• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 8
  • 1
  • Tagged with
  • 57
  • 57
  • 16
  • 14
  • 14
  • 12
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An Indoor Path Loss Prediction Model using Wall Correction Factors for WLAN and 5G Indoor Networks

Obeidat, Huthaifa A.N., Asif, Rameez, Ali, N.T., Obeidat, O.A., Ali, N.T., Jones, Steven M.R., Shuaieb, Wafa S.A., Al-Sadoon, Mohammed A., Hameed, Khalid W.H., Alabdullah, A.A., Dama, Yousif A.S., Abd-Alhameed, Raed 02 April 2018 (has links)
Yes / A modified indoor path loss prediction model is presented, namely Effective Wall Loss Model (EWLM). The modified model is compared to other indoor path loss prediction models using simulation data and real-time measurements. Different operating frequencies and antenna polarizations are considered to verify the observations. In the simulation part, EWLM shows the best performance among other models as it outperforms two times the dual slope model which is the second-best performance. Similar observations were recorded from the experimental results. Linear attenuation and one slope models have similar behaviour, the two models parameters show dependency on operating frequency and antenna polarization.
22

60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Ojaroudi Parchin, Naser, Jahanbakhsh Basherlou, H., Al-Yasir, Yasir I.A., Abd-Alhameed, Raed, Excell, Peter S. 01 October 2020 (has links)
Yes / A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks. / European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424
23

A FIR Filter Embedded Millimeter-wave Front-end for High Frequency Selectivity

Kim, Hyunchul 01 February 2019 (has links)
Millimeter wave (mm-Wave) has become increasingly popular frequency band for next-generation high-speed wireless communications. In mm-Wave, the wireless channel path loss is severe, demanding a high output power in transmitters (Tx) to meet a required SNR in receivers (Rx). Due to the intractable speed-power tradeoff ingrained in silicon processes, however, achieving a high power at mm-Wave, particularly over W-band (> 90 GHz), is challenging in silicon power amplifiers. To relieve the output power burden, phased-arrays are widely adopted in mm-Wave wireless communication systems -- namely, by leveraging a parallel power combining in the space domain, inherent in the phased arrays, the required output power per array element can be reduced significantly with increasing array size. In large arrays ( > 100's -- 1000's number of arrays), the required output power per element could be small, typically around several 10's mW or less in silicon-based phased arrays. In such small-to-medium scale output power level, the static power dissipations by transistor knee voltage and passive components could be a significant portion of the output power, decreasing power efficiency of power amplifiers drastically. This poses a significant concern on the power efficiency of the large-scale silicon-based phased arrays in mm-Wave. Another critical problem in mm-Wave wireless systems design is the increase of passive reactive components loss caused by worsening skin depth effect and increasing dielectric loss through silicon substrate. This essentially degrades the reactive components quality factor (Q) and limits frequency selectivity of the silicon-based mm-Wave systems. This thesis tackles these two major technical challenges to provide high frequency selectivity with maintaining high power efficiency for future mm-Wave wireless systems over W-band and beyond. First, various high-efficiency techniques such as impedance tuning with a reactive component at a cascoding stage in conventional stacked power amplifiers or load-pull based inter-stage matching technique, rather than conventional conjugate matching, have been applied to W-band CMOS and SiGe BiCMOS amplifiers to improve power efficiency with 5-10 dBm output power level, suitable for a large phased array applications, as detailed in Chapter 2 and 3. Second, a 4-tap finite impulse response (FIR) filter based receiver architecture is presented in Chapter 4. The FIR filtered receiver leverages a sinc-pulse type frequency nulls built-in in the transmission-line based FIR filter's frequency response to increase frequency selectivity. The proposed FIR filtered receiver achieves > 40-dB image rejection by placing an image signal at the null frequency at D-band, one of the largest image rejection performance at the highest frequency band reported so far. / Ph. D. / Due to recent advances in Silicon based solid-state technologies, the interest towards the millimeter wave (mm-Wave) frequency band has been emerging for next-generation high-speed wireless communication applications. One of the most significant parameters in a communication system would be the output power of a transmitter. However, the output power is limited especially at mm-wave frequencies. A phased array is one of the viable solutions to overcome this burden by utilizing a parallel power combing in the space domain. The required output power per element can be relieved, typically around several tens of mill watts or less. There are two major factors limiting the output power, which are the high loss of passive and active devices. This dissertation presents solutions to overcome these challenges. In addition, a 4-tap finite impulse response (FIR) filter based receiver architecture is introduced, which rejects unwanted image signals in heterodyne systems by utilizing sinc-pulse type frequency nulls. The proposed FIR filter achieves more than 40 dB of image rejection at D-band (110-170 GHz), which is one of the highest filtering performance in the millimeter-wave frequency band.
24

