• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 7
  • 4
  • 2
  • Tagged with
  • 45
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media

Striggow, Friedrich, Medina-Sánchez, Mariana, Auernhammer, Günter K., Magdanz, Veronika, Friedrich, Benjamin M., Schmidt, Oliver G. 22 July 2022 (has links)
Biohybrid micromotors propelled by motile cells are fascinating entities for autonomous biomedical operations on the microscale. Their operation under physiological conditions, including highly viscous environments, is an essential prerequisite to be translated to in vivo settings. In this work, a sperm-driven microswimmer, referred to as a spermbot, is demonstrated to operate in oviduct fluid in vitro. The viscoelastic properties of bovine oviduct fluid (BOF), one of the fluids that sperm cells encounter on their way to the oocyte, are first characterized using passive microrheology. This allows to design an artificial oviduct fluid to match the rheological properties of oviduct fluid for further experiments. Sperm motion is analyzed and it is confirmed that kinetic parameters match in real and artificial oviduct fluids, respectively. It is demonstrated that sperm cells can efficiently couple to magnetic microtubes and propel them forward in media of different viscosities and in BOF. The flagellar beat pattern of coupled as well as of free sperm cells is investigated, revealing an alteration on the regular flagellar beat, presenting an on–off behavior caused by the additional load of the microtube. Finally, a new microcap design is proposed to improve the overall performance of the spermbot in complex biofluids.
32

Dynamics, Fluctuations and Rheological Applications of Magnetic Nanopropellers

Ghosh, Arijit January 2014 (has links) (PDF)
Micron scale robots going inside our body and curing various ailments is a technolog¬ical dream that easily captures our imagination. However, with the advent of novel nanofabrication and nanocharacterization tools there has been a surge in the research in this field over the last decade. In order to achieve locomotion (swim) at these small length scales, special strategies need to be adopted, that is able to overcome the large viscous damping that these microbots have to face while moving in the various bod¬ily fluids. Thus researchers have looked into the swimming strategies found in nature like that of bacteria like E.coli found in our gut or spermatozoa in the reproductive mucus. Biomimetic swimmers that replicate the motion of these small microorganisms hold tremendous promise in a host of biomedical applications like targeted drug delivery, microsurgery, biochemical sensing and disease diagnosis. In one such method of swimming at very low Reynolds numbers, a micron scale helix has been fabricated and rendered magnetic by putting a magnetic material on it. Small rotating magnetic fields could be used then to rotate the helix, which translated as a result of the intrinsic translation rotation coupling in a helix. The present work focussed on the development of such a system of nanopropellers, a few microns in length, the characterization of its dynamics and velocity fluctuations originating from thermal noise. The work has also showed a possible application of the nanopropellers in microrheology where it could be used as a new tool to measure the rheological characteristics of a complex heterogeneous environment with very high spatial and temporal resolutions. A generalized study of the dynamics of these propellers under a rotating field, has showed the existence of a variety of different dynamical configurations. Rigid body dynamics simulations have been carried out to understand the behaviour. Significant amount of insight has been gained by solving the equations of motion of the object analytically and it has helped to obtain a complete understanding, along with providing closed form expressions of the various characteristics frequencies and parameters that has defined the motion. A study of the velocity fluctuations of these chiral nanopropellers has been carried out, where the nearby wall of the microfluidic cell was found to have a dominant effect on the fluctuations. The wall has been found to enhance the average level of fluctuations apart from bringing in significant non Gaussian effects. The experimentally obtained fluctuations has been corroborated by a simulation in which a time evolution study of the governing 3D Langevin dynamics equations has been done. A closer look at the various sources of velocity fluctuations and a causality study thereof has brought out a minimum length scale below which helical propulsion has become impractical to achieve because of the increased effect of the orientational fluctuations of the propeller at those small length scales. An interesting bistable dynamics of the propeller has been observed under certain experimental conditions, in which the propeller randomly switched between the different dynamical states. This defied common sense because of the inherent deterministic nature of the governing Stokes equation. Rigid body dynamics simulations and stability analysis has shown the existence of time scales in which two different dynamical states of the propeller have become stable. Thus the intrinsic dynamics of the system has been found to be the reason behind the bistable behaviour, randomness being brought about by the thermal fluctuations present in the system. Finally, in a novel application of the propellers, they have been demonstrated as a tool for microrheological mapping in a complex fluidic environment. The studies done in this work have helped to develop this method of active microrheology in which the measurement times are orders of magnitude smaller than its existing counterparts.
33

