1 |
Integrated Distributed Amplifiers for Ultra-Wideband BiCMOS Receivers Operating at Millimeter-Wave FrequenciesTesta, Paolo Valerio 30 November 2018 (has links)
Millimetre-wave technology is used for applications such as telecommunications and imaging. For both applications, the bandwidth of existing systems has to be increased to support higher data rates and finer imaging resolutions. Millimetrewave circuits with very large bandwidths are developed in this thesis. The focus is put on amplifiers and the on-chip integration of the amplifiers with antennas.
Circuit prototypes, fabricated in a commercially available 130nm Silicon-Germanium (SiGe) Bipolar Complementary Metal-Oxide-Semiconductor (BiCMOS) process, validated the developed techniques. Cutting-edge performances have been achieved in the field of distributed and resonant-matched amplifiers, as well as in that of the antenna-amplifier co-integration. Examples are as follows:
- A novel cascode gain-cell with three transistors was conceived. By means of transconductance peaking towards high frequencies, the losses of the synthetic line can be compensated up to higher frequencies. The properties were analytically derived and explained. Experimental demonstration validated the technique by a Traveling-Wave Amplifier (TWA) able to produce 10 dB of gain over a frequency band of 170GHz.#
- Two Cascaded Single-Stage Distributed Amplifiers (CSSDAs) have been demonstrated. The first CSSDA, optimized for low power consumption, requires less than 20mW to provide 10 dB of gain over a frequency band of 130 GHz. The second amplifier was designed for high-frequency operation and works up to 250 GHz leading to a record bandwidth for distributed amplifiers in SiGe technology.
- The first complete CSSDA circuit analysis as function of all key parameters was presented. The typical degradation of the CSSDA output matching towards high frequencies was analytically quantified. A balanced architecture was then introduced to retain the frequency-response advantages of CSSDAs and yet ensure matching over the frequency band of interested. A circuit prototype validated experimentally the technique.
- The first traveling-wave power combiner and divider capable of operation from the MHz range up to 200 GHz were demonstrated. The circuits improved the state of the art of the maximum frequency of operation and the bandwidth by a factor of five.
- A resonant-matched balanced amplifier was demonstrated with a centre frequency of 185 GHz, 10 dB of gain and a 55GHz wide –3 dB-bandwidth. The power consumption of the amplifier is 16.8mW, one of the lowest for this circuit class, while the bandwidth is the broadest reported in literature for resonant-matched amplifiers in SiGe technology.
|
2 |
Dispositifs de protection contre les décharges électrostatiques pour les applications radio fréquences et millimétriques / Development of an ElectroStatic Discharges (ESD) protection circuit for millimeter-wave frequencies applicationsLim, Tek Fouy 28 May 2013 (has links)
Ces travaux s'inscrivent dans un contexte où les contraintes vis-à-vis des décharges électrostatiques sont de plus en plus fortes, les circuits de protection sont un problème récurrent pour les circuits fonctionnant à hautes fréquences. La capacité parasite des composants de protection limite fortement la transmission du signal et peut perturber fortement le fonctionnement normal d'un circuit. Les travaux présentés dans ce mémoire font suite à une volonté de fournir aux concepteurs de circuits fonctionnant aux fréquences millimétriques un circuit de protection robuste présentant de faibles pertes en transmission, avec des dimensions très petites et fonctionnant sur une très large bande de fréquences, allant du courant continu à 100 GHz. Pour cela, une étude approfondie des lignes de transmission et des composants de protection a été réalisée à l'aide de simulations électromagnétiques et de circuits. Placés et fragmentées le long de ces lignes de transmission, les composants de protection ont été optimisés afin de perturber le moins possible la transmission du signal, tout en gardant une forte robustesse face aux décharges électrostatiques. Cette stratégie de protection a été réalisée et validée en technologies CMOS avancées par des mesures fréquentielles, électriques et de courant de fuite. / Advanced CMOS technologies provide an easier way to realize radio-frequency integrated circuits (RFICs). However, the lithography dimension shrink make electrostatic discharges (ESD) issues become more significant. Specific ESD protection devices are embedded in RFICs to avoid any damage. Unfortunately, ESD protections parasitic capacitance limits the operating bandwidth of RFICs. ESD protection size dimensions are also an issue for the protection of RFICs, in order to avoid a significant increase in production costs. This work focuses on a broadband ESD solution (DC-100 GHz) able to be implemented in an I/O pad to protect RFICs in advanced CMOS technologies. Thanks to the signal transmission properties of coplanar / microstrip lines, a broadband ESD solution is achieved by implementing ESD components under a transmission line. The silicon proved structure is broadband; it can be used in any RF circuits and fulfill ESD target. The physical dimensions also enable easy on-chip integration.
