311 |
Rôle des protéines ERM au cours de la morphogenèse cellulaireLeguay, Kévin 06 1900 (has links)
La morphogenèse cellulaire représente l’ensemble des évènements qui dictent la forme et la structure d’une cellule. Ces changements morphologiques sont importants pour de nombreux mécanismes vitaux, comme le développement embryonnaire, la réaction inflammatoire ou encore la cicatrisation. Pour cela, la morphogénèse cellulaire dépend principalement du remodelage du cytosquelette cellulaire qui, une fois associé à la membrane plasmique, forme l’armature de la cellule. L’ezrine, la radixine et la moésine appartiennent à la famille de protéines ERM et lient la membrane plasmique au cytosquelette d’actine et aux microtubules. De ce fait, les protéines ERM sont impliquées dans différents processus fondamentaux nécessitant un remodelage du cortex cellulaire tels que la mitose et la migration. Dans un contexte pathologique, la surexpression et/ou la sur-activation des protéines ERM corrèlent avec un haut potentiel métastatique et un pauvre pronostic chez les patients. Une meilleure compréhension de la régulation de ces trois protéines pourrait ainsi aider au développement de nouvelles solutions thérapeutiques. L’objectif de mon doctorat portait sur l’identification et la caractérisation de nouvelles voies de signalisation régulant les protéines ERM. Dans un premier temps (i), j’ai participé au développement et la caractérisation de sondes BRET2 permettant de suivre l’activité de chaque protéine ERM en temps réel. Ces sondes BRET2 sont d’ailleurs compatibles avec des études à grande échelle ce qui nous permettra de réaliser des cribles génomiques et chimiques dans le but d’identifier, respectivement, de nouveaux régulateurs et inhibiteurs pharmacologiques des protéines ERM. Ensuite (ii), grâce aux sondes BRET2, nous avons identifié les microtubules en tant que nouveaux régulateurs négatifs des protéines ERM. Nous avons alors montré que la dépolymérisation des microtubules d’interphase à l’entrée en mitose participe à l’activation des protéines ERM et à l’arrondissement cellulaire. Enfin (iii), nous avons montré que le récepteur couplé aux protéines G TPα régule l’activité des protéines ERM dans des cellules de cancer du sein triple négatif. Cette régulation est d’ailleurs importante pour la motilité de ces cellules. Pour conclure, en plus d’avoir développé de nouveaux outils utiles pour des études à grande échelle, mon travail de doctorat a permis de mettre en lumière deux nouvelles voies de signalisation régulant les protéines ERM au cours de la mitose et la migration cellulaire. Sans compter l’apport de nouvelles informations sur un aspect fondamental, mon travail a apporté de nouvelles pistes de réflexion quant aux rôles des protéines ERM dans le développement des métastases. / Cell morphogenesis represents the set of events that dictate the shape and structure of a cell. These morphological changes are important for many vital mechanisms such as embryonic development, inflammatory response, or wound healing. Cell morphogenesis depends mainly on the remodeling of the cell cytoskeleton which forms the framework of the cell when associated with the plasma membrane. Ezrin, radixin and moesin belong to the ERM family and crosslink the plasma membrane to the actin cytoskeleton and microtubules. Therefore, ERMs are involved in various fundamental processes requiring remodeling of the cell cortex such as mitosis and migration. In a pathological context, overexpression and/or overactivation of ERMs correlate with high metastatic potential and poor prognosis in patients. Thus, a better understanding of the regulation of these three proteins could help in the development of new therapeutic solutions. The aim of my PhD work was to identify and characterize novel signaling pathways regulating ERMs. In a first step (i), I participated in the development and characterization of BRET2 biosensors allowing to follow the activity of each ERM protein in real time. These BRET2 biosensors are compatible with large-scale studies which will allow us to perform genomic and chemical screens to identify, respectively, new upstream regulators and pharmacological inhibitors of ERMs. Secondly (ii), based on BRET2-chemical screen, we identified microtubules as new negative regulators of ERMs. We then showed that depolymerization of interphase microtubules at mitosis entry triggers ERM activation and cell rounding. Finally (iii), we showed that the G protein-coupled receptor TPα regulates the activity of ERMs in triple negative breast cancer cells. This regulation is important for the motility of these cells. To conclude, in addition to having developed new tools useful for large-scale studies, my PhD work has uncovered two new signaling pathways regulating ERMs during mitosis and cell motility. In addition to providing new information on a fundamental aspect, my work has provided new insights into the roles of ERMs in the development of metastasis.