Časově rozlišená fluorescence ve výzkumu interakcí hyaluronanu a koloidních systémů / Time-Resolved Fluorescence in Research of Hyaluronan-Colloidal Systems Interactions

Mondek, Jakub January 2018 (has links)
The aim of the doctoral thesis was to study advanced fluorescence techniques and its use in colloids or hyaluronan-surfactant systems and hydrogels based on hyaluronan, respectively. Steady-state and time-resolved fluorescence were used to study excited state proton transfer fluroescen probes in hyaluronan-surfactant systems to asses the influence of hyaluronan hydration to its interactions with oppositely charged surfactants. Firstly, different excited state proton transfer fluorescence probes were discussed to choose the most suitable candidate for next research. The influence of hyaluronan on inner environment of micells was determined based on the sensitivity of excited state proton transfer of chosen fluorescence probe 1-naphtol and, based on above mentioned experiments, the structure of hyaluronan hydration shell was discussed. The next part of doctoral thesis was focused on fluorescence lifetime correlation spectroscopy and on the development of method of nanorheology. Measured correlation functions were transformed to mean square displacement with developed MATLAB script. Firstly, the fluorescence method was compared with well described methods such as videomicrorheology and dynamic light scattering to asses the reliability of fluorescence correlation spectroscopy in microrheology. Secondly, nanorheology method was developed and its use in passive nanorheology of hyaluronan hydrogels was discussed. Based on mentioned experiments, the fluorescence correlation spectroscopy microrheology and nanorheology methods were optimized to use the methods in hydrogel research.
34

Derivatizace hyaluronanu sodného jakožto nástroj pro zvýšení stability modelové artificiální synoviální kapaliny / Derivatization of Sodium Hyaluronate as a Possible Tool for Increasing of the Stability of Model Artificial Synovial Fluid

Hrochová, Eliška January 2021 (has links)
This master thesis deals with the optimization of the procedure of modification of hyaluronic acid structure for the use in the artificial synovial liquids. Based on the literature research, the amino acid alanine was used for the modification of carboxylic group in the glucuronic acid. The main subject of study is the improvement of the stability and mechanical properties of synovial liquid. DLS microrheology, macrorheology, thermogravimetric analysis (TGA), multi-angle light scattering with flow-field flow fractionation (AF4-MALS) and infrared spectroscopy (FTIR) were used for characterization. The theoretical part of this theses submits review of the musculoskeletal system, role of hyaluronic acid in metabolism and summary of synovial liquid. The experimental part focuses on the measurement of the stability and mechanical properties of three artificial samples (first with no modification, second with modified hyaluronic acid and third with modified hyaluronic acid and chondroitin sulphate). These samples were compared with real horse synovial fluid and artificial viscosupplement Orthovisc®.
35

