• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 25
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 217
  • 45
  • 41
  • 40
  • 35
  • 34
  • 33
  • 31
  • 26
  • 26
  • 23
  • 22
  • 20
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Perturbation and Modulation of Microtubule Cytoskeletal Elements in Response to the Potentially Oncogenic Molecules, Survivin and P53, and Cytokinesis: A Dissertation

Rosa, Jack 17 July 2006 (has links)
A complex network of protein filaments collectively known as the cytoskeleton carries out several crucial cellular processes. These functions include, but are not limited to, motility, cell shape, mitosis and organelle trafficking. The cytoskeleton is also highly responsive, allowing the cell to alter its shape in response to its immediate needs and environment. One of the major components of the cytoskeleton is the microtubule network. To refer to the array of micro tubules in the cell as a skeleton is a misnomer. Microtubules, by virtue of their structure and nature, are highly dynamic, continuously growing and shrinking. They also bind a variety of accessory molecules that aid in regulating and directing their dynamic activity. In this way they provide a structural basis for integral cell functions that require rapid assembly and disassembly. In some cases, perturbations of the microtubule network results in structural anomalies that lead to undesirable outcomes for the cell, namely chromosomal missegregation events and instability. The accumulation of these events may induce aneuploidy, which has been a fundamental component of tumorigenesis. This dissertation examines the role of the microtubule cytoskeleton within three distinct contexts. The first chapter investigates the association of the anti-apoptotic protein survivin with the microtubule network and its potential impact upon the cell from interphase to cytokinesis. The second chapter of this dissertation explores a little-studied, microtubule-dense organelle, referred to as the midbody, and the highly orchestrated events that take place within it during cytokinesis. The third and final chapter describes a unique experimental condition that may further our understanding of the interaction between the tumor suppressor p53 and the centrosome in cell cycle regulation and tumorigenesis.
182

Vliv posttranslačních modifikací minoritních proteinů a acetylace mikrotubulů na průběh infekce myším polyomavirem / The role of posttranslational modifications of minor proteins and acetylation of microtubules in mouse polyomavirus infection

Mariničová, Zuzana January 2017 (has links)
Mouse polyomavirus (MPyV) capsid is composed of the main capsid protein VP1 and minor capsid proteins VP2 and VP3. Minor proteins are not essential capsid assembly, but they are key for efficient viral infection. The first part of this thesis studies the modifications of VP2 and VP3, the deamidation of Asn at 253 of VP2 (137 of VP3) and N-terminal acetylation of Ala of VP3, which could be the cause of double bands for VP2 and VP3 on SDS-PAGE. Mutated genomes of MPyV N253D (Asn to Asp) and N253E (Asn to Glu) simulating deamidation and A117V (Ala to Val) with reduced acetylation were prepared previously. We prepared three isolations of the mutant viruses and we confirmed that the deamidation is the cause of the double bands. Mutant viruses were compared to the wild type in terms of efficiency of infection, but the role of deamidation could not be proven. Virus A117V is noninfectious either due to lowered acetylation or the substitution of amino acid at this position. This thesis also studies the role of -tubulin acetylation in the infection of MPyV. The role of -tubulin acetylation in viral infection is being investigated to find new antiviral strategies. Acetylation rises after MPyV infection, but this is not due to a change in mRNA expression of tubulin acetylating (TAT1) or deacetylating enzyme...
183

Epigénomique du gène MAPT dans les tauopathies / Epigenomic of the gene MAPT in tauopathies

