• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptação mitocondrial induzida pelo exercício físico aeróbio: desvendando novos mecanismos moleculares / Aerobic exercise-induced mitochondrial adaptation: unraveling novel molecular mechanisms

Jannig, Paulo Roberto 26 September 2017 (has links)
O aumento da capacidade oxidativa é considerado o fator central dos seus benefícios à saúde induzidos pelo exercício físico aeróbio (EFA). A musculatura esquelética é um dos tecidos mais envolvidos na realização de exercícios físicos, com capacidade notável de adaptação metabólica e estrutural frente ao estímulo mecânico. Os músculos esqueléticos são ricos em mitocôndrias e altamente dependentes da fosforilação oxidativa para a produção energia. Assim, o aumento da capacidade aeróbia induzido pelo EFA ocorre grande parte em função de adaptações mitocondriais. Inúmeros estudos demonstram a capacidade do EFA em induzir biogênese mitocondrial, onde o coativador de transcrição PGC-1?1 atua coordenando a expressão de genes nucleares e mitocondriais no contexto do EFA. No entanto, animais com deleção de PGC- 1?1 no músculo esquelético ainda apresentam remodelamento mitocondrial importante após período de treinamento físico aeróbio, evidenciando a existência de mecanismos ainda desconhecidos. Embora a formação de novas mitocôndrias seja fundamental, a manutenção de mitocôndrias saudáveis por meio de mecanismos de controle de qualidade parece ser de igual ou maior importância para uma adaptação mitocondrial adequada. Um desses mecanismos de controle de qualidade mitocondrial envolve a remoção de mitocôndrias danificadas/envelhecidas via autofagia mitocondrial (mitofagia). Contudo, os mecanismos envolvidos na mitofagia induzida pelo EFA são pouco conhecidos. Considerando o papel da adaptação mitocondrial sobre os efeitos benéficos do EFA, realizamos um estudo exploratório para buscar novos mecanismos envolvidos neste processo. Para isso, utilizamos uma abordagem proteômica direcionada à fração mitocondrial muscular de camundongos submetidos a uma única sessão de EFA. Num primeiro estudo, utilizamos os resultados de proteômica para procurar por proteínas envolvidas na ativação da mitofagia durante o EFA. A partir desse estudo, verificamos que uma sessão de EFA de fato induz sinais de mitofagia na musculatura esquelética. Além disso, propomos que as proteínas Phb2 e Mief2 podem acumular em mitocôndrias danificadas durante o EFA e colaborar para o recrutamento da maquinaria autofágica para a organela, auxiliando no controle de qualidade e adaptação mitocondrial induzidos pelo EFA. Em segundo estudo, tivemos como objetivo identificar nos resultados de proteômica possíveis reguladores de transcrição gênica envolvidos na adaptação mitocondrial induzida pelo EFA. Dessa maneira, identificamos que a proteína mitocondrial Spryd4, cuja função não havia sido estudada até então, parece aumentar na fração mitocondrial muscular durante o EFA. Observamos ainda que a expressão gênica muscular de Spryd4 diminui em camundongos idosos ou com distrofia muscular, aumenta em animais saudáveis após treinamento físico aeróbio e também parece aumentar em humanos treinados. In vitro, observamos que a atenuação da expressão de Spryd4 em miotubos primários promove disfunção mitocondrial, associada à diminuição da expressão de genes de complexos mitocondriais e envolvidos no transporte e metabolismo de lipídeos, além de promover atrofia de miotubos. Num contexto geral, a análise do proteoma mitocondrial muscular após uma sessão de EFA nos permitiu identificar proteínas que parecem estar envolvidas em adaptações mitocondriais, em especial, em mecanismos de mitofagia e controle do fluxo de substratos energéticos / Increased oxidative capacity induced by regular aerobic exercise (AE) is considered a major factor in health. Skeletal muscle is one of the most compromised tissues during exercise and has remarkable metabolic and structural plasticity upon mechanical stimuli. Muscles are rich in mitochondria and heavily reliant