|
3 |
The Quality Factor and Tunability Optimization of a Novel BST Varactor DesignHarvey, Malia 01 September 2020 (has links)
No description available.
|
4 |
Systèmes optiques dédiés à la 5° génération de réseaux sans fils (5G) / Optical systems for next wireless standard (5G) generation deliveryHallak Elwan, Hamza 07 September 2017 (has links)
Cette thèse concerne le développement de futurs appareils, systèmes et réseaux prenant en charge l’internet haute vitesse, sans fil 5éme g´enération (5G). La demande de débit très élevé nécessite une bande passante suffisante, et ainsi la bande de fréquence millimetrique (mm-wave) a beaucoup d’intérêt. Un certain nombre de technologies devront converger, coexister et interagir, et surtout, coopérer, si cette vision doit être efficace et rentable. Le concept principal de cette de 5G est l’intégration de réseaux de fibre optique et Les réseaux radio grâce à la technologie Radio-sur-Fibre (RoF) aux fréquences d’onde millimetriques, pour fournir des services à large bande passante et permettre des réseaux évolutifs et gérables sans structure d’interface très complexe et multiples protocoles superposés.Dans cette thèse, les systèmes de communication RoF à ondes millimetriques sont théoriquement étudiés et démontrés expérimentalement pour étudier les altérations du système. Le travail présenté dans cette thèse est axé sur le bruit optique représenté par le bruit de phase et d’intensité induit par la source optique et la dispersion chromatique introduite par la fibre optique. Le bruit optique est analysé et mesuré pour différentes techniques de génération optique. Deux dispositifs différents de conversion, un mélangeur et un détecteur d’enveloppe sont, appliqués pour le traitement du signal et pour décorréler la phase et le bruit d’intensité. Nous souhaitons souligner que cette étude et le modèle peuvent s’appliquer à tout type de système de génération optique hétérodyne et à toute gamme de fréquences. La corrélation entre les modes optiques en peigne à fréquence optique est examinée pour montrer l’impact de la dispersion chromatique. Cette thèse présente la distribution d’énergie des ondes millimetriques et son influence sur la portée des fibres et la façon dont l’effet de dispersion chromatique sur le réseau RoF depend des paramètres de dispersion. Ensuite, cette thèse démontre comment la décorrélation de la phase optique induite par la dispersion chromatique entraîne un bruit de partition de modes dans les réseaux de communication RoF à ondes millimétriques.Lors de la transmission de certains types de données sur le système, les résultats démontrent l’impact du bruit optique et de la dispersion chromatique sur le qualité du signal. Les résultats de simulation sont présentés et sont en très bon accord avec les résultats expérimentaux. La grandeur du vecteur d’erreur evaluée par en processus en ligne montre l’impact des altèrations du système sur les performances du système. Le débit de données et l’évolution du système présentée sont en conformité avec les normes de communication comme à ondes millimétriques. / This thesis is for the development of future devices, systems and networks supporting the 5th Generation (5G) high-speed wireless internet. The demand for very high bit rate requires a sufficient large bandwidth, and therefore Millimeter-Wave (mm-wave) frequency band has a lot of interest. Several number of technologies will need to converge, co-exist and interoperate, and most importantly, cooperate, if this vision is to be efficiently and cost-effectively realized. The main concept within this next 5G is the integration of optical fiber networks and radio networks through Radio-over-Fiber (RoF) technology at mm-wave frequencies, to provide high-bandwidth front/backhaul services and enable scalable and manageable networks without a highly complex interface structure and multiple overlaid protocols.In this thesis, the mm-wave RoF communication systems are theoretically studied and experimentally demonstrated to investigate the system impairments. The work presented in this thesis is focused on optical noise represented by phase and intensity noise induced by optical source and chromatic dispersion introduced by optical fiber. The optical noise is analyzed and measured for different optical generation techniques. Two different down-conversion stages, mixer and envelope detector, are applied for signal processing and to decorrelate phase and intensity noise. We would like to highlight that this study and the model can be applicable toany kind of optical heterodyne generation system and any frequency range. The correlation among optical modes in optical frequency comb is examined to show the impact of chromatic dispersion. This thesis also exhibits the mm-wave power distribution over fiber span and how the chromatic dispersion effect on the RoF network is modified by varying dispersion parameters. Then, this thesis demonstrates how the optical phase decorrelation induced by chromatic dispersion results in mode partition noise at mm-wave RoF communication networks.When transmitting some types of data over the system, the results demonstrate the impact of optical noise and chromatic dispersion on the signal quality. The simulation results are presented and are in very good agreement with experimental results. The error vector magnitudethrough online process shows the impact of the system impairments on the system performance. The data rate and system evolution are compliance with communication standards at mm-wave.
