Spelling suggestions: "subject:"microones"" "subject:"microfones""
1 |
Between the tones A study of the theory and microtonal works of Alois Haba /Tam, Christina Yik Man. January 2005 (has links)
Thesis (Ph.D.)--State University of New York at Buffalo, 2005. / Title from PDF title page (viewed on May 16, 2006) Available through UMI ProQuest Digital Dissertations. Thesis adviser: Hyde, Martha, Clough, John. Includes bibliographical references.
|
2 |
Alois Hʹaba's Neue Harmonielehre des diatonischen, chromatischen, Viertel-, Drittel-, Sechstel-, und Zwölftel-TonsystemsBattan, Suzette Mary, January 1980 (has links)
Thesis (Ph. D.)--Eastman School of Music, University of Rochester, 1980. / Typescript. Vita. Part 2 not included in photocopy. "List of compositions by Haba": pt. 1, leaves 144-150. Includes bibliographical references (pt. 1, leaves 151-160).
|
3 |
ExtensionOgilvy, James F. 12 1900 (has links)
Extension is a three-sectional, one-movement composition for orchestra exploring various permutations of a single motivic unit. The central priority has been to present this motive in a variety of textural situations with a harmonic accompaniment evolving from a macrotonal to a microtonal setting. Some of the devices utilized to realize this priority are mixed-instrument timbral combinations, tone clusters, multiphonics for brass and woodwinds, multiple stops for strings, and superimpositions of multiphonics. Extension is unique in two areas. First, the evolutionary progression from a macrotonal to microtonal harmonic texture is made possible by expanding the priorities of instrumental performing. Second, the use of multiphonics for full orchestra is unique to this work.
|
4 |
Microtonal Violin Pedagogy: Mastering the Neutral Second through Persian DastgāhhāJanuary 2020 (has links)
abstract: Most violinists of the Western classical tradition are untrained in the aural skills and left-hand techniques of microtonal intervals. This document surveys the nature of the problem and presents a manual for self-teaching the three-quarter tone step—the equal tempered ‘neutral second’ (N2) a quarter tone between the major and minor second intervals—through the melodic syntax of specific Persian classical music (PCM) modes. While the paper does not teach PCM performance, it does offer a method of melodic functional hearing through a new solmization system designed specifically for PCM. Additionally, the paper guides readers through the PCM repertoire by grouping modes with a shared functional usage of the N2. Combined with the pedagogical research of learning modalities and Edwin Gordon’s Music Learning Theory, these tools provide violinists with a method for achieving the aural accessibility and performance mastery of the N2. This process serves as a future model for learning unfamiliar intervals both within and without the Western classical tradition. / Dissertation/Thesis / Doctoral Dissertation Music 2020
|
5 |
The sonido trece theoretical works of Julián Carrillo a translation with commentary /Carrillo, Julián, Bellamy, Laurette, January 1972 (has links)
Laurette Bellamy's thesis (Ph. D.)--Indiana University, 1973. / Includes vita. Includes bibliographical references (leaves [567]-573).
|
6 |
The Process of Learning Extended Techniques on Oboe : Collaborating with a composerChilton, Holly January 2024 (has links)
The aim of this project is to provide all the necessary information for an oboist who wishes to learn multiphonics, microtones or double tonguing. I will describe each technique and how it is produced. I will discuss my experience learning each technique and compare the different exercises and approaches I used. I collaborated with a composer to write a solo piece for oboe including the techniques above. I will talk about this experience alongside the comparison between playing the techniques in an isolated manner and in the context of a piece. / <p>Martinu Oboe Concerto</p><p>Sancan Sonatine for oboe and piano</p><p>SINK by Ciarán Hayes </p><p>Ravel Le Tombeau de Couperin arranged for wind quintet </p><p>Piano: Maria Rostotsky</p><p>Flute: Emma Eskeby </p><p>Oboe: Holly Chilton</p><p>Clarinet: Max Becker</p><p>Bassoon: Ciarán Hayes</p><p>Horn: Ludwig Hjortenhammar</p>
|
7 |
Towards a ‘Treatise’ of 7-Limit Harmony: Transformation and Prolongation in Extended Just IntonationPohlit, Stefan 01 October 2024 (has links)
Limits erleichtern die Klassifizierung harmonischer Strukturen als Netzwerke arithmetischer Beziehungen innerhalb der Grenzen bestimmter Primzahl-Faktoren. Die Theorie der Limits in mikrotonaler Musik geht auf Harry Partch zurück. Ben Johnston entwickelte sie weiter und schuf die erste Notationsmethode in erweiterter reiner Stimmung. Primzahl-Faktoren lassen sich wie räumliche Dimensionen vorstellen und (vergleichbar mit Leonhard Eulers und Hugo Riemanns Tonnetzen) geometrisch abbilden. Gemäß dieser Anschauung beruht die traditionelle Terzharmonik (über die Oktav hinaus) auf zwei Primfaktoren (3, 5) und entsprechend können alle ihre Zusammenhänge in einem Koordinatensystem dargestellt werden, in welchem jeder Ton auf der x- und der y-Achse, sozusagen zweidimensional, erscheint. Eine Erhöhung des Limits (d. h. wenn Intervalle aus höheren Limits hinzutreten) erfordert zusätzliche Dimensionen. Über die bloße Hinzurechnung neuer Intervallgrößen hinaus scheint jedes Limit charakteristische Tendenzen und Bedingungen zu entfalten. Mein Ziel ist, die erweiterte reine Stimmung auf Funktionen hin zu untersuchen, die sich mit denen herkömmlicher tonaler Musik (Limit 5) vergleichen lassen. Meine Analyse widmet sich demgemäß Prinzipien harmonischer Verwandlung – Auflösung, Spannung, Modulation etc. – und ihrem Einsatz im Bestreben, großformale Strukturabläufe zu überspannen. Im Vergleich zur Terzharmonik (Limit 5) werde ich nur ein einziges Limit höher ansetzen und, in der beschränkten Versuchsanordnung eines dreistimmigen Kontrapunkts, einfache Kadenzformeln bestimmen. Alles, was ich im Rahmen meines Experiments vorschlagen möchte, sind Voraussetzungen einer umfassenderen Harmonielehre im Limit 7. / Limits are a way to categorise harmonic structures as networks of arithmetic relationships within the boundaries of specific prime factors. In microtonal music, the theory of limits was introduced by Harry Partch and further developed by Ben Johnston who invented the first method of notation in extended just intonation. Prime factors may be imagined as something similar to spatial dimensions and depicted geometrically, such as in Leonhard Euler’s and Hugo Riemann’s lattices. For example, if (in addition to the octave) traditional thirds-harmony involves two prime factors (3, 5), all of its relationships can be drawn into a coordinate system where the notes figure both on the x- and y-axis, in two dimensions so to speak. Each higher limit would, thus, require an additional dimension (provided that intervals in the respective higher limits occur). Far from simply adding new interval sizes, it seems that every limit unfolds characteristic tendencies and constraints. My objective is to explore extended just intonation by means of functions very similar to those of 5-limit tonality. Accordingly, my analysis focuses on principles of harmonic transformation – resolution, suspension, modulation, etc. – and its application in the quest to overarch large-form development. Compared to conventional tonal music (limit 5), I will step up by only one additional limit, using a restrictive three-voice setup to determine basic cadential formulas. All I intend to propose within the scope of an experiment are prerequisites to a more comprehensive treatise of 7-limit harmony.
|
8 |
La composition au moyen des quarts de tonBerger, Pascal 12 1900 (has links)
No description available.
|
Page generated in 0.3496 seconds