Active Matter in Confined Geometries - Biophysics of Artificial Minimal Cortices

Hubrich, Hanna 07 December 2020 (has links)
No description available.
36

Slow Dynamics In Complex Fluids : Confined Polymers And Soft Colloids

Kandar, Ajoy Kumar 07 1900 (has links) (PDF)
The thesis describes the study of slow dynamics of confined polymers and soft colloids. We study the finite size effect on the dynamics of glassy polymers using newly developed interfacial microrheology technique. Systematic measurement have been performed to address the issue of reduction of glass transition under confinements. Slow and heterogeneous dynamics are the underlined observed behavior for dynamics in confined glassy polymers. The slow relaxation dynamics and dynamical heterogeneity in polymer grafted nanoparticles (PGNPs) systems were studied using advanced X - ray photon correlation spectroscopy (XPCS) techniques. Our studies presented in this thesis on dynamics of polymer grafted nanoparticle systems in melts and solution are the first attempt to study them experimentally. Thus our work shed the light about new technique to study confined system more accurately and explore new soft colloidal system to study fascinating dynamics and interesting phase behavior. In Chapter 1, we provide the theoretical background along with brief review of the literature for understanding the results presented in this thesis. The details of the experimental set up and their operating principle along with the details of the experimental conditions are provided in Chapter 2. In Chapter 3 we present our newly developed technique (interfacial microrhelogy) and its consequences to study the complex fluids at interface. Chapter 4 discusses the concentration and temperature dependent glassy dynamics in confined glassy polymers. In Chapter 5 we provide the structural and dynamical study of polymer grafted nanoparticles in melts and solutions. We provide the summary of our result and the future prospective of the work in Chapter 6. Chapter-1 provides the ground work and theoretical aspects for understanding the results presented in this thesis. It starts with the discussion about the slow dynamics of complex fluids and transit to dynamic behavior of polymer in confinement, glassy dynamics in confinements . This also discusses the basic aspects of studying viscoelastic properties using rheology, interface rheology, microrheology, interface microrheology techinques. In continuation it discusses structure and dynamics of different soft colloids investigated for last decade and then theoretical aspects of XPCS is discussed. Towards the end of this Chapter, we discuss the procedure to explain and understand systems dynamical heterogeneity near glass like phase transition. Chapter-2 contains the details of the experimental techniques which has been used for the study of confined polymers and soft colloids. Brief introduction to basic principles of the measurements followed by details of the material and methods have been provided. Chapter-3 we discuss the interafacial microrheology of different complex fluids and advantages of the techniques is discussed in Chapter 3. This includes discussion about the technique sensitivity at the surface using quantum dots (QDs) as a probe and about the configuration of the QDs at/on monolayer. Later on establishment of the technique has been demonstrated through easurements on arachidic acid, poly(methylmethacrylate) (PMMA), poly(vinylacetate) (PVAc), poly(methylacrylate) (PMA) monolayers. The extracted subdiffusive nature of QDs in on monolayers through mean square displacement has been explained using fractional Brownian motion model. Towards the end of the chapter we discuss about the extraction of real and imaginary elastic modulus from mean square displacement data using generalized Stokes-Einstein relation for the quasi two dimensional systems and explains about the possible viscoelastic transition in the different monolayers. The concentration and temperature dependent glassy dynamics of confined polymers (PMMA) are discussed in Chapter-4. We demonstrate the microscopic nature of spatio-temporal variation of dynamics of glassy polymers confined to a monolayer of 2 3 nm thickness as a function of surface density and temperature. It illustrates the systems dynamical heterogeneity and explain the observed large reduction of glass transition temperature in confined system through finite size effect. In Chapter 5 we discuss the result based on systematic studies of dynamics of PGNPs in melts and solutions. In addition it also illustrates the structural anisotropy and anomalous dynamical transitions in binary mixture of PGNPs and homopolymers in good solvent condition. It provides temperature and wave vector dependent XPCS measurements on polymer grafted nanoparticles with the variation of functionality. The functionality ( f ) dependent nonmonotonic relaxation in melts of PGNPs and solvent quality dependent non monotonic relaxation of PGNPs system have been elaborated in the continuation. We present possible phase behavior of PGNPs system in good solvent with addition of homopolymer of two different molecular weight. Chapter 6 contains the summary and the future perspective of the work presented.
37