Huin, Vincent 15 December 2016 (has links)
Les tauopathies sont des maladies neurodégénératives caractérisées par l’agrégation intracérébrale de protéines tau anormales. Cependant ces maladies sont très hétérogènes sur le plan clinique, anatomopathologique mais aussi biochimique avec l'agrégation de différentes isoformes de protéines tau. De nombreux axes de recherche existent à ce jour afin de mieux comprendre ces maladies incurables. Au cours de cette thèse d'université, nous avons étudié les modifications de l’épigénome qui constituent une piste nouvelle et très prometteuse dans la recherche sur les maladies neurodégénératives. L'épigénétique est un processus dynamique et réversible qui peut être modifié par de nombreux facteurs génétiques ou environnementaux et qui joue un rôle très important dans la régulation des gènes. De nombreuses études rapportent une association entre certaines marques épigénétiques et les maladies neurodégénératives. Par exemple, dans la maladie d’Alzheimer, il a été observé une hyperméthylation de l'ADN, au niveau du promoteur du gène MAPT qui code les protéines tau.Dans ce contexte, nos objectifs étaient de déterminer si des variations de l'épigénome impliquant le gène MAPT contribuent à l'expression différentielle des protéines tau qui est observée dans les différentes classes de tauopathies. Nous avons donc constitué et caractérisé une banque de prélèvements cérébraux de témoins et de patients atteints de différentes tauopathies. Puis nous avons analysé la méthylation de l'ADN dans 3 tauopathies : la maladie d'Alzheimer, la paralysie supranucléaire progressive et la DCB. Notre étude a permis de mettre en évidence chez les patients atteints de PSP une hypométhylation dans l’inton 0 du gène MAPT. Cette hypométhylation ne concernait que le cortex frontal, affecté par la pathologie tau, mais pas le cortex occipital qui est épargné par la pathologie tau. De plus, nous avons également mis en évidence dans le tissu cérébral des patients atteints de PSP une hyperexpression des ARNm de MAPT par rapport aux témoins. Nous démontrons avec ce travail que l’hypométhylation de l'ADN de l’intron 0 de MAPT constitue une signature épigénétique spécifique de la PSP. Cette première étude nous a conduits à suspecter l'existence d'un promoteur alternatif du gène MAPT situé dans cette région de l'intron 0. Nous avons donc testé in vitro l'activité de ce promoteur et cloné des transcrits issu de ce promoteur alternatif. Nous avons ensuite confirmé ces analyses par la mesure de l'expression des ARNm par qPCR. Au total, ces expériences prouvent l'existence et la fonctionnalité de ce promoteur alternatif dans le cerveau humain. De plus, l'activation de ce promoteur alternatif aboutit à la transcription d'ARNm plus courts codant pour de nouvelles protéines tau qui pourraient être impliquées dans la survenue des tauopathies. / Tauopathies are neurodegenerative diseases characterized by intracerebral aggregation of abnormal tau proteins. However, these diseases are heterogeneous clinically, pathologically but also biochemically with the aggregation of different isoforms of tau protein. Many lines of research exist to date to better understand these incurable diseases. During this university thesis, we studied the changes in the epigenome that constitute a new and very promising approach in research on neurodegenerative diseases. Epigenetics is a dynamic and reversible process which can be modified by numerous genetic or environmental factors and plays a very important role in gene regulation. Many studies report an association between some epigenetic marks and neurodegenerative diseases. For example, in Alzheimer\'s disease, it has been observed hypermethylation of DNA in the promoter of the MAPT gene which encodes the tau protein.In this context, our objective was to determine if changes in epigenomic involving MAPT gene contribute to the differential expression of tau protein which is observed in the different classes of tauopathies. So we have established and characterized a human brainbank of controls and patients with different tauopathies. Then we analyzed the DNA methylation in 3 tauopathies: Alzheimer\'s disease, progressive supranuclear palsy, and CBD. Our study highlighted in PSP patients hypomethylation in intron 0 of MAPT gene. This hypomethylation concerned only the frontal cortex, affected by the tau-pathology but not the occipital cortex which is spared by tau-pathology. In addition, we also shown in the brain tissue of patients with PSP an overexpression of mRNA of MAPT compared to controls. We demonstrate in this work that hypomethylation of DNA in intron 0 of MAPT is a specific epigenetic signature of PSP. This first study has led us to suspect the existence of an alternative promoter of the MAPT gene located in this region of intron 0. We tested the in vitro activity of this promoter and cloned transcripts derived from this alternative promoter. We then confirmed this analysis by measuring mRNA expression by qPCR. In total, these experiments prove the existence and the functionality of this alternative promoter in the human brain. Furthermore, activation of the alternative promoter results in shorter mRNA transcripts encoding novel tau proteins that might be involved in the onset of the tauopathies.
184

Élongation du fuseau mitotique dans l'Embryon de C. elegans : caractérisation d'une Nouvelle Force de propulsion / Spindle elongation in C. elegans embryos : characterization of a new pushing force