|
312 |
Deciphering the role of Ankle2 during mitotic exitJordana, Laia 04 1900 (has links)
La progression mitotique est principalement régulée par la phosphorylation et la déphosphorylation des protéines. La kinase dépendante des cyclines liée à la cycline B (Cdk1 - cycline B) et d'autres kinases phosphorylent une myriade de protéines pour promouvoir l’entrée à la mitose. Ces phosphorylations sont réversées par les phosphatases lors de la sortie mitotique. La protéine phosphatase 2A avec sa sous-unité régulatrice B55 (PP2A-B55) est une des principales phosphatases neutralisant les phosphorylations par Cdk1. Dans ce projet, nous avons vu que Ankle2 participe à la sortie de la mitose. En utilisant D. melanogaster comme modèle puissant, nous avons observé que Ankle2 est important pour le recrutement des protéines BAF et Lamin associées à l'enveloppe nucléaire (NE) à la télophase, assurant la formation d'un seul noyau. In vivo, nos résultats indiquent que Ankle2 est crucial pour le développement de l'embryon de drosophile, car les embryons ARNi Ankle2 sont arrêtés lors de la première mitose. Pour amorcer l’étude des mécanismes moléculaires par lesquels Ankle2 remplit ces foncions, nous avons identifié ses partenaires d’interactions. Nous avons constaté que Ankle2 est associé à une forme active de PP2A, suggérant Ankle2 comme une sous-unité régulatrice potentielle de PP2A. De plus, Ankle2 forme un complexe avec la cycline B et les Cdks mitotiques, et nos résultats génétiques suggèrent que les deux protéines peuvent avoir des rôles opposés. Nous avons également découvert que Ankle2 interagit avec la protéine du réticulum endoplasmique (ER) Vap33 à travers son motif FFAT. Dans ce projet, nous avons constaté que Ankle2 est une protéine associée au ER chez la drosophile qui est cruciale pour la complétion de la mitose, et que pourrait réguler l'activité des kinases et phosphatases mitotiques. Cette étude servira de base pour déchiffrer les mécanismes moléculaires précis par lesquels Ankle2 favorise la sortie de la mitose. / Protein phosphorylation and dephosphorylation is one of the mechanisms that regulates mitotic progression. Cyclin dependent kinase 1 bound to cyclin B (Cdk1 – cyclin B) and other kinases phosphorylate a myriad of proteins to promote early mitotic events. These phosphorylations are reversed by phosphatases during mitotic exit. The Protein Phosphatase 2A with its regulatory subunit B55 (PP2A-B55) is the major phosphatase counteracting Cdk1 phosphorylations. In this project, we have found that Ankle2 participates in mitotic exit. Using D. melanogaster as a model, we have found that Ankle2 is important for the Nuclear Envelope (NE)-associated proteins BAF and Lamin recruitment at telophase, ensuring the formation of a single nucleus. In vivo, we have found that Ankle2 is crucial for Drosophila embryo development, as RNAi Ankle2 embryos are arrested in the first mitosis. To study the molecular mechanisms by which Ankle2 promotes mitotic exit, we identified its interacting partners. We found that Ankle2 is associated with an active form of PP2A, suggesting Ankle2 as a potential regulatory subunit of PP2A. Moreover, Ankle2 engages in a complex with cyclin B and mitotic Cdks, and our genetic results suggest that Ankle2 and mitotic cyclin – Cdk complex may have opposite roles. We have also found that Ankle2 interacts with the Endoplasmic-Reticulum (ER) protein Vap33 through its FFAT motif. In this project, we have found that Ankle2 is an ER-associated protein in Drosophila that is crucial for completion of mitosis, probably regulating the activity of mitotic kinases and phosphatases. This study will serve as a basis to decipher the precise molecular mechanisms by which Ankle2 promotes mitotic exit.
