• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 302
  • 106
  • 35
  • 34
  • 23
  • 11
  • 10
  • 6
  • 5
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 627
  • 132
  • 103
  • 96
  • 79
  • 75
  • 62
  • 58
  • 52
  • 48
  • 47
  • 40
  • 40
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Pravidla návrhu elektronických přístrojů s jednočipovými mikropočítači ATMEL z hlediska EMC / Design Rules for Electronic Systems with ATMEL Microprocessors from the EMC Point of View

Kaštan, Jiří January 2008 (has links)
This diploma thesis is dealing with the basic knowledge of the Electromagnetic compatibility. It’s concretely target on electromagnetic interference flowing from the application of electronic gas control by Honeywell company. Author compile the power control board with including software in language C. The next alternates of power control board with the separated microprocessor were designed for the more extended source detection. On these boards there were explored shielding surface features placed directly under the microprocessor. The application reducing the interference was designed in accordance to the rules finding out during this diploma thesis writing.
482

Optimalizace žebra na křídle letounu / Optimization of an aircraft wing rib

Kopřiva, Lubomír January 2008 (has links)
Topology optimization is a method providing new direction in designing of a technical objects. The aim of topology optimization is to find optimal distribution of material in design space. This diploma thesis is focused on optimization of aircraft wing rib num.6 of the airplane EV-55 using a software HW/Optistruct 7.0 implemented in a software package HyperWorks 7.0. The optimization of the rib was calculated under four different load cases. Resulting shapes of the rib were then tested by strenght calculations in software ANSYS 10.0. Finally, the obtained data of weights of optimized ribs were compared with the weight of the original rib.
483

Evoluční resyntéza kombinačních obvodů / Evolutionary Combinational Circuit Resynthesis

Pták, Ondřej January 2013 (has links)
This project deals with combinational digital circuits and their optimization. First there are presented main levels of abstraction utilized in the design of combinational digital circuits. Afterwards different methods are surveyed for optimization of combinational digital circuits. The next part of this project is mainly devoted to evolutionary algorithms, their common characteristics and branches: genetic algorithms, evolutionary strategies, evolutionary programming and genetic programming. The variant of genetic programming called Cartesian Genetic Programming (CGP) and the use of CGP in various areas, particularly in the synthesis and optimization of combinational logic circuits are described in detail. The project also discusses some modifications of CGP and the scalability problem of evolutionary circuit design. Consequential part of this thesis describes the method for evolution resynthesis of combinational digital circuits. There is description of design, especially the method of splitting circuits into subcircuits, and implementation details. Finally experiments with these method and their results are described.
484

A distributed Frank-Wolfe framework for trace norm minimization via the bulk synchronous parallel model / Une structure Frank-Wolfe distribuée pour la minimisation des normes de trace via le modèle parallèle synchrone en bloc