|
5 |
Silicon-Based PALNA Transmit/Receive Circuits for Integrated Millimeter Wave Phased ArraysAbdomerovic, Iskren 08 January 2020 (has links)
Phased array element RF front ends typically use single pole double throw (SPDT) switches or circulators with high isolation to prevent leakage of transmit energy into the receiver circuits. However, as phased-array designs scale to the millimeter-wave range, with high degrees of integration, the physical size and performance degradations associated with switches and circulators can present challenges in meeting system performance and size/weight/power (SWAP) requirements. This work demonstrates a loss-aware methodology for analysis and design of switchless transmit/receive (T/R) circuits. The methodology provides design insights and a practical, generally applicable approach for solving the multi-variable optimization problem of switchless power amplifier/low-noise amplifier (PALNA) matching networks, which present optimal matching impedances to both the power amplifier (PA) and the low noise amplifier (LNA) while maximizing power transfer efficiency and minimizing dissipative losses in each (transmit or receive) mode of operation.
Three PALNA example designs at W-band are presented in this dissertation, each following a distinct design methodology. The first example design in 32SOI CMOS leverages PA and LNA circuits that already include 50 Ω matching networks at both input and output. The second example design in 8XP SiGe develops the PA and LNA circuits and integrates the PA output and LNA input matching networks into the PALNA matching network that connects the PA and the LNA. The third design in 32SOI CMOS leverages the loss-aware PALNA design methodology to develop a PALNA that achieves simulated maximum power added efficiency of 18 % in transmit and noise figure of 7.5 dB in receive at 94 GHz, which is beyond the published state-of-art for T/R circuits. In addition, for comparison purposes, this dissertation also presents an efficient, switch-based T/R circuit design in 32SOI CMOS technology, which achieves a simulated maximum power added efficiency of 15 % in transmit and noise figure of 6.5 dB in receive at 94 GHz, which is also beyond the published state-of-art for T/R circuits. / Doctor of Philosophy / In military and commercial applications, phased arrays are devices primarily used to achieve focusing and steering of transmitted or received electromagnetic energy. Phased arrays consist of many elements, each with an ability to both transmit and receive radio frequency (RF) signals. Each element incorporates a power amplifier (PA) for transmit and a low noise amplifier (LNA) for receive, which are typically connected using a single pole double throw (SPDT) switch or a circulator with high isolation to prevent leakage of transmit energy into the receiver circuits. However, as phased arrays exploit the latest technological advances in circuit integration and their frequencies of operation increase, physical size and performance degradations associated with switches and circulators can present challenges in meeting system performance and size/weight/power (SWAP) requirements. This dissertation provides a loss-aware methodology for analysis and design of switchless transmit/receive (T/R) circuits where the switches and circulators are replaced by carefully designed power amplifier/low-noise amplifier (PALNA) impedance matching networks. In the switchless T/R circuits, the design goals of maximum power efficiency and minimum noise in transmit and receive, respectively, are achieved through impedance matching that is optimal and low-loss in both modes of operation simultaneously.
Three distinct PALNA example designs at W-band are presented in this dissertation, each following a distinct design methodology. With each new design, lessons learned are leveraged and design methodologies are enhanced. The first example design leverages already available PA and LNA circuits and connects them using 50 Ω transmission lines whose lengths are designed to guarantee optimum impedance match in receive and transmit mode of operation. The second example design develops new PA and LNA circuits and connects them using 50 Ω transmission lines whose lengths are designed to simultaneously achieve optimum impedance matching for maximum power efficiency in transmit mode of operation and lowest noise in receive mode of operation. The third design leverages a loss-aware PALNA design methodology, a multi-variable optimization procedure, to develop a PALNA that achieves simulated maximum power added efficiency of 18 % in transmit and noise figure of 7.5 dB in receive at 94 GHz, which is beyond the published state-of-art for T/R circuits. In addition, for comparison purposes with the third PALNA design, this dissertation also presents an efficient, switch-based T/R circuit design, which achieves a simulated maximum power added efficiency of 15 % in transmit and noise figure of 6.5 dB in receive at 94 GHz, which is also beyond the published state-of-art for T/R circuits.
|
Page generated in 0.0906 seconds