on oxidative phosphorylation for energy production. Thus, increased aerobic capacity induced by regular AE occurs largely due to mitochondrial adaptations. Many studies have shown that AE is able to induce mitochondrial biogenesis, and the transcription coactivator PGC-1?1 is known to coordinated gene expression both in nuclei and mitochondria. However, muscle-specific PGC-1?1 knockout mice still display major mitochondrial remodeling after AE training, supporting the existence of unknown mechanisms of AE-induced mitochondrial adaptations. Although making new mitochondria is crucial, the maintenance of a healthy pool of this organelle through mechanisms of quality control seems to be of equal or greater importance during mitochondrial adaptation. One mechanism for mitochondrial quality control comprises the removal of damaged/aged mitochondria via autophagy (mitophagy). Nonetheless, the mechanisms of AE-induced mitophagy are poorly understood. Given the importance of mitochondrial adaptation to the health benefits of AE, we conducted an exploratory study to uncover new mechanisms underlying this process. For this, we performed a proteomic analysis in the skeletal muscle mitochondria-enriched fractions of mice submitted to a single bout of AE. In a first study, we have used these proteomics data to seek for proteins that might be involved in AE-induced mitophagy. On this matter, we confirmed that a single bout of AE in mice increases skeletal muscle mitophagy signaling. Additionally, we suggest that Phb2 and Mief2 accumulate in damaged mitochondria in skeletal muscle during AE and might assist in the recruitment of the autophagic machinery to the organelle, thus aiding to mitochondrial quality control and AE-induced mitochondrial adaptation. In a second study, we have used the same proteomics data to identify transcriptional regulators that might have a role in AE-induced mitochondrial adaptation. Thereby, we have found that the mitochondrial protein Spryd4, whose function was so far unknown, seems to increase in the skeletal muscle mitochondria-enriched fractions following AE. Here we show that skeletal muscle Spryd4 gene expression decreases in aged and dystrophic mice, increases in healthy trained animals and also seems to increase in trained humans. In vitro, we have seen that Spryd4 loss of function in primary myotubes promotes mitochondrial dysfunction, decreases expression of genes involved in mitochondrial complex function, as in fatty acid oxidation and transport. Indeed, Spryd4 loss of function promoted myotube atrophy. Taken together, by analyzing the skeletal muscle mitochondrial proteome after a single bout of AE in mice, we have identified proteins that might participate in AE-induced mitophagy and substrate metabolism, and thus in skeletal muscle adaptation to AE
2

Bicarbonato/CO2 aumenta dano em isquemia-reperfusão: da observação inicial à caracterização molecular / Bicarbonate/CO2 increase damage in ischemia-reperfusion injury: from observation to molecular characterization

Queliconi, Bruno Barros 17 October 2014 (has links)
Bicarbonato é uma importante espécie química para os seres vivos, sendo o principal tampão celular, alem de apresentar uma negligenciada atividade redox. Isquemia é um evento no qual existe inibição do aporte de nutrientes e oxigênio, sendo a reperfusão o retorno do fluxo de nutrientes e oxigênio, que é acompanhada por alta produção de radicais livres e morte celular. Nessa tese estudamos o efeito da presença de bicarbonato durante a isquemia-reperfusão. Em nosso modelo nós mantivemos o pH constante e modulamos a quantidade de bicarbonato enquanto células, órgãos e animais foram submetidos a isquemia-reperfusão. Utilizamos condições sem a presença de bicarbonato, a concentração basal sanguínea e uma concentração mais alta simulando o acúmulo de bicarbonato em condições isquêmicas. Nesses diversos modelos mostramos que a presença de bicarbonato aumenta o dano provocado por isquemia-reperfusão e provoca um aumento do acúmulo de proteínas