Simulation of individual cells in flow

Zhu, Lailai January 2014 (has links)
In this thesis, simulations are performed to study the motion ofindividual cells in flow, focusing on the hydrodynamics of actively swimming cells likethe self-propelling microorganisms, and of passively advected objects like the red bloodcells. In particular, we develop numerical tools to address the locomotion ofmicroswimmers in viscoelastic fluids and complex geometries, as well as the motion ofdeformable capsules in micro-fluidic flows. For the active movement, the squirmer is used as our model microswimmer. The finiteelement method is employed to study the influence of the viscoelasticity of fluid on theperformance of locomotion. A boundary element method is implemented to study swimmingcells inside a tube. For the passive counterpart, the deformable capsule is chosen as the modelcell. An accelerated boundary integral method code is developed to solve thefluid-structure interaction, and a global spectral method is incorporated to handle theevolving cell surface and its corresponding membrane dynamics. We study the locomotion of a neutral squirmer with anemphasis on the change of swimming kinematics, energetics, and flowdisturbance from Newtonian to viscoelastic fluid. We also examine the dynamics of differentswimming gaits resulting in different patterns of polymer deformation, as well as theirinfluence on the swimming performance. We correlate the change of swimming speed withthe extensional viscosity and that of power consumption with the phase delay of viscoelasticfluids. Moreover, we utilise the boundary element method to simulate the swimming cells in astraight and torus-like bent tube, where the tube radius is a few times the cell radius. Weinvestigate the effect of tube confinement to the swimming speed and power consumption. Weanalyse the motions of squirmers with different gaits, which significantly affect thestability of the motion. Helical trajectories are produced for a neutralsquirmer swimming, in qualitative agreement with experimental observations, which can beexplained by hydrodynamic interactions alone. We perform simulations of a deformable capsule in micro-fluidic flows. We look atthe trajectory and deformation of a capsule through a channel/duct with a corner. Thevelocity of capsule displays an overshoot as passing around the corner, indicating apparentviscoelasticity induced by the interaction between the deformable membrane and viscousflow. A curved corner is found to deform the capsule less than the straight one. In addition, we propose a new cell sorting device based on the deformability of cells. Weintroduce carefully-designed geometric features into the flow to excite thehydrodynamic interactions between the cell and device. This interaction varies andclosely depends on the cell deformability, the resultant difference scatters the cellsonto different trajectories. Our high-fidelity computations show that the new strategy achievesa clear and robust separation of cells. We finally investigate the motion of capsule in awall-bounded oscillating shear flow, to understand the effect of physiological pulsation to thedeformation and lateral migration of cells. We observe the lateral migration velocity of a cellvaries non-monotonically with its deformability. / <p>QC 20140313</p>
38

Nonequilibrium fluctuations of a Brownian particle

Gomez-Solano, Juan Rubén 08 November 2011 (has links) (PDF)
This thesis describes an experimental study on fluctuations of a Brownian particle immersed in a fluid, confined by optical tweezers and subject to two different kinds of non-equilibrium conditions. We aim to gain a rather general understanding of the relation between spontaneous fluctuations, linear response and total entropy production for processes away from thermal equilibrium. The first part addresses the motion of a colloidal particle driven into a periodic non-equilibrium steady state by a nonconservative force and its response to an external perturbation. The dynamics of the system is analyzed in the context of several generalized fluctuation-dissipation relations derived from different theoretical approaches. We show that, when taking into account the role of currents due to the broken detailed balance, the theoretical relations are verified by the experimental data. The second part deals with fluctuations and response of a Brownian particle in two different aging baths relaxing towards thermal equilibrium: a Laponite colloidal glass and an aqueous gelatin solution. The experimental results show that heat fluxes from the particle to the bath during the relaxation process play the same role of steady state currents as a non-equilibrium correction of the fluctuation-dissipation theorem. Then, the present thesis provides evidence that the total entropy production constitutes a unifying concept which links the statistical properties of fluctuations and the linear response function for non-equilibrium systems either in stationary or non stationary states.
39

Unraveling the muco-adhesion of Lactococcus lactis : development of biophysical approaches / Caractérisation de la muco-adhésion de Lactococcus lactis par le développement d'approches biophysiques