|
313 |
Validation of synthetic lethal hits of microtubule targeting agentsDi Lalla, Matthew 05 1900 (has links)
Les microtubules, composants clés du cytosquelette des cellules eucaryotes, sont des polymères de tubuline très dynamiques et impliqués dans une grande variété de processus cellulaires. Leur rôle essentiel dans le cycle cellulaire a fait d’eux une cible validée en thérapie anticancéreuse. Malgré l’efficacité clinique des agents ciblant les microtubules (ACM), les effets secondaires compliquent l’utilisation. Nous avons cherché à identifier des vulnérabilités génétiques qui peuvent être exploitées pour diminuer la dose requise tout en maintenant l'efficacité, et donc réduire les effets secondaires. En collaboration avec le laboratoire Tyers à l’IRIC, nous avons réalisé un criblage génétique basé sur la létalité synthétique avec des agents antiprolifératifs, dont les ACMs. Nous avons sélectionné les gènes dont l’extinction sensibilisait les cellules aux ACMs. J’ai confirmé que l’invalidation de chacun des gènes GNA13, SEPHS1, DLGAP5 et des gènes QRICH1, DLGAP5 sensibilisaient les cellules NALM6 au docétaxel et la vincristine respectivement. En revanche, aucune invalidation de ces gènes n'a augmenté la sensibilité au docétaxel dans les cellules U2OS.
En plus de son effet avec le docétaxel, le gène GNA13 s’est distingué être une cible particulièrement intéressante. En effet, la perte complète de GNA13 augmente considérablement la fréquence et la gravité d’erreurs de ségrégation des chromosomes dans les cellules U2OS. Cette augmentation n’a pas été rectifiée à la suite d’un traitement avec la molécule UMK57, connue pour réduire le taux d’erreurs de ségrégation des chromosomes. De manière intéressante, la perte complète de GNA13 augmente également la fréquence des erreurs de ségrégation des chromosomes dans les cellules RPE1, cellules non-cancéreuses et stables au niveau chromosomique. Cela suggère que la perte complète de GNA13 ne nécessite pas de transformation ni d'instabilité chromosomique, comme conditions préalables pour exacerber l'instabilité chromosomique.
L’ensemble de ces résultats ouvre une nouvelle voie de stratégies thérapeutiques anticancéreuses, à savoir, le traitement des cancers présentant une mutation des gènes QRICH1, DLGAP5, GNA13, et SEPHS1 avec de faibles doses d’ACMs. En particulier, GNA13 est fréquemment muté dans certains lymphomes. De plus, les résultats obtenus démontrent que la perte complète de GNA13 aggrave l’instabilité chromosomique et par conséquent, pourrait être impliquée dans la cancérogenèse. / Microtubules, key components of the eukaryotic cytoskeleton, are highly dynamic polymers of tubulin implicated in a wide variety of cellular processes. Their essential roles in the cell cycle have made them a valid target in cancer therapy. Despite the clinical efficacy of microtubule targeting agents (MTA), their use is hampered by side effects. We sought to identify genetic vulnerabilities that can be exploited to decrease the required dose while maintaining efficacy, and therefore reduce side effects. In collaboration with the Tyers laboratory at IRIC, we carried out a genetic screen based on synthetic lethality with antiproliferative agents, including MTAs. We have selected genes whose knockout sensitized cells to MTAs. I have confirmed that the knockout of GNA13, SEPHS1, DLGAP5, and QRICH1, DLGAP5, sensitize NALM6 cells to docetaxel and vincristine respectively. However, no knockout of these genes increased the sensitivity to docetaxel in U2OS cells.