oxidadas. A presença do bicarbonato não modifica a respiração, produção de espécies reativas de oxigênio, ou a morfologia mitocondrial, também não detectamos mudança na atividade do proteassoma e nos indicadores de autofagia geral. Entretanto detectamos um acúmulo de marcadores autofágicos na fração mitocondrial indicando inibição da mitofagia. Essa inibição foi confirmada ao detectarmos o acúmulo de uma proteína degradada especificamente por mitofagia enquanto não houve mudança em outra degradada pelo proteassoma. Além disso, ao inibirmos farmacologicamente a autofagia, reproduzimos o fenótipo causado pelo bicarbonato mesmo na sua ausência. Em conclusão, a presença de bicarbonato é deletéria em condições de isquemia/reperfusão devido a inibição da mitofagia / Bicarbonate is an important molecule in all living being, acting as the main cellular buffer. However, its biological and redox activity has been mostly neglected to date. Ischemia is an event in which an inhibition of nutrient availablity and oxygen flow occurs, while reperfusion is the return of nutrients and oxygen, accompanied of a burst of reactive oxygen species production and cell death. Here, we studied the effects of bicarbonate during cardiac ischemia-reperfusion. In our model, we kept the pH stable and changed the concentration of the bicarbonate. We then subjected cells, organs and animals to ischemia-reperfusion under conditions where there was no presence, basal blood concentration or a higher concentration of bicarbonate. In these diverse models, we found that the presence of bicarbonate increased damage after a ischemia-reperfusion, and promoted the accumulation of oxidized proteins. Bicarbonate did not change respiration, production of reactive oxygen species or the morphology of the mitochondria. There were also no changes in proteasome activity and in global autophagy markers, although there was an accumulation of mitophagy markers. We also found that mitophagy was responsible for the increased damage observed, since pharmacological inhibiting of autophagy abolished the increased damage caused by the presence of bicarbonate. In conclusion the presence of bicarbonate is deleterious in ischemia-reperfusion due mitophagy inhibition
3

Derivação de células tronco pluripotentes induzidas a partir de pacientes com doenças mitocondriais como modelo de estudo da herança mitocondrial / Induced pluripotent stem cells derived from patients with mitochondrial diseases as a model for studying mitochondrial inheritance

Macabelli, Carolina Habermann 30 November 2015 (has links)
Submitted by Caroline Periotto (carol@ufscar.br) on 2016-09-12T14:10:40Z No. of bitstreams: 1 DissCHM.pdf: 2847929 bytes, checksum: db6163924f9983d42120de5673f3df0a (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-13T14:25:07Z (GMT) No. of bitstreams: 1 DissCHM.pdf: 2847929 bytes, checksum: db6163924f9983d42120de5673f3df0a (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-13T14:25:18Z (GMT) No. of bitstreams: 1 DissCHM.pdf: 2847929 bytes, checksum: db6163924f9983d42120de5673f3df0a (MD5) / Made available in DSpace on 2016-09-13T14:25:25Z (GMT). No. of bitstreams: 1 DissCHM.pdf: 2847929 bytes, checksum: db6163924f9983d42120de5673f3df0a (MD5) Previous issue date: 2015-11-30 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Mitochondrial dysfunctions caused by mutations in the mitochondrial DNA (mtDNA) represent an important group of human pathologies. However, it is not possible to predict with accuracy the risk of a woman with mutant mtDNA to transmit her pathology to her descendants. This is mainly due to out limited understanding of the molecular basis of mitochondrial inheritance. Since development of a technology that enabled derivation of induced pluripotent stem cells (iPSCs) from in vitro culture of somatic cells, iPSCs have become an interesting model to study mitochondrial inheritance. Derivation of iPSCs from patients with pathogenic mtDNA mutations has revealed that the mutant load decreases through in vitro culture