• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 39
  • 21
  • 21
  • 21
  • 21
  • 12
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, characterisation and reliability of ohmic contacts for HBT applications

Amin, Farid Ahmed January 2002 (has links)
No description available.
2

Monolithic-Microwave Integrated-Circuit Design of Hetero-Junction Bipolar Transistor Power Amplifier for Wireless Communications

Li, Jian-Yu 01 July 2000 (has links)
Using GaAs HBT provided by AWSC to construct Gummel Poon static model.then using the GaAs HBT processing of GCS to design MMIC power amplifier for the 1.9~2.0 GHz PCS system. This power amplifier exhibits an output power of 27dBm and a power added efficiency as high as 32% at an operation voltage of 3.4V.
3

Systematic characterization and modeling of small and large signal performance of 50 - 200 GHz SiGe HBTs

Pan, Jun, Niu, Guofu. January 2005 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
4

SIMULATION STUDY OF PARASITIC BARRIER FORMATION IN Si/SiGe HETEROSTRUCTURES

BREED, ANIKET AJITKUMAR 27 September 2002 (has links)
No description available.
5

DESIGN, SIMULATION AND MODELING OF InP/GaAsSb/InP DOUBLE HETEROJUNCTION BIPOLAR TRANSISTORS

BALARAMAN, PRADEEP ARUGUNAM January 2003 (has links)
No description available.
6

Monolithic-Microwave Integrated-Circuit Design of Quadrature Modulator for Wireless Communications

Wu, Jian-Ming 15 July 2000 (has links)
This thesis researchs the design of quadrature modulator consists of 120MHz quadrature modulator that is fabricated using hybrid elements and print circuit board (PCB) technology for digital signal generator and quadrature modulator monolithic-microwave integrated-circuit (MMIC) that is fabricated using GaAs heterojunction bipolar transistor (HBT) technology for Personal Communication Service (PCS) applications. The 120MHz quadrature modulator incorporates power divider/combiner, phase shifter and doubly balanced mixer; the design architecture, principle and measurement results of division are presented in this thesis. A quadrature modulator is implemented by combining every division and measures specifications accurately, comparing with that of Agilent ESG-D series digital signal generator with the same carrier frequency and digital modulation. The quadrature modulator MMIC for PCS applications incorporates phase shifter, Gilbert cell mixer, differential to single-ended converter and RF amplifier at output; the design architecture, principle and simulation results of division are presented in this thesis. A quadrature modulator is integrated by combining every division and simulates parameters strictly.For troublesome specification measurement of quadrature modulator, this thesis also presents measurement method and instrument setup detailedly.
7

Low temperature modeling of I-V characteristics and RF small signal parameters of SiGe HBTs

Xu, Ziyan, Niu, Guofu. January 2009 (has links)
Thesis--Auburn University, 2009. / Abstract. Vita. Includes bibliographic references (p.64-66).
8

Growth and Nb-doping of MoS2 towards novel 2D/3D heterojunction bipolar transistors

Lee, Edwin Wendell, II January 2016 (has links)
No description available.
9

Cryogenic operation of silicon-germanium heterojunction bipolar transistors and its relation to scaling and optimization

Yuan, Jiahui 04 February 2010 (has links)
The objective of the proposed work is to study the behavior of SiGe HBTs at cryogenic temperatures and its relation to device scaling and optimization. Not only is cryogenic operation of these devices required by space missions, but characterizing their cryogenic behavior also helps to investigate the performance limits of SiGe HBTs and provides essential information for further device scaling. Technology computer aided design (TCAD) and sophisticated on-wafer DC and RF measurements are essential in this research. Drift-diffusion (DD) theory is used to investigate a novel negative differential resistance (NDR) effect and a collector current kink effect in first-generation SiGe HBTs at deep cryogenic temperatures. A theory of positive feedback due to the enhanced heterojunction barrier effect at deep cryogenic temperatures is proposed to explain such effects. Intricate design of the germanium and base doping profiles can greatly suppress both carrier freezeout and the heterojunction barrier effect, leading to a significant improvement in the DC and RF performance for NASA lunar missions. Furthermore, cooling is used as a tuning knob to better understand the performance limits of SiGe HBTs. The consequences of cooling SiGe HBTs are in many ways similar to those of combined vertical and lateral device scaling. A case study of low-temperature DC and RF performance of prototype fourth-generation SiGe HBTs is presented. This study summarizes the performance of all three prototypes of these fourth-generation SiGe HBTs within the temperature range of 4.5 to 300 K. Temperature dependence of a fourth-generation SiGe CML gate delay is also examined, leading to record performance of Si-based IC. This work helps to analyze the key optimization issues associated with device scaling to terahertz speeds at room temperature. As an alternative method, an fT -doubler technique is presented as an attempt to reach half-terahertz speeds. In addition, a roadmap for terahertz device scaling is given, and the potential relevant physics associated with future device scaling are examined. Subsequently, a novel superjunction collector design is proposed for higher breakdown voltages. Hydrodynamic models are used for the TCAD studies that complete this part of the work. Finally, Monte Carlo simulations are explored in the analysis of aggressively-scaled SiGe HBTs.
10

Investigation of electrical and optical characterisation of HBTs for optical detection

Zhang, Yongjian January 2016 (has links)
In this thesis, a detailed study of the electrical and optical characterisations of Heterojuction Bipolar Transistors (HBTs) for optical detection is presented. By comparing both DC and optical characterisations between In0.49Ga0.51P/GaAs Single Heterojuction Bipolar Transistors (SHBTs) and Double Heterojuction Bipolar Transistors (DHBTs), the advantages of using the DHBT as a short wavelength detector are shown. Phenomena related to the base region energy band bending in the DHBT caused by a self-induced effective electric field is discussed and its effects on the performance of the device are elaborated. The use of an eye diagram has been employed to provide requisite information for performance qualification of SHBT/DHBT devices. These give a more detailed understanding compared to conventional S-parameters method. A detailed comparison of In0.49Ga0.51P/GaAs SHBT and DHBT performance using an eye diagram as a functional tool by adopting a modified T-shaped small signal equivalent circuit are given. By adopting this modified T-shaped small signal equivalent circuit, the use of In0.49Ga0.51P/GaAs Double Heterojuction Phototransistors (DHPT) as a short wavelength photodetector is analysed. It is therefore shown that an eye diagram can act as a powerful tool in HBTs/HPTs design optimisations, for the first time in this work. In order to predict the spectral response (SR) and optical characterisations of GaAs-based HPTs, a detailed theoretical absorption model is also presented. The layer dependence of an optical flux absorption profile, along with doping dependent absorption coefficients are taken into account for the optical characterisation prediction. With the aim of eliminating the limitation of current gain as a prerequisite, analytical modelling of SR has been developed by resolving the continuity equation and applying realistic boundary conditions. Then, related physical parameters and a layer structure profile are used to implement simulations. A good agreement with the measured results of the Al0.3Ga0.7As/GaAs HPT is shown validating the proposed theoretical model.

Page generated in 0.1619 seconds