• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automating the MMIC design process using expert systems

Brennan, Michael January 1993 (has links)
No description available.
2

Artifical intelligence applied to MMIC layout

Robinson, Jayne Helen January 1995 (has links)
No description available.
3

Monolithic-Microwave Integrated-Circuit Design of Hetero-Junction Bipolar Transistor Power Amplifier for Wireless Communications

Li, Jian-Yu 01 July 2000 (has links)
Using GaAs HBT provided by AWSC to construct Gummel Poon static model.then using the GaAs HBT processing of GCS to design MMIC power amplifier for the 1.9~2.0 GHz PCS system. This power amplifier exhibits an output power of 27dBm and a power added efficiency as high as 32% at an operation voltage of 3.4V.
4

Monolithic-Microwave Integrated-Circuit Design of Quadrature Modulator for Wireless Communications

Wu, Jian-Ming 15 July 2000 (has links)
This thesis researchs the design of quadrature modulator consists of 120MHz quadrature modulator that is fabricated using hybrid elements and print circuit board (PCB) technology for digital signal generator and quadrature modulator monolithic-microwave integrated-circuit (MMIC) that is fabricated using GaAs heterojunction bipolar transistor (HBT) technology for Personal Communication Service (PCS) applications. The 120MHz quadrature modulator incorporates power divider/combiner, phase shifter and doubly balanced mixer; the design architecture, principle and measurement results of division are presented in this thesis. A quadrature modulator is implemented by combining every division and measures specifications accurately, comparing with that of Agilent ESG-D series digital signal generator with the same carrier frequency and digital modulation. The quadrature modulator MMIC for PCS applications incorporates phase shifter, Gilbert cell mixer, differential to single-ended converter and RF amplifier at output; the design architecture, principle and simulation results of division are presented in this thesis. A quadrature modulator is integrated by combining every division and simulates parameters strictly.For troublesome specification measurement of quadrature modulator, this thesis also presents measurement method and instrument setup detailedly.
5

Monolithic microwave integrated circuit (MMIC) low noise amplifier (LNA) design for radio astronomy applications

Seyfollahi, Alireza 30 April 2018 (has links)
The presentation highlights research on theory, design, EM modeling, fabrication, packaging, and measurement of GaAs Monolithic Microwave Integrated Circuits (MMICs). The goal of this work is to design MMIC LNAs with low noise figure, high gain, and wide bandwidth. The work aims to develop GaAs MMIC LNAs for the application of RF front-end receivers in radio telescopes. GaAs MMIC technology offers modern radio astronomy attractive solutions based on its advantage in terms of high operational frequency, low noise, excellent repeatability and high integration density. Theoretical investigations are performed, presenting the formulation and graphical methods, and focusing on a systematic method to design a low noise amplifier for the best noise, gain and input/output return loss. Additionally, an EM simulation method is utilized and successfully applied to MMIC designs. The effect of packaging including the wire bond and chassis is critical as the frequency increases. Therefore, it is modeled by full-wave analysis where the measured results verify the reliability of these models. The designed MMICs are validated by measurements of several prototypes, including three C/X band and one Q band MMIC LNAs. Moreover, comparison to similar industrial chips demonstrates the superiority of the proposed structures regarding bandwidth, noise and gain flatness, and making them suitable for use in radio astronomy receivers. / Graduate / 2020-05-01
6

Circuits intégrés photoniques sur InP pour la génération de signaux hyperfréquences / Integrated photonic circuit on InP for microwave generation