of iPSCs, suggesting the existence of a specific mechanism that eliminates mutant mtDNA in the germ line. Thus, the aim of this work was to use iPSCs derived from patients with mitochondrial disorders to investigate the existence of a mechanism that eliminates mtDNA molecules with pathogenic mutations. In this way, we used heteroplasmic fibroblasts harboring a point mutation A3243G in mtDNA causing mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS); heteroplasmic fibroblasts harboring a deletion in mtDNA causing Kearn-Sayre Syndrome (KSS) and homoplasmic fibroblasts containing only wild-type mtDNA (Control). The KSS lineage derivation resulted in iPSCs with low levels of mutant mtDNA (<0,1%), and the elimination of mutant molecules during the culture. The MELAS derivation resulted in iPSCs with high levels of mutant mtDNA (> 98%), and indication of mutant molecules elimination as well. However, unexpectedly, there was no reduction of mtDNA content in iPSCs compared to fibroblasts in all lineages. On contrary, mtDNA copy number increased in MELAS and KSS iPSCs, perhaps due to the high levels of mutations in the cells. No effect of Rapamycin (mitophagy inductor) treatment was detected on the yield of colony formation in MELAS iPSCs. Additionally, Rapamycin did not affect the mutation levels in MELAS iPSCS compared to untreated iPSCs. Finally, gene expression analysis of MELAS iPSCs provided evidences of an autophagic mechanism directed towards the mitochondrion. / Disfunções mitocondriais causadas por mutações no DNA mitocondrial (mtDNA) representam um importante grupo de patologias humanas. No entanto, não é possível predizer com acurácia o risco de uma mulher acometida por uma mutação no mtDNA transmitir a patologia para seus descendentes. Isso se deve, em parte, ao desconhecimento dos mecanismos moleculares que controlam a herança mitocondrial. Com o desenvolvimento de metodologias que possibilitam a derivação de células pluripotentes induzidas (iPSCs) a partir de células somáticas cultivadas in vitro, as iPSCs se tornaram um interessante modelo para o estudo da herança mitocondrial. A derivação de iPSCs de pacientes com mutações patogênicas no mtDNA tem revelado que a porcentagem de moléculas mutantes diminui ao longo do cultivo, sugerindo a existência na linhagem germinativa de mecanismos específicos para eliminação de mtDNAs mutantes. Portanto, o presente trabalho investigou em iPSCs derivadas de pacientes com desordens mitocondriais a existência de um mecanismo celular que elimina as moléculas de mtDNA com mutações patogênicas. Para tanto, foram utilizados fibroblastos heteroplásmicos portadores da mutação pontual A3243G no mtDNA causadora de encefalomiopatia mitocondrial, acidose lática e episódios tipo acidente vascular cerebral (MELAS); fibroblastos heteroplásmicos portadores de uma deleção de 4,9 kb no mtDNA causadora da Síndrome de Kearns-Sayre (KSS) e fibroblastos Controle, contendo apenas mtDNA selvagem. A derivação de linhagens portadoras de KSS resultou em iPSCs com baixos níveis de mtDNA mutante (< 0,1%), e na eliminação de moléculas mutantes ao longo do cultivo. A derivação de linhagens portadoras de MELAS resultou em iPSCs com alta taxa de mutação (> 98%), também com indícios de diminuição da quantidade de moléculas mutantes ao longo do cultivo. No entanto, ao contrário do esperado, não houve diminuição da quantidade de cópias de mtDNA nas iPSCs em relação aos fibroblastos em todas as linhagens (Controle, KSS e MELAS), sendo que as iPSCs de MELAS e KSS apresentaram um aumento significativo na quantidade de cópias de mtDNA, provavelmente devido a efeitos causados pela mutação no mtDNA. Ao analisar o efeito do tratamento com Rapamicina (indutor de mitofagia) durante a derivação de MELAS não observamos aumento na eficiência de formação de colônias, além de o tratamento não afetar a quantidade de mtDNA mutante, resultando em iPSCs com níveis de mutação similares aos encontrados nas iPSC MELAS não tratadas com o rapamicina. Por fim, resultados de expressão gênica das iPSCs do grupo MELAS revelaram indícios de mecanismos autofágicos direcionados a mitocôndria provavelmente devido ao efeitos causados pela a alta taxa da mutação. / 2013/13869-5