Nahaboo, Wallis 24 March 2016 (has links)
A la fin de la vie d’une cellule, différentes forces mécaniques permettent la séparation des chromosomes. Nos données préliminaires suggèrent l’existence d’un autre mécanisme provenant du centre du fuseau mitotique, non décrit dans l’embryon une cellule de C. elegans qui permettrait la séparation des chromosomes. Dans cette cellule, les microtubules kinétochoriens n’appliquent aucune force mécaniques sur les chromosomes durant l’anaphase. Il a été décrit que les chromosomes sont séparés grâce au déplacement des centrosomes via les forces de traction corticales. A l’aide de la microchirurgie laser dans les embryons une cellule de C. elegans, j’ai montré qu’en détruisant physiquement un ou deux centrosomes, les chromosomes continuent de se séparer, révélant l’existence d’une force de propulsion interne au fuseau mitotique (Nahaboo et al., 2015). En combinant la destruction de centrosomes et l’inactivation génétique, nous avons caractérisé les rôles de gènes favorisant ou freinant cette force de propulsion. J’ai observé que la kinésine-5, BMK-1, et le crosslinker MAP-65/SPD-1 freinent cette force de propulsion. Alors que dans d’autres espèces ces protéines favorisent la séparation des chromosomes. Nous avons remarqué que les protéines RanGTP et CLASP, favorisant de la nucléation et la polymérisation des microtubules, aident cette force de propulsion. Ces propriétés suggèrent que la polymérisation des microtubules au centre du fuseau est requise pour permettre la séparation des chromosomes durant la mitose.Par manque d’outils adéquats afin d’altérer la dynamique des microtubules, nous avons collaboré avec l’équipe de biochimistes du Dr. D. Trauner à Munich en Allemagne. Ils ont synthétisé la molécule photoactivable, Photostatin (PST), permettant la dépolymérisation des microtubules en quelques secondes (Borowiak et al., 2015). Entre 390 - 430 nm, PST est activé, dépolymérisant les microtubules, alors qu’entre 500 – 530 nm, PST est inactivé, permettant la polymérisation normale des microtubules. J’ai mesuré que la croissance des microtubules avec PST actif est absente dans des cellules Hela. J’ai montré que le cycle cellulaire dans l’embryon de C. elegans est arrêté localement en présence de PST actif. Nous avons alors montré que PST contrôle optiquement la dynamique des microtubules, in vitro, in cellulo et in vivo, de manière non invasive, rapide, locale et réversible. En résume, j’ai identifié une nouvelle force permettant la séparation des chromosomes à l’aide des approches moléculaires et biophysiques, et j’ai aidé à la caractérisation PST, un antimicrotubule photoactivable de manière locale et réversible. / In mitosis, different mechanical forces are involved in chromosome segregation. In C. elegans one-cell embryos, preliminary data suggest that an unknown mechanism, coming from inside the mitotic spindle, could influence chromosome separation. In those cells, it has been showed that kinetochore microtubule activity is absent. Thanks to external pulling forces, centrosome separation drives chromosome segregation. By using microsurgery inside the one-cell C. elegans embryos, we have shown that destroying one or two centrosomes did not prevent chromosome separation, revealing the existence of an outward pushing force (Nahaboo et al., 2015). By combining gene inactivation and centrosome destruction, we showed that the kinesin-5 and the crosslinker SPD-1 act as a brake on this pushing force, whereas they enhance chromosome segregation in other species. Moreover, we identified a novel role for the two microtubule-growth and nucleation agents, RanGTP and CLASP, in the establishment of the centrosome-independent force during anaphase. Their involvement raises the interesting possibility that microtubule polymerization of midzone microtubules is required to sustain chromosome segregation during mitosis. Then, we aim to reversibility affect microtubule dynamics in the central spindle. Because of the lack of adequate tools, we have collaborated with biochemists from Dr. D. Trauner lab, in Munich, Germany, who are specialized in photoactivable drugs. They have synthetized a photoswitable drug, Photostatin (PST), which can depolymerize microtubules in few seconds in an on/off manner (Borowiak et al., 2015). Under blue light (390 - 430 nm), PST is activated leading to microtubule depolymerization, whereas under green light (500 - 530 nm), PST is activated which does not affect microtubule dynamics. I measured that microtubule growing is absent in presence of activated PST in Hela cells. I also showed that cell cycle can be stopped thank to activated PST in multiple cell C. elegans embryos. We have shown that PST can control microtubule dynamics thanks to visible light in vitro, in cellulo and in vivo, as an on/off switch, in a non-invasive, local and reversible manner.
185

