.1.2 Mathematical Description of the Membrane . . . . . . 16 1.1.3 Membrane Tension . . . . . . . . . . . . . . . . . . . . 17 1.2 Techniques to Measure Mechanical Properties of Membranes . 20 1.2.1 The Micropipette Aspiration Technique . . . . . . . . . 21 1.2.2 Tether Extraction . . . . . . . . . . . . . . . . . . . . . 24 1.2.3 Force and Radius of a Tether . . . . . . . . . . . . . . 25 2 From Vesicles to Cells 30 2.1 Structure of the Cell . . . . . . . . . . . . . . . . . . . 31 2.2 Cytoskeleton of Cells . . . . . . . . . . . . . . . . . . . 33 2.2.1 Actin Filaments . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Actin Cortex Impairing Drugs . . . . . . . . . . . . . . 37 2.3 Cellular Membranes . . . . . . . . . . . . . . . . . . . . 38 2.4 Membrane Area and Membrane Tension Regulation . . . . 39 2.5 Tether Extraction From Cells . . . . . . . . . . . . . . . . . . 41 3 Caveolae 44 3.1 The De nition of Caveolae . . . . . . . . . . . . . . . . . . . . 44 3.2 The Caveolin Protein Family . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Structure of Caveolin . . . . . . . . . . . . . . . . 47 3.3 The Cavin Protein Family . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Cavin1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Cavin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Cavin3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Cavin4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 The Assembly of Caveolae . . . . . . . . . . . . . . . . .54 3.4.1 Caveolin is Synthesized in the Endoplasmic Reticulum, and Assembles in The Golgi Apparatus .54 3.4.2 Cavin Enters the Stage for Caveola Formation . . . . . 56 3.4.3 The Lipid Composition of Caveolae . . . . . . . . . . . 59 3.5 Caveolae Are Stable Structures at the Plasma Membrane . . 60 3.6 Endocytosis of Caveolae . . . . . . . . . . . . . . . . . . 61 3.7 Caveolae/Caveolin Proteins and Signaling Processes . . . . . 62 3.7.1 Ion-pumps in Caveolae . . . . . . . . . . . . . . . . . . 63 3.7.2 Regulation of eNOS . . . . . . . . . . . . . . . . . . . . 63 3.8 Caveolae in Muscle Cells . . . . . . . . . . . . . .. . . . 64 3.8.1 Interaction Partners of Cav3 in Myotubes . . . . . . . 64 3.8.2 Muscular Dystrophies . . . . . . . . . . . . . . . . . . . 69 4 Mechanical Role of Caveolae 74 II Materials and Methods 82 5 Cells and Reagents 84 5.1 Cell Types and Cell Culture . . . . . . . . . . . . . . . . . . 84 5.1.1 HeLa-PFPIG . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . 85 5.1.3 Mouse Embryonic Fibroblast . . . . . . . . . . . . . . . 86 5.1.4 Human Muscle Cells . . . . . . . . . . . . . . . . . . . 86 5.2 Treatments Altering the Cell . . . . . . . . . . . . . . . . . 88 5.2.1 Expression of Proteins . . . . . . . . . . . . . . . . . . 88 5.2.2 Altering Actin Dynamics . . . . . . . . . . . . . . . . . 89 5.2.3 ATP depletion . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.4 Cholesterol Depletion . . . . . . . . . . . . . . . . . . . 90 5.3 Vesicles out of Cellular Plasma Membranes . . . . . . . . . . . 91 5.3.1 Giant Plasma Membrane Vesicles (GPMV) . . . . . . . 93 5.3.2 CytochalasinD-Blebs . . . . . . . . . . . . . . . . . . . 94 5.3.3 Plasma Membrane Spheres (PMS) . . . . . . . . . . . . 94 6 Experimental Set-Up 96 6.1 Tether Extraction . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.1 Epi-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2 Con-OT . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.3 Cell Stage and Pipette Holder . . . . . . . . . . . . . . 102 6.1.4 Hypo-osmotic Shock System . . . . . . . . . . . . . . . 104 6.1.5 Fabrication of Micropipettes . . . . . . . . . . . . . . . 105 6.1.6 Aspiration Control System . . . . . . . . . . . . . . . . 106 6.1.7 Beads and Bead-coatings . . . . . . . . . . . . . . . . . 108 6.1.8 Online Tracking with MatLab . . . . . . . . . . . . . . 108 6.1.9 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 TIRF-microscopy . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 TIRF Set-up . . . . . . . . . . . . . . . . . . . . . . . 114 III Results 115 7 Tether Extraction From Adherent Cells 117 7.1 Typical Tether Force Traces . . . . . . . . . . . . . . . . . . . 117 7.2 Preliminary Remarks and Comments on the Relation Between Tether Force and Membrane Tension on Cells . . . . . . . . 120 8 Do Caveolae Contribute to Setting the Resting Cell Tension? 123 8.1 The E ective Tension of MLEC is A ected by the Presence Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.2 The E ective Tension in MEFs Does not Depend on the Presence of Caveolae . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8.3 Challenging the E ective Cell Tension by Chemical and Biological Treatments . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 Alterations of the Cytoskeleton Decrease the E ective Cell Tension . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3.2 ATP depletion Decreases the Membrane Tension . . . . 130 8.3.3 Interaction of Cav1 with Src-kinase . . . . . . . . . . . 131 8.3.4 Cav3 Re-establishes the Cell Tension of Cav1−/− MLEC 133 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 135 9 Caveola-mediated Membrane Tension Bu ering Upon Acute Mechanical Stress: Experiments on Cells 137 9.1 Application of Acute Mechanical Stress and Cell Response Observed by TIRF and EM . . . . . . . . . . . 137 9.1.1 Mechanical Stress Leads to the Partial Disappearance of Caveolae from the Plasma Membrane .138 9.1.2 Partial Disappearance of Caveolae Observed by EM . 144 9.2 Membrane Tension Measurements During Hypo-osmotic Shock 147 9.2.1 Caveolae are Required for Bu ering the Tension Surge Due to Hypo-osmotic Shock . . . . . . . . . . . . . . . 147 9.2.2 Clathrin Coated Pits do not Bu er the Membrane Tension 151 9.2.3 Disassembly of Caveolae During Mechanical Stress . . . 153 9.3 Correlation Between the Observed Loss of Caveolae and the Excess of Membrane Area Required to Bu er Membrane Tension 156 10 Caveola-mediated Membrane Tension Bu ering upon Mechanical Stress: Experiments on Plasma Membrane Spheres 159 10.1 Plasma Membrane Spheres Contain Caveolae and Are Devoid of Actin Filaments . . . . . 161 10.1.1 Production of PMS from HeLa-PGFPIG . . . . . . . . 161 10.1.2 Production of PMS from MLEC . . . . . . . . . . . . . 163 10.2 Micropipette Aspiration of PMS Induces Disassembly of Caveolae 166 10.2.1 Quantitative Analysis of Micropipette Aspiration of PMS 167 11 Experiments on Muscle Cells The Role of Caveolin-3 Mutations in Muscular Dystrophy 174 11.1 Tether Force of Di erentiated Muscle Cells . . . . . . . . . . . 176 11.2 Reaction of Myotubes with Cav3-Mutations upon Acute Mechanical Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Contracting Myotubes . . . . . . . . . . . . . . . . . . . . .181 IV Discussion 182 12 Caveolae as a Security Device for the Cell Membrane 183 12.1 Comparison of Experimental Data with the Theoretical Model (Sens and Turner) . . . . . . . . . 186 13 Mechanical Stress and the Role of Caveolae in Signaling 189 14 Towards a Better Understanding of Muscular Dystrophies 191 15 Other Caveolin Related Diseases 194 V Appendices 196 A Cell Speci c Protocols 197 A.1 General Cell Handling . . . . . . . . . . . . . . . . . . . . 197 A.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Mouse Lung Endothelial Cells . . . . . . . . . . . . . . . . . . 198 A.2.1 Cell Type Description . . . . . . . . . . . . . . . . . . 198 A.2.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 198 A.2.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3 HeLa and Mouse Embryonic Fibroblast Cells . . . . . . . . . . 199 A.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 199 A.3.2 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4 Muscle Cells . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.1 Cell Type Description . . . . . . . . . . . . . . . . . . 200 A.4.2 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 200 A.4.3 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . 201 A.4.4 Transfection . . . . . . . . . . . . . . . . . . . . . . . . 202 B Cav1-Reconstitution in Lipid Vesicles 203 B.1 Puri cation of Cav1-GST . . . . . . . . . . . . . . . . . . . . 203 B.1.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.1.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 205 B.2 puri cation of Cav1-His . . . . . . . . . . . . . . . . . . . . . 206 B.2.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.2.2 Puri cation . . . . . . . . . . . . . . . . . . . . . . . . 207 B.3 Incorporation of Cav1 in Lipid Vesicles . . . . . . . . . . . . . 208 B.3.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4 GUV Electro formation . . . . . . . . . . . . . . . . . . . . . . 209 B.4.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 210 5 B.5 Check of Cav1 Association with Lipids . . . . . . . . . . . . . 210 B.5.1 Reagents . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.5.2 Cav1-SUVs . . . . . . . . . . . . . . . . . . . . . . . . 211 B.5.3 Run Sucrose Gradient . . . . . . . . . . . . . . . . . . 211 B.5.4 TCA precipitation and Western Blot . . . . . . . . . . 212 B.5.5 SDS Page . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.5.6 Western Blot . . . . . . . . . . . . . . . . . . . . . . . 212
35