4

Bicarbonato/CO2 aumenta dano em isquemia-reperfusão: da observação inicial à caracterização molecular / Bicarbonate/CO2 increase damage in ischemia-reperfusion injury: from observation to molecular characterization

Bruno Barros Queliconi 17 October 2014 (has links)
Bicarbonato é uma importante espécie química para os seres vivos, sendo o principal tampão celular, alem de apresentar uma negligenciada atividade redox. Isquemia é um evento no qual existe inibição do aporte de nutrientes e oxigênio, sendo a reperfusão o retorno do fluxo de nutrientes e oxigênio, que é acompanhada por alta produção de radicais livres e morte celular. Nessa tese estudamos o efeito da presença de bicarbonato durante a isquemia-reperfusão. Em nosso modelo nós mantivemos o pH constante e modulamos a quantidade de bicarbonato enquanto células, órgãos e animais foram submetidos a isquemia-reperfusão. Utilizamos condições sem a presença de bicarbonato, a concentração basal sanguínea e uma concentração mais alta simulando o acúmulo de bicarbonato em condições isquêmicas. Nesses diversos modelos mostramos que a presença de bicarbonato aumenta o dano provocado por isquemia-reperfusão e provoca um aumento do acúmulo de proteínas oxidadas. A presença do bicarbonato não modifica a respiração, produção de espécies reativas de oxigênio, ou a morfologia mitocondrial, também não detectamos mudança na atividade do proteassoma e nos indicadores de autofagia geral. Entretanto detectamos um acúmulo de marcadores autofágicos na fração mitocondrial indicando inibição da mitofagia. Essa inibição foi confirmada ao detectarmos o acúmulo de uma proteína degradada especificamente por mitofagia enquanto não houve mudança em outra degradada pelo proteassoma. Além disso, ao inibirmos farmacologicamente a autofagia, reproduzimos o fenótipo causado pelo bicarbonato mesmo na sua ausência. Em conclusão, a presença de bicarbonato é deletéria em condições de isquemia/reperfusão devido a inibição da mitofagia / Bicarbonate is an important molecule in all living being, acting as the main cellular buffer. However, its biological and redox activity has been mostly neglected to date. Ischemia is an event in which an inhibition of nutrient availablity and oxygen flow occurs, while reperfusion is the return of nutrients and oxygen, accompanied of a burst of reactive oxygen species production and cell death. Here, we studied the effects of bicarbonate during cardiac ischemia-reperfusion. In our model, we kept the pH stable and changed the concentration of the bicarbonate. We then subjected cells, organs and animals to ischemia-reperfusion under conditions where there was no presence, basal blood concentration or a higher concentration of bicarbonate. In these diverse models, we found that the presence of bicarbonate increased damage after a ischemia-reperfusion, and promoted the accumulation of oxidized proteins. Bicarbonate did not change respiration, production of reactive oxygen species or the morphology of the mitochondria. There were also no changes in proteasome activity and in global autophagy markers, although there was an accumulation of mitophagy markers. We also found that mitophagy was responsible for the increased damage observed, since pharmacological inhibiting of autophagy abolished the increased damage caused by the presence of bicarbonate. In conclusion the presence of bicarbonate is deleterious in ischemia-reperfusion due mitophagy inhibition
5

MECANISMOS DE ADAPTACIÓN DE LA ACTIVIDAD MITOCONDRIAL EN RESPUESTA A ESTRÉS

Timón Gómez, Alba 30 May 2016 (has links)