Hierarchical regulation of spindle size during early development

Rieckhoff, Elisa Maria 24 February 2021 (has links)
During embryogenesis, a single cell gives rise to a multi-cellular embryo through successive rounds of cell division. As cells become smaller, cellular organelles adapt their sizes accordingly. The size of the mitotic spindle—the microtubule-based structure controlling these divisions—is particularly important as it determines the distance over which chromosomes are segregated. To perform its function properly, spindle size scales with cell size. However, we still lack a mechanistic understanding of the underlying microtubule-based processes that regulate spindle scaling. In this thesis, I combined quantitative microscopy and laser ablation in zebrafish embryos and Xenopus laevis egg extract encapsulated in oil droplets. My measurements revealed the influence of microtubule length dynamics, transport, and nucleation on cell size-dependent spindle scaling. Strikingly, I discovered a hierarchical regulation of spindle size. In large cells, microtubule nucleation exclusively scales spindle size relative to cell size by changing the number of microtubules within the spindle. In small cells, microtubule dynamics fine-tune spindle size by modulating microtubule length. To understand the mechanism of spindle scaling, I proposed a theoretical model based on a limiting number of microtubule nucleators and microtubule-associated proteins that regulate microtubule length. The transition from nucleation- to dynamics-based scaling requires that microtubule number and the number of microtubule-associated proteins that promote microtubule growth scale differently with cell size. This can be achieved by sequestering an inhibitor of microtubule nucleation to the cell membrane, which is consistent with my measurements of microtubule nucleation. The differential regimes of spindle scaling modulated by microtubule nucleation and dynamics imply a gradual change in spindle architecture, which may ensure faithful chromosome segregation by spindles of all sizes.
186

A Genetic Approach to Identify Proteins that Interact with Eukaryotic Microtubule Severing Proteins via a Yeast Two Hybrid System

Alhassan, Hassan H 05 1900 (has links)
Microtubules (MT) are regulated by multiple categories of proteins, including proteins responsible for severing MTs that are therefore called MT-severing proteins. Studies of katanin, spastin, and fidgetin in animal systems have clarified that these proteins are MT-severing. However, studies in plants have been limited to katanin p60, and little is known about spastin or fidgetin and their function in plants. I looked at plant genomes to identify MT-severing protein homologues to clarify which severing proteins exist in plants. I obtained data from a variety of eukaryotic species to look for MT-severing proteins using homology to human proteins and analyzed these protein sequences to obtain information on the evolution of MT-severing proteins in different species. I focused this analysis on MT-severing proteins in the maize and Arabidopsis thaliana genomes. I created evolutionary phylogenetic trees for katanin-p60, katanin-p80, spastin, and fidgetin using sequences from animal, plant, and fungal genomes. I focused on Arabidopsis spastin and worked to understand its functionality by identifying protein interaction partners. The yeast two-hybrid technique was used to screen an Arabidopsis cDNA library to identify putative spastin interactors. I sought to confirm the putative protein interactions by using molecular tools for protein localization such as the YFP system. Finally, a Biomolecular Fluorescence Complementation (BiFC) assay was initiated as a proof of concept for confirmation of in vivo protein-protein interaction.
187

Regulace mikrotubulární dynamiky studovaná pomocí IRM a TIRF mikroskopie s rozlišením na úrovni jedné molekuly / Regulation of microtubule dynamics revealed by single-molecule TIRF and IRM microscopy

Zhernov, Ilia January 2020 (has links)
The microtubular cytoskeleton is a ubiquitous and highly diverse biopolymer network present in all eukaryotic cells. Microtubules stochastically alternate between phases of growth and shrinkage. Cells take advantage of this dynamicity to generate forces for essential processes, such as cell division, motility or morphogenesis. Regulating the microtubule dynamics enables cells to adaptively respond to a wide range of tasks and conditions. Molecular mechanisms underpinning the regulation are not fully understood. Using a bottom-up approach and the combination of single molecule total internal reflection fluorescence (TIRF) microscopy and interference reflection microscopy (IRM), we here reconstituted and explored two dynamic cytoskeletal systems. (i) Microtubule doublets, comprising incomplete B-microtubule on the surface of a complete A- microtubule, provide an essential structural scaffold for flagella. Despite the fundamental role of microtubule doublets, the molecular mechanism governing their formation is unknown. We here demonstrate an inhibitory role of tubulin C-terminus in microtubule doublet assembly. By partial enzymatic digestion of polymerized microtubules followed by the addition of free tubulin in the presence of a stabilizing agent, we assembled microtubule doublets and revealed the B-...
188