Analysis of Advanced Diversity Receivers for Fading Channels

Gaur, Sudhanshu 15 January 2004 (has links)
Proliferation of new wireless technologies has rekindled the interest on the design, analysis and implementation of suboptimal receiver structures that provide good error probability performance with reduced power consumption and complexity particularly when the order of diversity is large. This thesis presents a unified analytical framework to perform a trade-off study for a class of hybrid generalized selection combining technique for ultra-wideband, spread-spectrum and millimeter-wave communication receiver designs. The thesis also develops an exact mathematical framework to analyze the performance of a dual-diversity equal gain combining (EGC) receiver in correlated Nakagami-m channels, which had defied a simple solution in the past. The framework facilitates efficient evaluation of the mean and variance of coherent EGC output signal-to-noise ratio, outage probability and average symbol error probability for a broad range of digital modulation schemes. A comprehensive study of various dual-diversity techniques with non-independent and non-identical fading statistics is also presented. Finally, the thesis develops some closed-form solutions for a few integrals involving the generalized Marcum Q-function. Integrals of these types often arise in the analysis of multichannel diversity reception of differentially coherent and noncoherent digital communications over Nakagami-m channels. Several other applications are also discussed. / Master of Science
25

Silicon-based Microwave/Millimeter-wave Monolithic Power Amplifiers

Haque, Talha 30 March 2007 (has links)
There has been increased interest in exploring high frequency (mm-wave) spectrum (particularly the 30 and 60 GHz ranges), and utilizing silicon-based technology for reduced-cost monolithic millimeter integrated circuits (MMIC), for applications such as WLAN, inter-vehicle communication (IVC) automotive radar and local multipoint distribution system (LMDS). Although there has been a significant increase in silicon-based implementations recently, this area still has significant need for research and development. For example, one microwave/mm-wave front-end component that has seen little development in silicon is the power amplifier (PA). Two potential technologies exist for providing a solution for low-cost microwave/mm-wave power amplifiers: 1) Silicon-Germanium (SiGe) HBT and 2) Complementary metal-oxide semiconductor (CMOS). SiGe HBT has become a viable candidate for PA development since it exhibits higher gain and higher breakdown voltage limits compared to CMOS, while remaining compatible with BiCMOS technology. Also, SiGe is potentially lower in cost compared to other compound semiconductor technologies that are currently used in power amplifier design. Hence, this research focuses on design of millimeter-wave power amplifiers in SiGe HBT technology. The work presented in this thesis will focus on design of different power amplifiers for millimeter-wave operating frequencies. Amplifiers present the fundamental trade-off between linearity and efficiency. Applications at frequencies highlighted above tend to be point-to-point, and hence high linearity is required at the cost of lowered efficiency for these power amplifiers. The designed power amplifiers are fully differential topologies based on finite ground coplanar waveguide (FGC) transmission line technology, and have on-chip matching networks and bias circuits. The selection and design of FGC lines is supported through full-wave EM simulations. Tuned single stub matching networks are realized using FGC technology and utilized for input and output matching networks. Two 30-GHz range SiGe HBT PA designs were carried out in Atmel SiGe2RF and IBM BiCMOS 8HP IC technologies. The designs were characterized first by simulations. The performance of the Atmel PA design was characterized using microwave/mm-wave on wafer test measurement setup. The IBM 8HP design is awaiting fabrication. The measured results indicated high linearity, targeted output power range, and expected efficiency performance were achieved. This validates the selection of SiGe HBT as the technology of choice of high frequency point-to-point applications. The results show that it is possible to design power amplifiers that can effectively work at millimeter-wave frequencies at lower cost for applications such as mm-wave WLAN and IVC where linearity is important and required transmitted power is much lower than in cellular handset power amplifiers. Moreover, recommendations are made for future research steps to improve upon the presented designs. / Master of Science
26