The Development and Application of Tools to Study the Multiscale Biomechanics of the Aortic Valve

Zhao, Ruogang 06 December 2012 (has links)
Calcific aortic valve disease (CAVD) is one of the most common causes of cardiovascular disease in North America. Mechanical factors have been closely linked to the pathogenesis of CAVD and may contribute to the disease by actively regulating the mechanobiology of valve interstitial cells (VICs). Mechanical forces affect VIC function through interactions between the VIC and the extracellular matrix (ECM). Studies have shown that the transfer of mechanical stimulus during cell-ECM interaction depends on the local material properties at hierarchical length scales encompassing tissue, cell and cytoskeleton. In this thesis, biomechanical tools were developed and applied to investigate hierarchical cell-ECM interactions, using VICs and valve tissue as a model system. Four topics of critical importance to understanding VIC-ECM interactions were studied: focal biomechanical material properties of aortic valve tissue; viscoelastic properties of VICs; transduction of mechanical deformation from the ECM to the cytoskeletal network; and the impact of altered cell-ECM interactions on VIC survival. To measure focal valve tissue properties, a micropipette aspiration (MA) method was implemented and validated. It was found that nonlinear elastic properties of the top layer of a multilayered biomaterial can be estimated by MA by using a pipette with a diameter smaller than the top layer thickness. Using this approach, it was shown that the effective stiffness of the fibrosa layer is greater than that of the ventricularis layer in intact aortic valve leaflets (p<0.01). To characterize the viscoelastic properties of VICs, an inverse FE method of single cell MA was developed and compared with the analytical half-space model. It was found that inherent differences in the half-space and FE models of single cell MA yield different cell viscoelastic material parameters. However, under particular experimental conditions, the parameters estimated by the half-space model are statistically indistinguishable from those predicted by the FE model. To study strain transduction from the ECM to cytoskeleton, an improved texture correlation algorithm and a uniaxial tension release device were developed. It was found that substrate strain fully transfers to the cytoskeletal network via focal adhesions in live VICs under large strain tension release. To study the effects of cell-ECM interactions on VIC survival, two mechanical stimulus systems that can simulate the separate effects of cell contraction and cell monolayer detachment were developed. It was found that cell sheet detachment and disrupted cell-ECM signaling is likely responsible for the apoptosis of VICs grown in culture on thin collagen matrices, leading to calcification. The studies presented in this thesis refine existing biomechanical tools and provide new experimental and analytical tools with which to study cell-ECM interactions. Their application resulted in an improved understanding of hierarchical valve biomechanics, mechanotransduction, and mechanobiology.
36

The Development and Application of Tools to Study the Multiscale Biomechanics of the Aortic Valve

Zhao, Ruogang 06 December 2012 (has links)
Calcific aortic valve disease (CAVD) is one of the most common causes of cardiovascular disease in North America. Mechanical factors have been closely linked to the pathogenesis of CAVD and may contribute to the disease by actively regulating the mechanobiology of valve interstitial cells (VICs). Mechanical forces affect VIC function through interactions between the VIC and the extracellular matrix (ECM). Studies have shown that the transfer of mechanical stimulus during cell-ECM interaction depends on the local material properties at hierarchical length scales encompassing tissue, cell and cytoskeleton. In this thesis, biomechanical tools were developed and applied to investigate hierarchical cell-ECM interactions, using VICs and valve tissue as a model system. Four topics of critical importance to understanding VIC-ECM interactions were studied: focal biomechanical material properties of aortic valve tissue; viscoelastic properties of VICs; transduction of mechanical deformation from the ECM to the cytoskeletal network; and the impact of altered cell-ECM interactions on VIC survival. To measure focal valve tissue properties, a micropipette aspiration (MA) method was implemented and validated. It was found that nonlinear elastic properties of the top layer of a multilayered biomaterial can be estimated by MA by using a pipette with a diameter smaller than the top layer thickness. Using this approach, it was shown that the effective stiffness of the fibrosa layer is greater than that of the ventricularis layer in intact aortic valve leaflets (p<0.01). To characterize the viscoelastic properties of VICs, an inverse FE method of single cell MA was developed and compared with the analytical half-space model. It was found that inherent differences in the half-space and FE models of single cell MA yield different cell viscoelastic material parameters. However, under particular experimental conditions, the parameters estimated by the half-space model are statistically indistinguishable from those predicted by the FE model. To study strain transduction from the ECM to cytoskeleton, an improved texture correlation algorithm and a uniaxial tension release device were developed. It was found that substrate strain fully transfers to the cytoskeletal network via focal adhesions in live VICs under large strain tension release. To study the effects of cell-ECM interactions on VIC survival, two mechanical stimulus systems that can simulate the separate effects of cell contraction and cell monolayer detachment were developed. It was found that cell sheet detachment and disrupted cell-ECM signaling is likely responsible for the apoptosis of VICs grown in culture on thin collagen matrices, leading to calcification. The studies presented in this thesis refine existing biomechanical tools and provide new experimental and analytical tools with which to study cell-ECM interactions. Their application resulted in an improved understanding of hierarchical valve biomechanics, mechanotransduction, and mechanobiology.

Page generated in 0.0755 seconds