Zheng, Wenjie 13 June 2018 (has links)
L'apprentissage des matrices de rang faible est un problème de grande importance dans les statistiques, l'apprentissage automatique, la vision par ordinateur et les systèmes de recommandation. En raison de sa nature NP-difficile, une des approches principales consiste à résoudre sa relaxation convexe la plus étroite : la minimisation de la norme de trace. Parmi les différents algorithmes capables de résoudre cette optimisation, on peut citer la méthode de Frank-Wolfe, particulièrement adaptée aux matrices de grande dimension. En préparation à l'utilisation d'infrastructures distribuées pour accélérer le calcul, cette étude vise à explorer la possibilité d'exécuter l'algorithme de Frank-Wolfe dans un réseau en étoile avec le modèle BSP (Bulk Synchronous Parallel) et à étudier son efficacité théorique et empirique. Concernant l'aspect théorique, cette étude revisite le taux de convergence déterministe de Frank-Wolfe et l'étend à des cas non déterministes. En particulier, il montre qu'avec le sous-problème linéaire résolu de manière appropriée, Frank-Wolfe peut atteindre un taux de convergence sous-linéaire à la fois en espérance et avec une probabilité élevée. Cette contribution pose la fondation théorique de l'utilisation de la méthode de la puissance itérée ou de l'algorithme de Lanczos pour résoudre le sous-problème linéaire de Frank-Wolfe associé à la minimisation de la norme de trace. Concernant l'aspect algorithmique, dans le cadre de BSP, cette étude propose et analyse quatre stratégies pour le sous-problème linéaire ainsi que des méthodes pour la recherche linéaire. En outre, remarquant la propriété de mise à jour de rang-1 de Frank-Wolfe, il met à jour le gradient de manière récursive, avec une représentation dense ou de rang faible, au lieu de le recalculer de manière répétée à partir de zéro. Toutes ces conceptions sont génériques et s'appliquent à toutes les infrastructures distribuées compatibles avec le modèle BSP. Concernant l'aspect empirique, cette étude teste les conceptions algorithmiques proposées dans un cluster Apache SPARK. Selon les résultats des expériences, pour le sous-problème linéaire, la centralisation des gradients ou la moyenne des vecteurs singuliers est suffisante dans le cas de faible dimension, alors que la méthode de la puissance itérée distribuée, avec aussi peu qu'une ou deux itérations par époque, excelle dans le cas de grande dimension. La librairie Python développée pour les expériences est modulaire, extensible et prête à être déployée dans un contexte industriel. Cette étude a rempli sa fonction de preuve de concept. Suivant le chemin qu'il met en place, des solveurs peuvent être implémentés pour différentes infrastructures, parmi lesquelles des clusters GPU, pour résoudre des problèmes pratiques dans des contextes spécifiques. En outre, ses excellentes performances dans le jeu de données ImageNet le rendent prometteur pour l'apprentissage en profondeur. / Learning low-rank matrices is a problem of great importance in statistics, machine learning, computer vision, recommender systems, etc. Because of its NP-hard nature, a principled approach is to solve its tightest convex relaxation : trace norm minimization. Among various algorithms capable of solving this optimization is the Frank-Wolfe method, which is particularly suitable for high-dimensional matrices. In preparation for the usage of distributed infrastructures to further accelerate the computation, this study aims at exploring the possibility of executing the Frank-Wolfe algorithm in a star network with the Bulk Synchronous Parallel (BSP) model and investigating its efficiency both theoretically and empirically. In the theoretical aspect, this study revisits Frank-Wolfe's fundamental deterministic sublinear convergence rate and extends it to nondeterministic cases. In particular, it shows that with the linear subproblem appropriately solved, Frank-Wolfe can achieve a sublinear convergence rate both in expectation and with high probability. This contribution lays the theoretical foundation of using power iteration or Lanczos iteration to solve the linear subproblem for trace norm minimization. In the algorithmic aspect, within the BSP model, this study proposes and analyzes four strategies for the linear subproblem as well as methods for the line search. Moreover, noticing Frank-Wolfe's rank-1 update property, it updates the gradient recursively, with either a dense or a low-rank representation, instead of repeatedly recalculating it from scratch. All of these designs are generic and apply to any distributed infrastructures compatible with the BSP model. In the empirical aspect, this study tests the proposed algorithmic designs in an Apache SPARK cluster. According to the experiment results, for the linear subproblem, centralizing the gradient or averaging the singular vectors is sufficient in the low-dimensional case, whereas distributed power iteration, with as few as one or two iterations per epoch, excels in the high-dimensional case. The Python package developed for the experiments is modular, extensible and ready to deploy in an industrial context. This study has achieved its function as proof of concept. Following the path it sets up, solvers can be implemented for various infrastructures, among which GPU clusters, to solve practical problems in specific contexts. Besides, its excellent performance in the ImageNet dataset makes it promising for deep learning.
485

Détection et segmentation robustes de cibles mobiles par analyse du mouvement résiduel, à l'aide d'une unique caméra, dans un contexte industriel. Une application à la vidéo-surveillance automatique par drone. / A robust moving target detection by the analysis of the residual motion, with a mono-camera, in an industrial context. An application to the automatic aerial video surveillance.