Mechanisms of Axonal Transport Defects in ALS

Seifert, Anne 21 May 2021 (has links)
Neurodegenerative diseases have become one of the most common causes of death worldwide over the last couple of decades, with increasing tendency. Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting specifically spinal (lower) and cortical (upper) motor neurons in the spinal cord and brainstem, respectively. It is usually a late onset disorder (average age of onset in Germany is 61 years) and leads to death within 2-5 years after symptoms onset due to respiratory failure. To date, there is no cure for ALS and only two drugs have been approved for its treatment, which prolong the lifespan for up to six months or slow down disease progression in a subpopulation of patients. About 90 % of ALS cases are sporadic, while about 10 % are familial and hence caused by mutations in specific genes, among them fused in sarcoma (FUS), a DNA- and RNA-binding protein. Mutations in FUS account for roughly 5 % of familial cases and occur predominantly in its nuclear localization sequence (NLS), such as the FUS-P525L mutation. Neurons expressing this variant display a strong cytoplasmic mislocalization of FUS and hence a loss of its nuclear function. Among other pathological events, defects in axonal transport along microtubules have been observed early in disease progression in several models of FUS-ALS, indicating its role as a major hallmark of the disease. However, the mechanism of how transport is impaired within these neurons remains unknown to date. This study aimed at investigating two possible mechanisms how the FUS-P525L mutant variant affects microtubule-based axonal transport. First, it was analyzed whether FUS directly interacts with microtubules or motors and if the mislocalized, mutant variant alters this interaction. Secondly, cytoplasmic mislocalized FUS-P525L can no longer fulfil its regular role in the splicing of pre-mRNAs, among them the mRNA coding for the microtubule-associated protein tau. This reportedly leads to an increased ratio of translated tau isoforms containing four microtubule binding repeats (4R) to those containing three repeats (3R). 4R tau isoforms are known to have a stronger binding affinity towards microtubules and may hence impair transport more severely by acting as a roadblock for motor proteins. Towards this end, this study investigated whether an increase in 4R:3R tau isoform ratio is sufficient to impair microtubule based transport. Axonal transport was reconstituted in vitro using a kinesin-1-dependent microtubule gliding assays, in which microtubules are propelled by surface-immobilized kinesin-1 motors. The assay was modified and optimized to operate sensitively and robust in the presence of complex solutions such as whole cell lysates and the microtubule gliding velocity analyzed as a measure for motility of the underlying motors. To determine the direct interaction of FUS variants with kinesin-1 or microtubules, recombinant human wildtype FUS-GFP and FUS-P525L-GFP was added to the assay. In addition, ALS patient-specific induced pluripotent stem cells (iPSCs) expressing the same FUS variants were differentiated towards spinal motor neurons and their cell lysates applied to this assay in order to determine whether FUS variants need endogenous adaptors or interaction partners to interfere with kinesin-1 motility on microtubules. Further, to investigate the interference of tau isoforms with kinesin-1 motility, recombinant human 2N3R tau-GFP and 2N4R tau-mScarlet was purified from insect cells and added to the modified kinesin-1-dependent microtubule gliding assay, either individually or combined at different ratios. In addition, the binding of these tau variants to microtubules was assessed. The kinesin-1-dependent microtubule gliding assays was modified to operate sensitively and robustly in the presence of β-glycerophosphate (to inhibit endogenous phosphatases in whole cell lysates), and methylcellulose (to prevent microtubule detachment from kinesin-1 motors due to presence of β-glycerophosphate). Under these conditions, neither recombinant human FUS-GFP nor endogenous FUS-GFP variants in lysates of spinal motor neurons bound to microtubules or interfered with kinesin-1 motility. In