Kervella, Gaël 21 April 2016 (has links)
Cette thèse s'inscrit dans le cadre de l'optique micro-onde. Nous avons mis en oeuvre différentes solutions opto-électroniques dans le but de réaliser un synthétiseur hyperfréquence monolithiquement intégré, faiblement bruité et largement accordable jusqu'au domaine millimétrique. Le synthétiseur est basé sur l'intégration sur InP de deux lasers DFB, d'un coupleur optique et d'une photodiode rapide. En outre, un modulateur électro-optique est également implémenté sur la puce afin de transmettre un signal de données sur la porteuse générée. Les performances obtenues en terme de gamme d'accord et de transmission de données sans fil se sont révélées conformes aux objectifs. Ainsi, une gamme d'accord de 0 à 110 GHz et un débit de transmission de donnée sans fil à courte distance de 1 Gbit/s ont pu être démontrés, établissant notre système à l'état de l'art mondial pour ce type de composant totalement intégré. Les performances en terme de bruit de phase se sont en revanche révélées décevantes. Pour remédier à ce problème nuisant à la montée en débit supérieurs, nous avons investigué deux solutions de stabilisation de la fréquence porteuse. La première, basée sur un asservissement électronique (OPLL) de la puce, s'est pour le moment révélé infructueuse, mais a permis d'étudier plus avant les problématiques qui lui sont liées. La seconde solution, basée sur un système inédit de rétroinjection optique mutuelle et une stabilisation sur un oscillateur électronique externe a quant à elle répondu à nos souhaits. En effet, la stabilisation de la fréquence porteuse par cette technique a permis de démontré des largeurs de raies inférieure à 30 Hz et un bruit de phase réduit à -90 dBc/Hz à 10 kHz d'une porteuse accordée à 90 GHz. A la suite de ces travaux sur une première génération de composants, une deuxième génération a été développée afin d'améliorer les performances intrinsèques de la puce en remédiant aux limitations observées jusqu'alors. Ainsi, une nouvelle configuration de cavité a été conçue intégrant notamment des lasers plus longs ainsi que des miroirs haute réflectivité. Par ailleurs, une optimisation de la structure de la photodiode a été réalisée afin d'améliorer encore sa bande passante. Une telle source permet d’envisager la génération et la modulation de signaux microonde faible bruit de phase et largement accordables sur des composants monolithiquement intégrés répondant aux exigences de compacité, de reproductibilité et de performances haut débit requises par les industries des télécommunications, de la défense ou encore du domaine spatial. / This thesis deals with the microwave photonics context. We have implemented various opto- electronic solutions in order to realize a monolithically integrated microwave synthesizer which has a low noise and a wide tunability until millimeter-wave frequencies. The synthesizer is based on the integration of two InP DFB lasers, an optical coupler and a fast photodiode. In addition, an electro-optic modulator is also implemented on the chip in order to transmit data on the generated carrier. The performances obtained in terms of tunability and wireless data transmission proved consistent with the objectives. Thus, a tuning range of 0-110 GHz and a short distance wireless data transmission rate of 1 Gbit /s have been demonstrated, establishing our system to the state of the art for this type of fully integrated component. Phase noise and linewidth performances have however been disappointing. To solve this problem affecting the data rate we have investigated two ways of stabilizing the carrier frequency. The first, based on an electronic feedback loop (OPLL) has yet proved unsuccessful but allowed us to further explore the related issues. However, the second solution, based on a new system of optical cross injection and stabilization to an external electronic oscillator has filled our wishes. Indeed, the stabilization of the carrier frequency by this technique has demonstrated linewidth less than 30 Hz and a reduced phase noise to -90 dBc / Hz at 10 kHz for a given carrier at 90 GHz. Next to the first generation components, a second generation was developed to improve the intrinsic performances of the chip by remedying the limitations previously observed. Thus, a new cavity configuration was designed including longer lasers and high reflectivity integrated mirrors made by materials deep etching. Moreover, optimization of the photodiode structure was carried out to further improve the bandwidth. Such a source allows to consider the generation and modulation of low phase noise and widely tunable microwave signals on monolithically integrated components matching the compactness, reproducibility and high speed performances required by the telecom, defense and space industries.
7

Modelling and design of Low Noise Amplifiers using strained InGaAs/InAlAs/InP pHEMT for the Square Kilometre Array (SKA) application

Ahmad, Norhawati Binti January 2012 (has links)
The largest 21st century radio telescope, the Square Kilometre Array (SKA) is now being planned, and the first phase of construction is estimated to commence in the year 2016. Phased array technology, the key feature of the SKA, requires the use of a tremendous number of receivers, estimated at approximately 37 million. Therefore, in the context of this project, the Low Noise Amplifier (LNA) located at the front end of the receiver chain remains the critical block. The demanding specifications in terms of bandwidth, low power consumption, low cost and low noise characteristics make the LNA topologies and their design methodologies one of the most challenging tasks for the realisation of the SKA. The LNA design is a compromise between the topology selection, wideband matching for a low noise figure, low power consumption and linearity. Considering these critical issues, this thesis describes the procedure for designing a monolithic microwave integrated circuit (MMIC) LNA for operation in the mid frequency band (400 MHz to 1.4 GHz) of the SKA. The main focus of this work is to investigate the potential of MMIC LNA designs based on a novel InGaAs/InAlAs/InP pHEMT developed for 1 µm gate length transistors, fabricated at The University of Manchester. An accurate technique for the extraction of empirical linear and nonlinear models for the fabricated active devices has been developed. In addition to the linear and nonlinear model of the transistors, precise models for passive devices have also been obtained and incorporated in the design of the amplifiers. The models show excellent agreement between measured and modelled DC and RF data. These models have been used in designing single, double and differential stage MMIC LNAs. The LNAs were designed for a 50 Ω input and output impedance. The excellent fits between the measured and modelled S-parameters for single and double stage single-ended LNAs reflects the accurate models that have been developed. The single stage LNA achieved a gain ranging from 9 to 13 dB over the band of operation. The gain was increased between 27 dB and 36 dB for the double stage and differential LNA designs. The measured noise figures obtained were higher by ~0.3 to ~0.8 dB when compared to the simulated figures. This is due to several factors which are discussed in this thesis. The single stage design consumes only a third of the power (47 mW) of that required for the double stage design, when driven from a 3 V supply. All designs were unconditionally stable. The chip sizes of the fabricated MMIC LNAs were 1.5 x 1.5 mm2 and 1.6 x 2.5 mm2 for the single and double stage designs respectively. Significantly, a series of differential input to single-ended output LNAs became of interest for use in the Square Kilometre Array (SKA), as it utilises differential output antennas in some of its configurations. The single-ended output is preferable for interfacing to the subsequent stages in the analogue chain. A noise figure of less than 0.9 dB with a power consumption of 180 mW is expected for these designs.
8