In addition to its effect with docetaxel, GNA13 stood out as being a particularly exciting target. GNA13 knockout increased the frequency and severity of chromosome segregation errors in U2OS cells. This increase was not corrected following treatment with UMK57, a molecule known to reduce the rate of chromosome segregation errors. Interestingly, the GNA13 knockout also increased the frequency of chromosome segregation errors in non-cancerous and chromosomally stable RPE1 cells. This suggests that GNA13 does not require transformation nor chromosomal instability as prerequisites for exacerbating chromosomal instability.
Overall, these results open up a new avenue of anticancer therapeutic strategies, namely, the treatment of cancers presenting mutations in QRICH1, DLGAP5, GNA13, and SEPHS1 with lower doses of MTAs. In particular, GNA13 is frequently mutated in certain lymphomas. In addition, the results obtained demonstrate that GNA13 knockout exacerbates chromosomal instability and, therefore, could be involved in carcinogenesis.
|
314 |
Aneuploidy and cell cycle control in the mouse preimplantation embryoBrennan-Craddock, Henry 04 1900 (has links)
Durant la division cellulaire, la ségrégation des chromosomes et le partage du cytoplasme sont essentiels pour maintenir l'intégrité génomique. Cependant, les erreurs de ségrégation sont fréquentes chez l'embryon préimplantatoire de mammifère et entraînent un gain ou une perte de chromosomes, appelé aneuploïdie. L'aneuploïdie est préjudiciable au développement et est la principale cause de pertes de grossesse.
La mitose est coordonnée par cycle cellulaire, notamment la Cycline-B. Comprendre comment la destruction de la Cycline-B contrôle la sortie de la mitose des embryons pourrait expliquer pourquoi l'aneuploïdie est courante en clinique de fertilité. Nous avons étudié la destruction de la Cycline-B en fonction du stade de développement et de l'aneuploïdie. La littérature suggère que l’aneuploïdie perturbe le cycle cellulaire conduisant les cliniques de fertilité à utiliser la durée du cycle cellulaire et la morphologie (morphocinétique) pour prédire la santé de l'embryon. Cependant, la prédiction de la ploïdie par morphocinétique reste à démontrer. Notre objectif était de savoir comment l'aneuploïdie affecte le cycle cellulaire et le développement de l'embryon.
Après une micro-injection de CyclineB1:GFP (Cycline-B) et H2B:RFP (chromosomes), les embryons de souris furent imagés par microscopie confocale. Des cellules aneuploïdes furent générées chimiquement pour évaluer leurs morphocinétiques. Curieusement, l'apparition de la Cycline-B après nuclear envelope breakdown a été devancée avec la progression du développement indépendamment de la taille des cellules. De plus, les erreurs de ségrégation ont peu impacté le développement et la destruction de la Cycline-B. Nous concluons que la morphocinétique est un outil prédictif peu fiable pour identifier les embryons aneuploïdes. / During cell division, it is essential that chromosome segregation during mitosis, and the partitioning of the cytoplasm at cytokinesis occur in successive timing to maintain genomic integrity. However, segregation errors are frequently observed in the early mammalian embryo, causing daughter cells to inherit whole chromosome gains and losses, termed aneuploidy. Aneuploidy is detrimental to development, being the leading cause of pregnancy loss and developmental disorders.
The timing of mitosis is coordinated by the cell cycle component, Cyclin B. Understanding how Cyclin B destruction temporally controls mitotic exit in embryos could help elucidate why aneuploidy is common in IVF clinics. We investigate how Cyclin B destruction changes in different developmental stages and the presence of aneuploidy. Literature suggests aneuploidy disrupts the cell cycle, leading IVF clinics to use cell cycle timings and morphology (morphokinetics) to predict embryo health. However, whether morphokinetics predicts embryo ploidy is uncertain. We seek to investigate how aneuploidy affects the cell cycle and embryo development.