contrast, both tau isoforms used in the present study bound to microtubules and impaired kinesin-1 motility, while 2N4R tau-mScarlet was a much more potent inhibitor of microtubule gliding and displayed a 20-fold stronger binding affinity to microtubules compared to 2N3R tau-GFP. Interestingly, increasing ratios of 4R:3R tau isoforms impaired kinesin-1-dependent microtubule gliding. In addition, the presence of 2N4R tau-mScarlet strongly prevented 2N3R tau-GFP from binding to microtubules. This study provides evidence that neither wildtype FUS nor the FUS-P525L variant directly interfere with axonal transport by interacting with kinesin-1 motors or microtubules. Further, the present data suggests that neither FUS variant impedes kinesin-1 motility on microtubules by interacting with endogenous adaptor proteins present in cell lysates of iPSC-derived spinal motor neurons. Therefore, it is proposed that axonal transport defects are not directly caused by interaction of cytoplasmic mislocalized FUS with the motors or microtubules, but rather arise as a consequence of other pathological events triggered by mutant FUS variants. In particular, this study demonstrates that an increased ratio of 4R:3R tau isoforms is sufficient to impair kinesin-1 motility on microtubules due to increased decoration of microtubules with 4R tau isoforms, preventing 3R tau isoforms from binding to microtubules. This strongly suggests that an increased ratio of 4R:3R tau isoforms, since FUS no longer regulates splicing of tau pre-mRNA upon its cytoplasmic mislocalization, may be sufficient to cause or contribute to the axonal transport defects observed early in FUS-ALS pathology. / Neurodegenerative Erkrankungen sind in den letzten Jahrzehnten mit zunehmender Tendenz zu einer der häufigsten Todesursachen weltweit geworden. Amyotrophe Lateralsklerose (ALS) ist die häufigste neurodegenerative Erkrankung, die spezifisch spinale (untere) und kortikale (obere) Motoneuronen im Rückenmark bzw. im Hirnstamm betrifft. Es handelt sich in der Regel um eine spät einsetzende Krankheit (das mittlere Erkrankungsalter in Deutschland beträgt 61 Jahre) und führt innerhalb von 2-5 Jahren nach Auftreten der Symptome zum Tod aufgrund von Atemversagen. Bisher gibt es keine Heilung für ALS und es wurden nur zwei Medikamente für die Behandlung zugelassen, die die Lebensdauer um bis zu sechs Monate verlängern oder das Fortschreiten der Krankheit bei einer Subpopulation von Patienten verlangsamen. Ungefähr 90% der ALS-Fälle sind sporadisch, während ungefähr 10% familiär sind und daher durch Mutationen in bestimmten Genen verursacht werden, darunter fused in sarcoma (FUS), einem DNA- und RNA-bindenden Protein. Mutationen in FUS machen etwa 5% der familiären Fälle aus und treten überwiegend in der Kernlokalisierungssequenz (NLS) auf, wie beispielsweise die FUS-P525L Mutation. Neuronen, die diese Mutante exprimieren, zeigen eine starke zytoplasmatische Fehllokalisierung von FUS und damit einen Verlust seiner Funktionen im Zellkern. Neben anderen pathologischen Ereignissen wurden in mehreren FUS-ALS Modellsystemen Defekte im Mikrotubuli-basierenden axonalen Transport früh im Krankheitsverlauf beobachtet, was auf seine Rolle als eines der Hauptmerkmale dieser Krankheit hindeutet. Der Mechanismus, wie der Transport innerhalb dieser Neuronen beeinträchtigt wird, ist jedoch bis heute unbekannt. Ziel dieser Studie ist es, zwei mögliche Mechanismen zu untersuchen, wie das mutierte FUS-P525L Protein den axonalen Transport entlang von Mikrotubuli beeinflusst. Zunächst wurde analysiert, ob FUS direkt mit Mikrotubuli oder Motorproteinen interagiert und ob zytoplasmatische fehllokalisierte FUS-P525L Protein diese Interaktion verändert. Ferner kann zytoplasmatische fehllokalisiertes FUS-P525L seine reguläre Rolle beim Spleißen von Prä-mRNAs nicht mehr erfüllen, darunter die mRNA, die für das mit Mikrotubuli-assoziierte Protein Tau kodiert. Dies führt zu einem erhöhten Verhältnis von translatierten Tau-Isoformen, die vier Mikrotubuli-Bindestellen (4R) enthalten, zu solchen mit drei Bindestellen (3R). Es ist bekannt, dass 4R-Tau-Isoformen eine stärkere Bindungsaffinität zu Mikrotubuli im Vergleich zu 3R-Tau-Isoformen aufweisen und daher den Transport stärker