A 60 Ghz Mmic 4x Subharmonic Mixer

Chapman, Michael Wayne 14 November 2000 (has links)
In this modern age of information, the demands on data transmission networks for greater capacity, and mobile accessibility are increasing drastically. The increasing demand for mobile access is evidenced by the proliferation of wireless systems such as mobile phone networks and wireless local area networks (WLANs). The frequency range over which an oxygen resonance occurs in the atmosphere (~58-62 GHz) has received recent attention as a possible candidate for secure high-speed wireless data networks with a potentially high degree of frequency reuse. A significant challenge in implementing data networks at 60 GHz is the manufacture of low-cost RF transceivers capable of satisfying the system requirements. In order to produce transceivers that meet the additional demands of high-volume, mobility, and compactness, monolithic millimeter wave integrated circuits (MMICs) offer the most practical solution. In the design of radio tranceivers with a high degree of integration, the receiver front-end is typically the most critical component to overall system performance. High-performance low-noise amplifiers (LNAs) are now realizable at frequencies in excess of 100 GHz, and a wide variety of mixer topologies are available that are capable of downconversion from 60 GHz. However, local oscillators (LOs) capable of providing adequate output power at mm-wave frequencies remain bulky and expensive. There are several techniques that allow the use of a lower frequency microwave LO to achieve the same RF downconversion. One of these is to employ a subharmonic mixer. In this case, a lower frequency LO is applied and the RF mixes with a harmonic multiple of the LO signal to produce the desired intermediate frequency (IF). The work presented in this thesis will focus on the development of a GaAs MMIC 4-X subharmonic mixer in Finite Ground Coplanar (FGC) technology for operation at 60 GHz. The mixer topology is based on an antiparallel Schottky diode pair. A discussion of the mechanisms behind the operation of this circuit and the methods of practical implementation is presented. The FGC transmission lines and passive tuning structures used in mixer implementation are characterized with full-wave electromagnetic simulation software and 2-port vector network analyzer measurements. A characterization of mixer performance is obtained through simulations and measurement. The viability of this circuit as an alternative to other high-frequency downconversion schemes is discussed. The performance of the actual fabricated MMIC is presented and compared to currently available 60 GHz mixers. One particular MMIC design exhibits an 11.3 dB conversion loss at an RF of 58.5 GHz, an LO frequency of 14.0 GHz, and an IF of 2.5 GHz. This represents excellent performance for a 4X Schottky diode mixer at these frequencies. Finally, recommendations toward future research directions in this area are made. / Master of Science
27

MEMS TUNABLE SI-BASED EVANESCENT-MODE CAVITY FILTERS: DESIGN, OPTIMIZATION AND IMPLEMENTATION

Zhengan Yang (5930441) 16 August 2019 (has links)
<div>The allocated frequency bands for the incoming fifth generation (5G) wireless communication technologies spread broadly from sub 6 GHz to K and potentially W bands. The evolution of the future generations toward higher frequency bands will continue and presents significant challenges in terms of excessive system complexity, production and maintenance costs. Reconfigurable radio architecture with frequency-tunable components is one of the most feasible and cost-effective solutions to meet such challenges. Among these technologies, evanescent-mode (EVA) cavity tunable resonator have demonstrated many of the needed features such as wide tunability, low loss and high linearity. Such a technology typically employs a movable membrane that controls the resonant frequency of a post-loaded cavity. </div><div><br></div><div>The first part of this work focuses on advancing such technology into the mm-wave frequency bands and beyond. Manufacturing tolerance and tuner performance are the two main limiting factors addressed here. This work develops a cost-effective micro-fabrication and package assembly flow which addresses the manufacturing related limitations. On the other hand, introducing micro-corrugated diaphragms and gold-vanadium co-sputtered thin film deposition technology, significantly reduces (4 times) the tuning voltage and enhances tuning stability (7 times). We demonstrate a tunable two-pole band-pass filter (BPF) prototype as the first EVA cavity tunable filter operating in the K-Ka band. </div><div><br></div><div>The second part of this work extensively discusses an optimal RF design flow based on the developed manufacturing technology. It considers all technology constrains and allows the actualization of a high Q transfer function with minimum bandwidth variation within an octave tuning range. Moreover, a new fully passive input/output feeding mechanism that facilitates impedance matching over the entire tuning range is presented. The devised RF methodology is validated through the design and testing of a two-resonator BPF. Measurements demonstrate a tuning range between 20-40 GHz, relative bandwidth of 1.9%-4.7%, and impedance matching over the entire tuning range which is upto 2 times better than previously reported state-of-the-art MEMS tunable filters of this type.</div><div><br></div><div>The third part of this work further advances the technology by proposing the first MEMS-based low-power bi-directional EVA tuning approach that employs both the main bias circuitry as well as a new corrective biasing technique that counteracts viscoelastic memory effects. The two key enabling technologies are extensively discussed: a) a new metal-oxide-metal (MOM) sealed cavity that maintains high quality without requiring complicated metal bonding; and b) a new electrostatic bi-directional MEMS tuner that implements the needed frequency tuning without lowering the resonator quality factor. </div><div><br></div><div>Furthermore, we explore important design and fabrication trade-offs regarding sensitivity to non-ideal effects (residual stress, fabrication imperfections). Measurement of the new prototype bi-directional design, prove that this technology readily corrects residual post-bias displacement of 0.1 um that shifts the frequency by over 1 GHz with less than 2.5 V. It takes over 100 seconds to recover this error in the uni-directional case. This correction does not adversely affect the filter performance.</div>
28