We used live-cell confocal imaging and microinjection of CyclinB1:GFP and H2B:RFP mRNA to visualise Cyclin B and chromosomes during mitosis in the 2-, 4- and 8-cell stage mouse embryo. Secondly, we pharmacologically-induced aneuploidy to assess aneuploid morphokinetics. Interestingly, we observe a developmental trend, independent of cell size, where Cyclin B onset begins progressively sooner after NEBD at the 2-, 4- and 8-cell stage. Additionally, chromosome segregation errors had little impact on Cyclin B destruction and development. Finally, we find morphokinetics to be a poor predictive tool in identifying aneuploid embryos.
|
315 |
STUDIES ON ARABIDOPSIS PROTEINS REQUIRED FOR THE ESTABLISHMENT AND RELEASE OF SISTER CHROMATID COHESIONBOATENG, KINGSLEY A. 23 July 2007 (has links)
No description available.
|
316 |
Functions of Gamma-tubulin in the Spindle Assembly Checkpoint and APC/C Regulation in <i>Aspergillus nidulans</i>Edgerton, Heather Dawn 17 October 2013 (has links)
No description available.
|
317 |
Ets2 and Pten regulate ErbB2-driven mammary tumorigenesis from stromal fibroblastsBalakrishnan, Subhasree 12 September 2016 (has links)
No description available.
|
318 |
Unraveling the Functions of Plant Ran GTPase-Activating Protein (RanGAP) by T-DNA Mutant Analysis and Investigation of Molecular Interactions of Tandem Zinc Finger 1 (TZF1) in Arabidopsis thalianaRodrigo-Peiris, Thushani 28 August 2012 (has links)
No description available.
|
319 |
Towards Generative Modeling of Mitotic Cells Using Latent Diffusion Models / Generativ modellering av celler i mitos med latenta diffusionsmodellerKuttainen Thyni, Emma January 2024 (has links)
The integration of artificial intelligence (AI) into biomedical research has given rise to new models and research topics in biomedicine. Whole-cell modeling aims to create a holistic understanding of the cell by integrating diverse data. One method of comprehension is the characterization and imitation of a system. Phenomenological cell models imitate cell structure and behavior based on, for example, images. Thus generative AI image models present one approach to developing such phenomenological models of cell systems. Diffusion models are a popular generative model class for image generation. Briefly, diffusion models consist of a forward and reverse diffusion process, where the forward process iteratively adds noise to an image and the reverse process learns to remove it. Image generation is achieved by sampling from noise and applying the learned reverse process. The generation may be conditioned to achieve a specific output. The diffusion process is computationally expensive to evaluate in pixel space. The latent diffusion model presents a solution by moving the diffusion process to the latent space of an autoencoder. A latent diffusion model has been trained to develop a phenomenological model of cells in mitosis. The aim is to identify spatial and temporal patterns in the dataset, consisting of fluorescence microscopy images of cells in mitosis, and condition the output of the latent diffusion model on labels associated with the data. The latent diffusion can generate images unconditionally and conditionally. The unconditionally generated images appear visually similar, but quantitative metrics suggest the potential for improvement. Qualitative analysis of the conditionally generated images indicates opportunities for enhancement. The analysis from the proposed method for objective assessment of conditionally generated images, feature extraction of images followed by dimension reduction using uniform manifold approximation and projection, concurs with the visual assessment. However, the quantitative metrics and the proposed method of conditional assessment rely upon InceptionV3 to extract features from the images. InceptionV3 has not been trained on biomedical images and thus the metrics and methods should not be overly relied upon. In general, there is a need for new assessment techniques suitable for non-class conditionally generated images that are unsuitable for evaluation using user studies. / Integrering av artificiell intelligens (AI) i biomedicinsk forskning har gett upphov till nya modeller och forskningsfrågor inom biomedicin. Helcellsmodellering syftar till att skapa ett kvantitativt perspektiv på cellbiologi och skapa holistisk kunskap om cellen. Ett system kan förstås genom karaktärisering och imitation. Generativ AI är ett tillvägagångssätt för att utveckla modeller som kan imitera och karaktärisera celler baserat på bilder. Diffusionsmodeller är en populär klass av generativa modeller för bildgenerering. Diffusionsmodeller