Tran, Thi-Ly 12 December 2013 (has links)
L’épithélium digestif est recouvert d’une couche protectrice de mucus, qui est un hydrogel perméable et viscoélastique. La couche de mucus est formée d'un réseau de fibres de mucines. Ces dernières sont des glycoprotéines de haut poids moléculaire avec un squelette protéique riche en sérine et thréonine, lié à une grande variété de O-glycanes qui représentent une source nutritionnelle pour les bactéries et/ou des ligands potentiels pour les adhésines bactériennes, contribuant ainsi probablement à la sélection et l'implantation d'un microbiote régio-spécifique. Nous nous sommes intéressés aux capacités muco-adhésives de L. lactis TIL448 par le couplage de (i) la microscopie à force atomique (AFM), à l'échelle de la cellule unique et en mode statique et (ii) la méthode hydrodynamique en chambre à écoulement cisaillé, à l'échelle de l’ensemble de la population bactérienne. Dans l'optique d'identifier la nature et le rôle fonctionnel des déterminants de surface mis en jeu, nous avons testé, outre la souche sauvage, la souche curée de plasmides TIL1230 et deux mutants TIL1289 et TIL1290, altérés dans la synthèse de pili et d'une protéine "mucus-binding", respectivement. Pour relier les propriétés muco-adhésives et diffusives de L. lactis, les capacités de migration de la souche TIL448 et de ses dérivés ont ensuite été évaluées dans des suspensions de PGM à concentration variable (0,5% et 5% (m/v)), en mettant en œuvre une nouvelle méthode "Diffusion Front Tracking" (DFT). Cette méthode consiste à suivre le front de diffusion de la suspension bactérienne au cours du temps au sein du réseau de PGM, dans une chambre de Hele-Shaw, couplée à une caméra CCD. Les bactéries L. lactis sont préalablement marquées avec la fuschine pour mieux visualiser le front de diffusion. Par ailleurs, nous avons démontré que les bactéries L. lactis ont tendance à être plus diffusives dans PGM 0,5% (m/v) que dans PGM 5% (m/v). La microstructure du réseau de mucines a donc été caractérisée par des approches de microrhéométrie 1 point (1P) et 2 points (2P) et de suivi de particules fluorescentes / The digestive epithelium is covered with a protective mucus layer, regarded as a viscoelastic and permeable hydrogel. Mucins are large glycoproteins with a serine and threonine-rich protein backbone, linked to a wide variety of O-linked oligosaccharide side chains arranged in a bottle-brush configuration. Such O-glycans are nutritive sources for bacteria and/or potential ligands for bacterial adhesins, probably contributing in this way to the selection of the species-specific microbiota. In this thesis, we focused on unraveling multi-scale interactions between a vegetal L. lactis subsp. lactis isolate, TIL448 and a model mucin, Pig Gastric Mucin (PGM). Our study, based on the combination of different biophysical approaches and tools, has allowed dissecting the muco-adhesive and diffusive phenotype of L. lactis TIL448, in relation with the nature of the bacterial surface determinants and the structural, mechanical and rheological properties of the PGM network. Firstly, the muco-adhesion of TIL448 were examined using the single-cell scale AFM measurements with dedicated lacto-probes and shear stress flow chamber experiments at the bacterial population level, under laminar flow conditions. We also tested the plasmid-cured strain and two mutants, obtained by disruption of the genes encoding the major pilin and the mucus-binding protein. Then, the diffusion ability of L. lactis was determined by implementing a novel method, named Diffusion Front Tracking (DFT). It consists of tracking the diffusion front of stained cell suspensions over time within the PGM network. In a second part, in order to have a more thorough understanding of the L. lactis muco-adhesive and diffusive ability, the microstructure and mechanical properties of PGM were determined. Gel microstructure for varying PGM concentration was probed by the analysis of diffusivities of 200-nm and 500-nm fluorescent nanoparticles with different surface properties (carboxyl-terminated, amine-terminated and neutral charged tracers), using fluorescence Multiple-Particle Tracking
40

Brownian Particles in Nonequilibrium Solvents

Müller, Boris 10 December 2019 (has links)
No description available.

Page generated in 0.0396 seconds