Pouzet, Mathieu 05 November 2015 (has links)
Nous proposons dans cette thèse une méthode robuste de détection d’objets mobiles depuis une caméra en mouvement montée sur un vecteur aérien de type drone ou hélicoptère. Nos contraintes industrielles sont particulièrement fortes : robustesse aux grands mouvements de la caméra, robustesse au flou de focus ou de bougé, et précision dans la détection et segmentation des objets mobiles. De même, notre solution doit être optimisée afin de ne pas être trop consommatrice en termes de puissance de calcul. Notre solution consiste en la compensation du mouvement global, résultant du mouvement de la caméra, puis en l’analyse du mouvement résiduel existant entre les images pour détecter et segmenter les cibles mobiles. Ce domaine a été particulièrement exploré dans la littérature, ce qui se traduit par une richesse des méthodes proposées fondamentalement différentes. Après en avoir étudié un certain nombre, nous nous sommes aperçus qu’elles avaient toutes un domaine d’applications restreint, malheureusement incompatible avec nos préoccupations industrielles. Pour pallier à ce problème, nous proposons une méthodologie consistant à analyser les résultats des méthodes de l’état de l’art de manière à en comprendre les avantages et inconvénients de chacune. Puis, des hybridations de ces méthodes sont alors mis en place. Ainsi, nous proposons trois étapes successives : la compensation du mouvement entre deux images successives, l’élaboration d’un arrière plan de la scène afin de pouvoir segmenter de manière correcte les objets mobiles dans l’image et le filtrage de ces détections par confrontation entre le mouvement estimé lors de la première étape et le mouvement résiduel estimé par un algorithme local. La première étape consiste en l’estimation du mouvement global entre deux images à l’aide d’une méthode hybride composée d’un algorithme de minimisation ESM et d’une méthode de mise en correspondance de points d’intérêt Harris. L’approche pyramidale proposée permet d’optimiser les temps de calcul et les estimateursrobustes (M-Estimateur pour l’ESM et RANSAC pour les points d’intérêt) permettent de répondre aux contraintes industrielles. La deuxième étape établit un arrière plan de la scène à l’aide d’une méthode couplant les résultats d’une différence d’images successives (après compensation) et d’une segmentation en régions. Cette méthode réalise une fusion entre les informations statiques et dynamiques de l’image. Cet arrière plan est ensuite comparé avec l’image courante afin de détecter les objets mobiles. Enfin, la dernière étape confronte les résultats de l’estimation de mouvement global avec le mouvement résiduel estimé par un flux optique local Lucas-Kanade afin de valider les détections obtenues lors de la seconde étape. Les expériences réalisées dans ce mémoire sur de nombreuses séquences de tests (simulées ou réelles) permettent de valider la solution retenue. Nous montrons également diverses applications possibles de notre méthode proposée. / We propose a robust method about moving target detection from a moving UAV-mounted or helicopter-mounted camera. The industrial solution has to be robust to large motion of the camera, focus and motion blur in the images, and need to be accurate in terms of the moving target detection and segmentation. It does not have to need a long computation time. The proposed solution to detect the moving targets consists in the global camera motion compensation, and the residual motion analysis, that exists between the successive images. This research domain has been widely explored in the literature, implying lots of different proposed methods. The study of these methods show us that they all have a different and limited application scope, incompatible with our industrial constraints. To deal with this problem, we propose a methodology consisting in the analysis of the state-of-the-art method results, to extract their strengths and weaknesses. Then we propose to hybrid them. Therefore, we propose three successive steps : the inter-frame motion compensation, thecreation of a background in order to correctly detect the moving targets in the image and then the filtering of these detections by a comparison between the estimated global motion of the first step and the residual motion estimated by a local algorithm. The first step consists in the estimation of the global motion between two successive images thanks to a hybrid method composed of a minimization algorithm (ESM) and a feature-based method (Harris matching). The pyramidal implementation allows to optimize the computation time and the robust estimators (M-Estimator for the ESM algorithm and RANSAC for the Harris matching) allow to deal with the industrial constraints. The second step createsa background image using a method coupling the results of an inter-frame difference (after the global motion compensation) and a region segmentation. This method merges the static and dynamic information existing in the images. This background is then compared with the current image to detect the moving targets. Finally, the last step compares the results of the global motion estimation with the residual motion estimated by a Lucas-Kanade optical flow in order to validate the obtained detections of the second step. This solution has been validated after an evaluation on a large number of simulated and real sequences of images. Additionally, we propose some possible applications of theproposed method.
486

Prédiction de structure tridimensionnelle de molécules d’ARN par minimisation de regret / Prediction of three-dimensional structure of RNA molecules by regret minimization