On-Chip Integrated Distributed Amplifier and Antenna Systems in SiGe BiCMOS for Transceivers with Ultra-Large Bandwidth

Testa, Paolo Valerio, Klein, Bernhard, Hahnel, Ronny, Plettemeier, Dirk, Carta, Corrado, Ellinger, Frank 23 June 2020 (has links)
This paper presents an overview of the research work currently being performed within the frame of project DAAB and its successor DAAB-TX towards the integration of ultra-wideband transceivers operating at mm-wave frequencies and capable of data rates up to 100 Gbits–¹. Two basic systemarchitectures are being considered: integrating a broadband antenna with a distributed amplifier and integrate antennas centered at adjacent frequencies with broadband active combiners or dividers. The paper discusses in detail the design of such systems and their components, fromthe distributed amplifiers and combiners, to the broadband silicon antennas and their single-chip integration. All components are designed for fabrication in a commercially available SiGe:C BiCMOS technology. The presented results represent the state of the art in their respective areas: 170 GHz is the highest reported bandwidth for distributed amplifiers integrated in Silicon; 89 GHz is the widest reported bandwidth for integrated-system antennas; the simulated performance of the two antenna integrated receiver spans 105 GHz centered at 148GHz, which would improve the state of the art by a factor in excess of 4 even against III-V implementations, if confirmed by measurements.
29

Millimeter wave radio channel characterization and site-specific simulation for 5G systems / Caractérisation et simulation des canaux de propagation en bande millimétrique pour la 5G

Baldé, Mamadou Dialounké 19 December 2017 (has links)
Cette thèse a apporté une contribution au défi de la caractérisation des canaux radios en bandes millimétriques ainsi que la validation d'un outil de simulation déterministe à travers un grand nombre de campagnes de mesures réalisées dans divers scénarios représentatives. Des questions de recherche liées à la caractérisation des canaux radio en bandes millimétriques et sa prédiction à travers un outil de simulation déterministe ont été abordées. Fournir des résultats précis et reproductibles est nécessaire dans le développement d'un système de communication. Ce défi peut être relevé en réalisant des campagnes de mesures qui capturent la réalité du canal de propagation constituant le point de départ. Dans cette thèse, les principales motivations scientifiques derrière ces campagnes de mesures étaient d'étudier la variabilité dans le temps et l'effet de l'environnement sur le canal de propagation dans les bandes millimétriques. Les bandes de fréquences adressées dans cette thèse sont identifiées comme étant importantes par l'UIT en vue d'un futur déploiement de la 5G à savoir 15, 28, 32 et 83 GHz. Les environnements considérés sont une conférence room, bureau, bibliothèque et micro-cellulaire. Les campagnes de mesures ont été menées en utilisant un sondage de canal fréquentiel avec l'utilisation d'un analyseur de réseau. L'exploitation des résultats de mesures ont permis d'apporter des éléments de réponses concernant le canal de propagation dans ces bandes de fréquences. D'autre part, les données de mesures ont été utilisés pour évaluer les performances et contribuer à la calibration d’un simulateur de canal radio à tracé de rayons (RT) reposant sur une approche déterministe. Le simulateur de canal déterministe utilisé dans cette thèse incorpore les mécanismes de propagation tels que le LOS, la réflexion et la diffraction. Le RT a permis de prédire le canal de propagation dans les bandes millimétriques avec une concordance acceptable avec les données de mesures. Ces résultats démontrent que le canal de propagation en bandes millimétriques a pour avantage d'être prédit avec de simple outil déterministe. / This thesis has contributed to the challenge of the radio channel characterizations in millimeter wave bands as well as the validation of a deterministic simulation tool through a large number of measurement campaigns carried out in various representative scenarios. Research questions related to the characterization of radio channels in millimetric bands and its prediction through a deterministic simulation tool were discussed. Providing accurate and repeatable results is necessary for the development of a communication system. This challenge can be meet by conducting measurement campaigns that capture the reality of the propagation channel and therefore constituting the starting point. In this thesis, the main scientific motivations behind these measurement campaigns were to study the time variability and the effect of the scattering environment of the propagation channel in the millimetric bands. The frequency bands addressed in this thesis are identified as important by the ITU for a future deployment of 5G, namely 15, 28, 32 and 83 GHz. The environments considered are a conference room, office, library and microcellular. The measurement campaigns were conducted using a frequency channel sounding technique with the use of a vector network analyzer. The exploitation of the measurement data provided some answers about the radio chennel propagation in these frequency bands. On the other hand, the measurements data were used to evaluate the performance and to contribute to the calibration of the ray-tracing tool (RT) based on a deterministic approach. The RT used in this thesis incorporates propagation mechanisms such as LOS, reflection and diffraction. The RT predicted the propagation channel in the millimeter bands with an acceptable level of agreement with respect to the measurement data. These results demonstrate that the propagation channel in millimetric bands has the advantage of being predicted with a simple deterministic tool.
30