beeinträchtigen können, indem sie als Hindernis für Motorproteine agieren. In dieser Studie wurde daher untersucht, ob eine Erhöhung des Verhältnisses von 4R:3R-Tau-Isoform ausreicht, um den Mikrotubuli-basierenden Transport zu beeinträchtigen. Der axonale Transport wurde in vitro unter Verwendung eines Kinesin-1-gestuerten Mikrotubuli Motilitätsassay rekonstruiert, bei welchem Mikrotubuli von darunterliegenden oberflächenimmobilisierte Kinesin-1 Motorproteinen transportiert werden, also über die Oberfläche gleiten. Der Assay wurde modifiziert und optimiert, um in Gegenwart komplexer Lösungen wie Ganzzelllysaten sensitiv und robust zu funktionieren, und die Gleitgeschwindigkeit der Mikrotubuli wurde als Maß für die Motilität der darunterliegenden Motoren analysiert. Um die direkte Wechselwirkung von FUS-Varianten mit Kinesin-1 Motorproteinen oder Mikrotubuli zu bestimmen, wurde dem Assay rekombinantes menschliches Wildtyp-FUS-GFP und FUS-P525L-GFP hinzugegeben. Zusätzlich wurden ALS-patientenspezifische, induzierte pluripotente Stammzellen (iPSCs), welche dieselben FUS-Varianten exprimieren, zu spinalen Motoneuronen differenziert und ihre Zelllysate in diesem Assay angewendet, um zu bestimmen, ob FUS-Varianten endogene Adapter oder Interaktionspartner für die Interaction mit Kinesin-1 oder Mikrotubuli benötigen. Um den Einfluss von Tau-Isoformen auf die Kinesin-1 Motilität zu untersuchen, wurde rekombinantes menschliches 2N3R Tau-GFP und 2N4R Tau-mScarlet aus Insektenzellen aufgereinigt und dem modifizierten Kinesin-1-gesteuerten Mikrotubuli Motilitätsassay entweder einzeln oder in unterschiedlichen Verhältnissen kombiniert hinzugegeben. Zusätzlich wurde die Bindung dieser Tau-Varianten an Mikrotubuli analysiert. Der Kinesin-1-gesteuerte Mikrotubuli Motilitätsassay wurden so modifiziert, dass er in Gegenwart von β-Glycerophosphat (zur Hemmung endogener Phosphatasen in Ganzzelllysaten) und Methylcellulose (zur Verhinderung der Ablösung von Mikrotubuli von Kinesin-1 Motoren aufgrund von β-Glycerophosphat) empfindlich und robust funktioniert. Unter diesen Bedingungen zeigten weder rekombinantes menschliches FUS-GFP noch endogene FUS-GFP-Varianten in Lysaten von spinalen Motoneuronen eine Wechselwirkung mit Mikrotubuli und beeinträchtigten auch nicht die Kinesin-1 Motilität. Im Gegensatz dazu banden beide in der vorliegenden Studie verwendeten Tau-Isoformen an Mikrotubuli und beeinträchtigten die Kinesin-1-Motilität, wobei 2N4R Tau-mScarlet das Gleiten von Mikrotubuli viel stärkerer beeinträchtigte und eine 20-fach stärkere Bindungsaffinität zu Mikrotubuli im Vergleich zu 2N3R Tau-GFP zeigte. Ferner beeinträchtigten steigende Verhältnisse von 4R:3R Tau-Isoformen über Kinesin-1 gleitende Mikrotubuli, während die Präsenz von 2N4R Tau-mScarlet die Bindung von 2N3R Tau-GFP an Mikrotubuli stark verminderte. Diese Studie liefert Hinweise darauf, dass weder Wildtyp-FUS noch die FUS P525L-Variante den axonalen Transport direkt beeinflussen, da sie nicht mit Kinesin-1 Motorproteinen oder Mikrotubuli interagieren. Ferner legen die vorliegenden Daten nahe, dass keine der FUS-Varianten die Kinesin-1 Motilität auf Mikrotubuli durch Wechselwirkung mit endogenen Adapterproteinen behindert, die in Zelllysaten von iPSC-differenzierte spinalen Motoneuronen vorhanden sind. Dies legt nahe, dass axonale Transportdefekte nicht durch direkte Wechselwirkung von zytoplasmatisch fehllokalisiertem FUS Protein mit Motorproteinen oder Mikrotubuli verursacht werden, sondern als Folge anderer pathologischer Ereignisse auftreten, die durch mutierte FUS-Varianten entstehen. Insbesondere zeigt diese Studie, dass ein erhöhtes Verhältnis von 4R:3R Tau-Isoformen ausreicht, um die Kinesin-1 Motilität auf Mikrotubuli zu behindern. Dies geschieht vermutlich aufgrund der erhöhten Bindung von 4R Tau-Isoformen an Mikrotubuli, weil dadurch die Bindung von 3R Tau-Isoformen an Mikrotubuli verhindert wird. Dies deutet stark darauf hin, dass ein erhöhtes Verhältnis von 4R:3R Tau-Isoformen, verursacht durch die fehlende regulatorische Beteiligung von FUS am Spleißen von Tau-Prä-mRNA aufgrund der zytoplasmatischen Fehllokalisation von FUS, wahrscheinlich zu den axonalen Transportdefekten beiträgt, die früh in der FUS-ALS-Pathologie beobachtet wurden.
189