CMOS High Frequency Circuits for Spin Torque Oscillator Technology

Chen, Tingsu January 2014 (has links)
Spin torque oscillator (STO) technology has a unique blend of features, including but not limited to octave tunability, GHz operating frequency, and nanoscaled size, which makes it highly suitable for microwave and radar applications. This thesis studies the fundamentals of STOs, utilizes the state-of-art STO's advantages, and proposes two STO-based microwave systems targeting its microwave applications and measurement setup, respectively. First, based on an investigation of possible STO applications, the magnetic tunnel junction (MTJ) STO shows a great suitability for microwave oscillator in multi-standard multi-band radios. Yet, it also imposes a large challenge due to its low output power, which limits it from being used as a microwave oscillator. In this regard, different power enhancement approaches are investigated to achieve an MTJ STO-based microwave oscillator. The only possible approach is to use a dedicated CMOS wideband amplifier to boost the output power of the MTJ STO. The dedicated wideband amplifier, containing a novel Balun-LNA, an amplification stage and an output buffer, is proposed, analyzed, implemented, measured and used to achieve the MTJ STO-based microwave oscillator. The proposed amplifier core consumes 25.44 mW from a 1.2 V power supply and occupies an area of 0.16 mm2 in a 65 nm CMOS process. The measurement results show a S21 of 35 dB, maximum NF of 5 dB, bandwidth of 2 GHz - 7 GHz. This performance, as well as the measurement results of the proposed MTJ STO-based microwave oscillator, show that this microwave oscillator has a highly-tunable range and is able to drive a PLL. The second aspect of this thesis, firstly identifies the major difficulties in measuring the giant magnetoresistance (GMR) STO, and hence studying its dynamic properties. Thereafter, the system architecture of a reliable GMR STO measurement setup, which integrates the GMR STO with a dedicated CMOS high frequency IC to overcome these difficulties in precise characterization of GMR STOs, is proposed. An analysis of integration methods is given and the integration method based on wire bonding is evaluated and employed, as a first integration attempt of STO and CMOS technologies. Moreover, a dedicated high frequency CMOS IC, which is composed of a dedicated on-chip bias-tee, ESD diodes, input and output networks, and an amplification stage for amplifying the weak signal generated by the GMR STO, is proposed, analyzed, developed, implemented and measured. The proposed dedicated high frequency circuits for GMR STO consumes 14.3 mW from a 1.2 V power supply and takes a total area of 0.329 mm2 in a 65 nm CMOS process. The proposed on-chip bias-tee presents a maximum measured S12 of -20 dB and a current handling of about 25 mA. Additionally, the proposed dedicated IC gives a measured gain of 13 dB with a bandwidth of 12.5 GHz - 14.5 GHz. The first attempt to measure the (GMR STO+IC) pair presents no RF signal at the output. The possible cause and other identified issues are given. / <p>QC 20140114</p>
9

Low-cost SiGe circuits for frequency synthesis in millimeter-wave devices

Lauterbach, Adam Peter January 2010 (has links)
"2009" / Thesis (MSc (Hons))--Macquarie University, Faculty of Science, Dept. of Physics and Engineering, 2010. / Bibliography: p. 163-166. / Introduction -- Design theory and process technology -- 15GHz oscillator implementations -- 24GHz oscillator implementation -- Frequency prescaler implementation -- MMIC fabrication and measurement -- Conclusion. / Advances in Silicon Germanium (SiGe) Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) technology has caused a recent revolution in low-cost Monolithic Microwave Integrated Circuit (MMIC) design. -- This thesis presents the design, fabrication and measurement of four MMICs for frequency synthesis, manufactured in a commercially available IBM 0.18μm SiGe BiCMOS technology with ft = 60GHz. The high speed and low-cost features of SiGe Heterojunction Bipolar Transistors (HBTs) were exploited to successfully develop two single-ended injection-lockable 15GHz Voltage Controlled Oscillators (VCOs) for application in an active Ka-Band antenna beam-forming network, and a 24GHz differential cross-coupled VCO and 1/6 synchronous static frequency prescaler for emerging Ultra Wideband (UWB) automotive Short Range Radar (SRR) applications. -- On-wafer measurement techniques were used to precisely characterise the performance of each circuit and compare against expected simulation results and state-of-the-art performance reported in the literature. -- The original contributions of this thesis include the application of negative resistance theory to single-ended and differential SiGe VCO design at 15-24GHz, consideration of manufacturing process variation on 24GHz VCO and prescaler performance, implementation of a fully static multi-stage synchronous divider topology at 24GHz and the use of differential on-wafer measurement techniques. -- Finally, this thesis has llustrated the excellent practicability of SiGe BiCMOS technology in the engineering of high performance, low-cost MMICs for frequency synthesis in millimeterwave (mm-wave) devices. / Mode of access: World Wide Web. / xxii, 166 p. : ill (some col.)

Page generated in 0.1264 seconds