Boudard, Mélanie 29 April 2016 (has links)
Les fonctions d'une molécule d'ARN dans les processus cellulaires sont très étroitement liées à sa structure tridimensionnelle. Il est donc essentiel de pouvoir prédire cette structure pour étudier sa fonction. Le repliement de l'ARN peut être vu comme un processus en deux étapes : le repliement en structure secondaire, grâce à des interactions fortes, puis le repliement en structure tridimensionnelle par des interactions tertiaires. Prédire la structure secondaire a donné lieu à de nombreuses avancées depuis plus de trente ans. Toutefois, la prédiction de la structure tridimensionnelle est un problème bien plus difficile. Nous nous intéressons ici au problème de prédiction de la structure 3D d'ARN sous la forme d'un jeu. Nous représentons la structure secondaire de l'ARN comme un graphe : cela correspond à une modélisation à gros grain de cette structure. Cette modélisation permet de réaliser un jeu de repliement dans l'espace. Notre hypothèse consiste à voir la structure 3D comme un équilibre en théorie des jeux. Pour atteindre cet équilibre, nous utiliserons des algorithmes de minimisation de regret. Nous étudierons aussi différentes formalisations du jeu, basées sur des statistiques biologiques. L'objectif de ce travail est de développer une méthode de repliement d'ARN fonctionnant sur tous les types de molécule d'ARN et obtenant des structures similaires aux molécules réelles. Notre méthode, nommée GARN, a atteint les objectifs attendus et nous a permis d'approfondir l'impact de certains paramètres pour la prédiction de structure à gros grain des molécules. / The functions of RNA molecules in cellular processes are related very closely to its three dimensional structure. It is thus essential to predict the structure for understanding RNA functions. This folding can be seen as a two-step process: the formation of a secondary structure and the formation of three-dimensional structure. This first step is the results of strong interactions between nucleotides, and the second one is obtain by the tertiary interactions. Predicting the secondary structure is well-known and results in numerous advances since thirty years. However, predicting the three-dimensional structure is a more difficult problem due to the high number of possibility. To overcome this problem, we decided to see the folding of the RNA structure as a game. The secondary structure of the RNA is represented as a graph: its corresponds to a coarse-grained modeling of this structure. This modeling allows us to fold the RNA molecule in a discrete space. Our hypothesis is to understand the 3D structure like an equilibrium in game theory. To find this equilibrium, we will use regret minimization algorithms. We also study different formalizations of the game, based on biological statistics. The objective of this work is to develop a method of RNA folding which will work on all types of secondary structures and results more accurate than current approaches. Our method, called GARN, reached the expected objectives and allowed us to deepen the interesting factors for coarse-grained structure prediction on molecules.
487

The Construction of Optimized High-Order Surface Meshes by Energy-Minimization

Bock, Karsten 18 January 2022 (has links)
Despite the increasing popularity of high-order methods in computational fluid dynamics, their application to practical problems still remains challenging. In order to exploit the advantages of high-order methods with geometrically complex computational domains, coarse curved meshes are necessary, i.e. high-order representations of the geometry. This dissertation presents a strategy for the generation of curved high-order surface meshes. The mesh generation method combines least-squares fitting with energy functionals, which approximate physical bending and stretching energies, in an incremental energy-minimizing fitting strategy. Since the energy weighting is reduced in each increment, the resulting surface representation features high accuracy. Nevertheless, the beneficial influence of the energy-minimization is retained. The presented method aims at enabling the utilization of the superior convergence properties of high-order methods by facilitating the construction of coarser meshes, while ensuring accuracy by allowing an arbitrary choice of geometric approximation order. Results show surface meshes of remarkable quality, even for very coarse meshes representing complex domains, e.g. blood vessels.
488

DESIGN, STRESS ANALYSES AND LIMIT LOAD OF SANDWICH STRUCTURES / DESIGN, STRESS ANALYSES AND LIMIT LOAD OF SANDWICH STRUCTURES

Löffelmann, František January 2021 (has links)
Disertační práce začíná rešerší výpočtů pro návrh sendvičových nosníků, desek a složitějších konstrukcí, kde zaujímá významnou roli MKP. Dále jsou popsány optimalizační metody pro ujasnění široké oblasti matematického programování a základních principů topologické optimalizace až po její implementaci na kompozitní konstrukce jinými autory. Pro názornost jsou zmíněny jak analytické, tak i numerické přístupy k optimalizaci sendvičů, kde numerické přístupy umožňují řešit daleko širší oblast úkolů. Cíl disertační práce je stanoven jako implementace zautomatizovaného algoritmu pro optimalizaci za účelem vylepšení návrhového procesu sendvičů s ohledem na napjatost a únosnost. Cíle je dosaženo prostřednictvím vlastní implementace gradientní optimalizace založené na principech topologické optimalizace, známé jako diskrétní optimalizace materiálu (Discrete Material Optimization - DMO) a jejích variant, které pomáhají najít optimální vrstvení. Přístup k materiálové interpolaci a interpolaci poruchový omezujících podmínek je vyvinut a naprogramován v pythonu za použití teorie smykových deformací prvního řádu (First Order Shear Deformation Theory - FSDT) pro vyhodnocení napětí na elementech na základě zatížení daného MKP řešičem Nastran. Gradientní optimalizér hledá nejlepší materiály pro každou vrstvu potahu sendviče a jádra z definovaných kandidátů. Program je odzkoušený na příkladech různé složitosti od nosníku tvořeného jedním elementem, kde je skutečné optimum známé, až po praktickou úlohu sendvičové kuchyňky z dopravního letadla. Výsledky ukázaly, že algoritmus je schopen dosáhnout diskrétního řešení bez (významného) narušení omezujících podmínek a může tedy být prakticky využit ke zefektivnění koncepčního návrhu sendvičů.
489