består av en framåt- och bakåtdiffusionsprocess, där den framåtriktade processen iterativt lägger till brus i en bild och den bakåtriktade processen lär sig att ta bort det. Nya bilder genereras genom att tillämpa den inlärda bakåtriktade processen på en bild av brus. Generationen kan göras villkorlig för att forma bilden efter givna villkor. Den beräkningsintensiva diffusionsprocessen kan effektiviseras genom att introducera en "autoencoder" som flyttar diffusionsprocessen från pixelrummets stora dimension till det latenta rummet, som har en mindre dimension. Det utgör basen för en latent diffusionsmodell. För att utveckla en fenomenologisk modell av celler i mitos har en latent diffusionsmodell tränats på fluorescensmikroskopibilder på celler som genomgår mitos. Målet är att identifiera spatiala och temporala mönster i bilderna och skapa en modell som kan villkora bildgenerationen baserat på givna spatiala och temporala villkor associerade med bilderna. Latenta diffusionsmodeller kan skapa bilder både villkorligen och helt fritt från den underliggande datadistributionen. Den fria generationen av bilder resulterar i visuellt lika bilder men kvantitativa mått indikerar att modellen kan förbättras. Villkorligt genererade bilder håller inte samma visuella kvalité. Behovet av tekniker för att utvärdera villkorligt genererade bilder har identifierats och en metod har föreslagits. Metoden involverar att extrahera attribut från bilderna och reducera dimensionen av attributen för att visualisera de olika villkoren. Utvärderingen av de villkorligt genererade bilderna visar att den villkorliga generationen kan förbättras. Däremot beror metoden och de kvantitativa mått som beräknades för den fria generationen av bilder på ett neuralt nätverk som inte tränats på biomedicinska bilder. Därför bör resultaten tolkas med viss reservation.
|
320 |
The Fanconi anemia signaling network regulates the mitotic spindle assembly checkpointEnzor, Rikki S. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fanconi anemia (FA) is a heterogenous genetic syndrome characterized by progressive bone marrow failure, aneuploidy, and cancer predisposition. It is incompletely understood why FA-deficient cells develop gross aneuploidy leading to cancer. Since the mitotic spindle assembly checkpoint (SAC) prevents aneuploidy by ensuring proper chromosome segregation during mitosis, we hypothesized that the FA signaling network regulates the mitotic SAC. A genome-wide RNAi screen and studies in primary cells were performed to systematically evaluate SAC activity in FA-deficient cells. In these experiments, taxol was used to activate the mitotic SAC. Following taxol challenge, negative control siRNA-transfected cells appropriately arrested at the SAC. However, knockdown of fourteen FA gene products resulted in a weakened SAC, evidenced by increased formation of multinucleated, aneuploid cells. The screen was independently validated utilizing primary fibroblasts from patients with characterized mutations in twelve different FA genes. When treated with taxol, fibroblasts from healthy controls arrested at the mitotic SAC, while all FA patient fibroblasts tested exhibited weakened SAC activity, evidenced by increased multinucleated cells. Rescue of the SAC was achieved in FANCA patient fibroblasts by genetic correction. Importantly, SAC activity of FANCA was confirmed in primary CD34+ hematopoietic cells. Furthermore, analysis of untreated primary fibroblasts from FA patients revealed micronuclei and multinuclei, reflecting abnormal chromosome segregation. Next, microscopy-based studies revealed that many FA proteins localize to the mitotic spindle and centrosomes, and that disruption of the FA pathway results in supernumerary centrosomes, establishing a role for the FA signaling network in centrosome maintenance. A mass spectrometry-based screen quantifying the proteome and phospho-proteome was performed to identify candidates which may functionally interact with FANCA in the regulation of mitosis. Finally, video microscopy-based experiments were performed to further characterize the mitotic defects in FANCA-deficient cells, confirming weakened SAC activity in FANCA-deficient cells and revealing accelerated mitosis and abnormal spindle orientation in the absence of FANCA. These findings conclusively demonstrate that the FA signaling network regulates the mitotic SAC, providing a mechanistic explanation for the development of aneuploidy and cancer in FA patients. Thus, our study establishes a novel role for the FA signaling network as a guardian of genomic integrity.
|
Page generated in 0.0491 seconds