Regulation of Cancer Cell Survival Mediated by Endogenous Tumor Suppression: A Dissertation

Guha, Minakshi 10 July 2009 (has links)
Cancer is the second leading cause of death among men and women after heart disease. Though our knowledge associated with the complexities of the cancer network has significantly improved over the past several decades, we have only recently started to get a more complete molecular understanding of the disease. To better comprehend signaling pathways that prevent disease development, we focused our efforts on investigating endogenous tumor suppression networks in controlling effectors of cancer cell survival and proliferation. Survivin is one such effector molecule that controls both cell proliferation and survival. In order to identify how this protein is overexpressed in cancer cells as opposed to normal cells, we looked at signaling molecules that negatively regulate this inhibitor of apoptosis protein. PTEN and caspase 2 are two of the identified proteins that utilize their enzymatic activity to suppress tumor growth by inhibiting downstream cell survival effectors, namely survivin. PTEN uses its phosphatase activity to suppress the PI3K/AKT pathway and maintain cellular homeostasis. In the absence of AKT activity, FOXO transcription factors are able to target downstream gene expression and regulate cell proliferation and survival. Here we have identified survivin as a novel gene target of FOXO, which binds to a specific promoter region of survivin and suppresses its transcription. Alternatively, caspase 2 uses its catalytic activity to suppress survivin gene expression by targeting the NFκB pathway. Caspase 2 acts by cleaving a novel substrate known as RIP1 that prevents NFκB from entering the nucleus, thus inhibiting target gene transcription. Interestingly, survivin is known to be a direct gene target of NFκB that controls cancer cell survival. In our investigation, we found that survivin is downregulated upon caspase 2 activation via the NFκB pathway, resulting in decreased cell cycle kinetics, increased apoptotic threshold and suppressed tumor growth in mice. These studies conclude that survivin is a common effector molecule that is regulated by tumor suppressors to maintain cellular homeostasis. However, upon deactivation of the tumor suppressor pathway, survivin is deregulated and contributes significantly to disease progression. These observations may lead to potential therapeutic implications and novel targeting strategies that will help eradicate harmful cancer cells and spare surrounding healthy cells; often the most persistent problem of most conventional chemotherapy.
190

Roles of the Mother Centriole Appendage Protein Cenexin in Microtubule Organization during Cell Migration and Cell Division: A Dissertation

Hung, Hui-Fang 03 August 2016 (has links)
Epithelial cells are necessary building blocks of the organs they line. Their apicalbasolateral polarity, characterized by an asymmetric distribution of cell components along their apical-basal axis, is a requirement for normal organ function. Although the centrosome, also known as the microtubule organizing center, is important in establishing cell polarity the mechanisms through which it achieves this remain unclear. It has been suggested that the centrosome influences cell polarity through microtubule cytoskeleton organization and endosome trafficking. In the first chapter of this thesis, I summarize the current understanding of the mechanisms regulating cell polarity and review evidence for the role of centrosomes in this process. In the second chapter, I examine the roles of the mother centriole appendages in cell polarity during cell migration and cell division. Interestingly, the subdistal appendages, but not the distal appendages, are essential in both processes, a role they achieve through organizing centrosomal microtubules. Depletion of subdistal appendages disrupts microtubule organization at the centrosome and hence, affects microtubule stability. These microtubule defects affect centrosome reorientation and spindle orientation during cell migration and division, respectively. In addition, depletion of subdistal appendages affects the localization and dynamics of apical polarity proteins in relation to microtubule stability and endosome recycling. Taken together, our results suggest the mother centriole subdistal appendages play an essential role in regulating cell polarity. A discussion of the significance of these results is included in chapter three.

Page generated in 0.1545 seconds