[EN] Eukaryotic cells adapt to environmental changes ("stress") through signal transduction pathways which coordinate complex adaptive responses. Mitochondria are able to respond to different external stimuli in a dynamic manner. In previous studies, mitochondria were shown to play an important role in adaptation to hyperosmotic stress and defects in many mitochondrial functions cause sensitivity to this stress. In the present work, we investigate novel mechanisms of mitochondrial adaptation in response to stress. First of all, the role of the mitochondrial pyruvate carrier complex (MPC) in this adaptation was analyzed. This carrier is composed by three proteins in yeast: Mpc1, Mpc2 and Mpc3. MPC3 is upregulated upon salt stress and during a diauxic shift, which leads to an increase in Mpc3 protein abundance. HOG pathway, implicated in osmostress response, is needed for the efficient induction of MPC3 transcription. Our analysis suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. In this way, Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. In addition, Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Therefore, our results identify that the regulated mitochondrial pyruvate uptake via different Mpc proteins might be an important determinant of respiration rate and stress resistance. Secondly, since pyruvate flux to mitochondria is modified according to environmental conditions, here we study also possible changes in electron transport chain complex subunits. We found that a switch to partially or completely respiratory energy sources causes selective degradation of respiratory complex I and III subunits. Moreover, this degradation was also observed when there was a specific organelle damage caused by valinomycin, to maintain cell homeostasis. Interestingly, the loss of Atg32 function only partially affected the respiratory complex specific degradation, while the Atg11 protein was absolutely required in this process. Fission and fusion machinery proteins (Fzo1 and Fis1) and some mitochondrial proteases (Yme1, Pim1 and Afg3) also have a role in the valinomycin-mediated mitophagy. This process might start by Atg11 accumulation in foci close to the mitochondria shortly after valinomycin treatment. In this work, we describe for the first time a specific mechanism of mitophagy mediated by damage in yeast, which opposes to the concept of a generalized degradation of the organelle. / [ES] Las células eucariotas responden a cambios en su entorno ("estrés") a través de rutas de transmisión de señales que coordinan respuestas adaptativas muy complejas. Las mitocondrias son orgánulos muy dinámicos capaces de responder a diversos estímulos externos. En estudios anteriores, se demostró que la mitocondria tiene un papel en la adaptación a estrés hiperosmótico, ya que los mutantes con defectos en diversos componentes mitocondriales muestran mayor sensibilidad a este estrés. En este trabajo, se ha investigado nuevos mecanismos de adaptación de la actividad mitocondrial en respuesta a estrés. Por una parte, se ha estudiado el papel del complejo transportador de piruvato mitocondrial (MPC) en esta adaptación. Este transportador está conformado por tres proteínas en levadura: Mpc1, Mpc2 y Mpc3. El gen MPC3 sufre una fuerte inducción transcripcional en condiciones de estrés osmótico y cambio diáuxico, que se traduce en un aumento de la cantidad de proteína Mpc3. Esta regulación se vio que dependía de la ruta HOG, implicada en la respuesta a estrés osmótico, y no ocurría en Mpc1 y Mpc2. Se comprobó, además, que los cambios en la composición de MPC en la mitocondria regulaban la biosíntesis de aminoácidos, la capacidad respiratoria y la tolerancia a estrés oxidativo de la célula. De esta forma, Mpc2 es la proteína más abundante en condiciones fermentativas sin estrés y es necesaria para la biosíntesis de aminoácidos; mientras que Mpc3 es el miembro más abundante ante estrés salino o cuando se requiere una elevada tasa respiratoria. Además, Mpc3 estimula la respiración y aumenta la tolerancia a estrés oxidativo. Por tanto, nuestros resultados identifican que la entrada de piruvato en la mitocondria y su posterior uso están regulados por la composición específica de las subunidades del transportador y determina la tasa respiratoria y la resistencia a