Millimeter-wave and terahertz frequency synthesis on advanced silicon technology / Synthèse de fréquence millimétrique et térahertz en technologie silicium avancée

Guillaume, Raphael 18 December 2018 (has links)
Ces dernières années les bandes de fréquence millimétriques et térahertz (THz) on tmontrées un fort potentiel pour de nombreuses applications telles que l’imagerie médicale et ,biologique, le contrôle de qualité ou les communications à très haut débit. Les principales raisons de cet intérêt sont les nombreuses propriétés intéressantes des ondes THz et millimétriques, telles que leur capacité traverser la matière et ceci de manière inoffensive ou le large spectre disponible à ces fréquences. Les applications visées nécessitent des sources de signaux énergétiquement efficaces, à forte puissance de sortie et, pour certaines applications, à faible bruit de phase. De plus, la demande croissante pour des applications dans ces bandes de fréquence imposent l’utilisation de technologie de hautes performances à coût métrisé et permettant une intégration à très grande échelle, telle que la technologie28nm CMOS FD-SOI. Dans ce contexte, cette thèse propose une solution innovante pour la génération de fréquence millimétrique et THz en technologie CMOS : l’oscillateur distribué verrouillé par injection. Les travaux présentés dans ce manuscrit englobent l’analyse détaillé de l’état de l’art et de ses limites, l’étude théorique approfondie de la solution proposée pour une intégration en ondes millimétriques, le développement d’une méthodologie de conception spécifique en technologie CMOS ainsi que la conception de démonstrateurs technologique. Les différents oscillateurs intégrés en technologie 28nm FDSOI et opérant à des fréquences respectivement de 134 GHz et 200 GHz ont permis de démontrer la faisabilité de sources de signaux millimétrique et THz, à forte efficacité énergétique, forte puissance de sortie et faible bruit de phase en technologie CMOS à très grande échelle d’intégration. Enfin, la capacité de verrouillage par injection de tels oscillateurs distribués a été démontrée expérimentalement ouvrant la voie à de futurs systèmes THz totalement intégrés sur silicium. Les solutions intégrées démontrées dans cette thèse ont, à l’heure actuelle, la plus grande fréquence d’oscillation dans un noeud Silicium 28nm CMOS. / In recent years, millimeter-wave (mm-wave) and terahertz (THz) frequency bands haverevealed a great potential for many applications such as medical and biological imaging,quality control, and very-high-speed communications. The main reasons for this interestare the many interesting properties of THz and millimeter waves, such as their ability toharmlessly penetrate through matter or the broad spectrum available at these frequencies.Targeted applications require energy efficient signal sources with high power outputand, for some applications, low phase noise. In addition, the increasing demand in mmwave/THz applications requires the use of a cost-optimized, high-performance, and verylarge scale integration (VLSI) technologies, such as the 28nm CMOS FD-SOI technology.In this context, this thesis proposes an innovative solution for mm-wave and THz frequencygeneration in CMOS technology: the injection locked distributed oscillator (ILDO). Thework presented in this manuscript includes the detailed analysis of the state-of-the-artand its limitations, the detailed theoretical study of the proposed millimeter-waves bandsolution, the development of a specific design methodology in CMOS technology as well asthe design of technological demonstrators. The several 28nm FDSOI integrated distributedoscillators at 134 GHz and respectively 200 GHz have demonstrated the feasibility ofmm-wave and THz signal sources with high-energy efficiency, high output power, and lowphase noise in a VLSI CMOS technology. Finally, the injection locking capability of suchdistributed oscillators has been demonstrated experimentally paving the way for a futuresilicon-based fully integrated THz systems. The proposed circuits are as of today thehighest oscillation frequency solutions demonstrated in a 28nm CMOS Silicon technology.

Page generated in 0.0675 seconds