Unstabilized hybrid high-order method for a class of degenerate convex minimization problems

Tran, Ngoc Tien 02 November 2021 (has links)
Die Relaxation in der Variationsrechnung führt zu Minimierungsaufgaben mit einer quasi-konvexen Energiedichte. In der nichtlinearen Elastizität, Topologieoptimierung, oder bei Mehrphasenmodellen sind solche Energiedichten konvex mit einer zusätzlichen Kontrolle in der dualen Variablen und einem beidseitigem Wachstum der Ordnung $p$. Diese Minimierungsprobleme haben im Allgemeinen mehrere Lösungen, welche dennoch eine eindeutige Spannung $\sigma$ definieren. Die Approximation mit der „hybrid high-order“ (HHO) Methode benutzt eine Rekonstruktion des Gradienten in dem Raum der stückweisen Raviart-Thomas Finiten Elemente ohne Stabilisierung auf einer Triangulierung in Simplexen. Die Anwendung dieser Methode auf die Klasse der degenerierten, konvexen Minimierungsprobleme liefert eine eindeutig bestimmte, $H(\div)$ konforme Approximation $\sigma_h$ der Spannung. Die a priori Abschätzungen in dieser Arbeit gelten für gemischten Randbedingungen ohne weitere Voraussetzung an der primalen Variablen und erlauben es, Konvergenzraten bei glatten Lösungen vorherzusagen. Die a posteriori Analysis führt auf garantierte obere Fehlerschranken, eine berechenbare untere Energieschranke, sowie einen konvergenten adaptiven Algorithmus. Die numerischen Beispiele zeigen höhere Konvergenzraten mit zunehmenden Polynomgrad und bestätigen empirisch die superlineare Konvergenz der unteren Energieschranke. Obwohl der Fokus dieser Arbeit auf die nicht stabilisierte HHO Methode liegt, wird eine detaillierte Fehleranalysis für die stabilisierte Version mit einer Gradientenrekonstruktion im Raum der stückweisen Polynome präsentiert. / The relaxation procedure in the calculus of variations leads to minimization problems with a quasi-convex energy density. In some problems of nonlinear elasticity, topology optimization, and multiphase models, the energy density is convex with some convexity control plus two-sided $p$-growth. The minimizers may be non-unique in the primal variable, but define a unique stress variable $\sigma$. The approximation by hybrid high-order (HHO) methods utilizes a reconstruction of the gradients in the space of piecewise Raviart-Thomas finite element functions without stabilization on a regular triangulation into simplices. The application of the HHO methodology to this class of degenerate convex minimization problems allows for a unique $H(\div)$ conform stress approximation $\sigma_h$. The a priori estimates for the stress error $\sigma - \sigma_h$ in the Lebesgue norm are established for mixed boundary conditions without additional assumptions on the primal variable and lead to convergence rates for smooth solutions. The a posteriori analysis provides guaranteed error control, including a computable lower energy bound, and a convergent adaptive scheme. Numerical benchmarks display higher convergence rates for higher polynomial degrees and provide empirical evidence for the superlinear convergence of the lower energy bound. Although the focus is on the unstabilized HHO method, a detailed error analysis is provided for the stabilized version with a gradient reconstruction in the space of piecewise polynomials.
490

Existence and Stability of Periodic Waves in the Fractional Korteweg-de Vries Type Equations

Le, Uyen January 2021 (has links)
This thesis is concerned with the existence and spectral stability of periodic waves in the fractional Korteweg-de Vries (KdV) equation and the fractional modified Korteweg-de Vries (mKdV) equation. We study the existence of periodic travelling waves using various tools such as Green's function for fractional Laplacian operator, Petviashvili fixed point method, and a new variational characterization in which the periodic waves in fractional KdV and fractional mKdV are realized as the constrained minimizers of the quadratic part of the energy functional subject to fixed L3 and L4 norm respectively. This new variational framework allows us to identify the existence region of periodic travelling waves and to derive the criterion for spectral stability of the periodic waves with respect to perturbations of the same period. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.1328 seconds