estrés. Por otra parte, dado que el flujo de piruvato a la mitocondria se modificaba en función de las condiciones ambientales, se quiso estudiar qué ocurría en los complejos de la cadena de transporte de electrones en estas condiciones. Se observó que los complejos I y III se degradaban ante elevadas tasas respiratorias, al parecer como un mecanismo de reciclaje. Además, ante un daño mitocondrial específico utilizando valinomicina, también existía una degradación específica de los complejos respiratorios I y III, para mantener la homeostasis celular. Este proceso es dependiente de Atg11, e independiente de Atg32. También parecen implicadas proteínas de la maquinaria de dinámica mitocondrial (Fzo1 y Fis1) y algunas proteasas mitocondriales (Yme1, Pim1 y Afg3). El inicio de este proceso parece producirse ante la aparición de foci de Atg11 cercanos a la mitocondria. Se describe por primera vez en levadura un mecanismo específico de mitofagia inducida por daño, que contrasta con el concepto de degradación generalizada del orgánulo. / [CA] Les cèl·lules eucariotes responen a canvis al seu entorn ("estrès") a través de rutes de transmissió de senyals que coordinen respostes adaptatives molt complexes. Les mitocòndries són orgànuls molt dinàmics capaços de respondre a diversos estímuls externs. A estudis previs, es va demostrar que la mitocòndria té un paper en l'adaptació a estrès hiperosmòtic, ja què els mutants amb defectes en diversos components mitocondrials mostren major sensibilitat a aquest estrès. A aquest treball, s'ha analitzat nous mecanismes d'adaptació de l'activitat mitocondrial en resposta a estrès. Per una banda, s'ha estudiat el paper del complex transportador de piruvat mitocondrial (MPC) a aquesta adaptació. Aquest transportador està conformat per tres proteïnes en llevat: Mpc1, Mpc2 i Mpc3. El gen MPC3 pateix una forta inducció transcripcional en condicions d'estrès osmòtic i canvi diàuxic, que es tradueix en un augment de la quantitat de proteïna Mpc3. Aquesta regulació depèn de la ruta HOG, implicada en la resposta a estrès osmòtic, i no tenia lloc en Mpc1 i Mpc2. A més, es va comprovar que els canvis en la composició de MPC a la mitocòndria regulaven la biosíntesi de aminoàcids, la capacitat respiratòria i la tolerància a estrès oxidatiu de la cèl·lula. D'aquesta manera, Mpc2 és la proteïna més abundant en condicions fermentatives en absència d'estrès, mentre que Mpc3 és el membre més abundant davant d'estrès salí o quan és necessària una elevada taxa respiratòria. A més, Mpc3 estimula la respiració i augmenta la resistència a estrès oxidatiu. Per tant, els nostres resultats identifiquen que l'entrada de piruvat a la mitocòndria i el seu posterior ús estan regulats per la composició específica de les subunitats del transportador i determina la taxa respiratòria i la resistència a estrès. Per altra banda, com el flux de piruvat a la mitocòndria es modifica en funció de les condicions ambientals, es va voler estudiar què succeïa als complexes de la cadena de transport electrònic a aquestes condicions. Es va observar que els complexes I i III es degradaven davant d'elevades taxes respiratòries, com a mecanisme de reciclatge. A més, davant d'un dany mitocondrial específic utilitzant valinomicina, també existia una degradació específica dels complexes respiratoris I i III, per a mantenir l'homeòstasi cel·lular. Aquest procés és depenent d'Atg11, però independent d'Atg32. També semblen implicades proteïnes de la maquinària de dinàmica mitocondrial (Fzo1 i Fis1) i algunes proteases mitocondrials (Yme1, Afg3 i Pim1). L'inici d'aquest procés sembla produir-se per l'aparició de foci d'Atg11 propers a la mitocòndria. Per primera volta, es descriu en llevat un mecanisme específic de mitofagia induïda per dany, que contrasta amb el concepte de degradació generalitzada de l'orgànul. / Timón Gómez, A. (2016). MECANISMOS DE ADAPTACIÓN DE LA ACTIVIDAD MITOCONDRIAL EN RESPUESTA A ESTRÉS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64873

Page generated in 0.0375 seconds