• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 15
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Scheduled Medium Access Control in Mobile Ad Hoc Networks

January 2013 (has links)
abstract: The primary function of the medium access control (MAC) protocol is managing access to a shared communication channel. From the viewpoint of transmitters, the MAC protocol determines each transmitter's persistence, the fraction of time it is permitted to spend transmitting. Schedule-based schemes implement stable persistences, achieving low variation in delay and throughput, and sometimes bounding maximum delay. However, they adapt slowly, if at all, to changes in the network. Contention-based schemes are agile, adapting quickly to changes in perceived contention, but suffer from short-term unfairness, large variations in packet delay, and poor performance at high load. The perfect MAC protocol, it seems, embodies the strengths of both contention- and schedule-based approaches while avoiding their weaknesses. This thesis culminates in the design of a Variable-Weight and Adaptive Topology Transparent (VWATT) MAC protocol. The design of VWATT first required answers for two questions: (1) If a node is equipped with schedules of different weights, which weight should it employ? (2) How is the node to compute the desired weight in a network lacking centralized control? The first question is answered by the Topology- and Load-Aware (TLA) allocation which defines target persistences that conform to both network topology and traffic load. Simulations show the TLA allocation to outperform IEEE 802.11, improving on the expectation and variation of delay, throughput, and drop rate. The second question is answered in the design of an Adaptive Topology- and Load-Aware Scheduled (ATLAS) MAC that computes the TLA allocation in a decentralized and adaptive manner. Simulation results show that ATLAS converges quickly on the TLA allocation, supporting highly dynamic networks. With these questions answered, a construction based on transversal designs is given for a variable-weight topology transparent schedule that allows nodes to dynamically and independently select weights to accommodate local topology and traffic load. The schedule maintains a guarantee on maximum delay when the maximum neighbourhood size is not too large. The schedule is integrated with the distributed computation of ATLAS to create VWATT. Simulations indicate that VWATT offers the stable performance characteristics of a scheduled MAC while adapting quickly to changes in topology and traffic load. / Dissertation/Thesis / Ph.D. Computer Science 2013
12

Design and Analysis of Algorithms for Efficient Location and Service Management in Mobile Wireless Systems

Gu, Baoshan 01 December 2005 (has links)
Mobile wireless environments present new challenges to the design and validation of system supports for facilitating development of mobile applications. This dissertation concerns two major system-support mechanisms in mobile wireless networks, namely, location management and service management. We address this research issue by considering three topics: location management, service management, and integrated location and service management. A location management scheme must effectively and efficiently handle both user location-update and location-search operations. We first quantitatively analyze a class of location management algorithms and identify conditions under which one algorithm may perform better than others. From insight gained from the quantitative analysis, we design and analyze a hybrid replication with forwarding algorithm that outperforms individual algorithms and show that such a hybrid algorithm can be uniformly applied to mobile users with distinct call and mobility characteristics to simplify the system design without sacrificing performance. For service management, we explore the notion of location-aware personal proxies that cooperate with the underlying location management system with the goal to minimize the network communication cost caused by service management operations. We show that for cellular wireless networks that provide packet services, when given a set of model parameters characterizing the network and workload conditions, there exists an optimal proxy service area size such that the overall network communication cost for service operations is minimized. These proxy-based mobile service management schemes are shown to outperform non-proxy-based schemes over a wide range of identified conditions. We investigate a class of integrated location and service management schemes by which service proxies are tightly integrated with location databases to further reduce the overall network signaling and communication cost. We show analytically and by simulation that when given a user's mobility and service characteristics, there exists an optimal integrated location and service management scheme that would minimize the overall network communication cost for servicing location and service operations. We demonstrate that the best integrated location and service scheme identified always performs better than the best decoupled scheme that considers location and service managements separately. / Ph. D.
13

Distributed Localization and Conflict Detection in Mobile Wireless Networks / Localisation distribuée et détection des conflits dans les réseaux mobiles sans fil

Mahjri, Imen 29 September 2017 (has links)
Un réseau sans fil mobile est une collection de noeuds mobiles connectés via des liens sans fil. Le noeud mobile peut être une personne portant un terminal mobile, un animal avec une étiquette électronique, un véhicule ou tout autre appareil mobile doté de capacités de communication sans fil. Cette thèse traite deux importants problèmes dans les réseaux sans fil mobiles : la localisation et la détection des conflits. La localisation est l’estimation des positions absolues ou relatives des noeuds mobiles. La détection des conflits est la prédiction des potentiels futurs conflits entre les noeuds mobiles. Un conflit est une situation dans laquelle deux ou plusieurs noeuds mobiles se trouvent à une distance inférieure à une distance minimale requise. La détection des conflits est particulièrement nécessaire dans les réseaux mobiles où les noeuds risquent de trop se rapprocher les uns des autres et se heurter.La première contribution de cette thèse est un nouvel algorithme de localisation pour les réseaux sans fil mobiles. L’algorithme proposé est distribué et nécessite un faible coût de calcul et de communication permettant son utilisation par des noeuds à ressources limitées. En particulier, un petit ensemble de noeuds avec des positions connues, appelés des nœuds ancres, diffusent périodiquement leurs coordonnées. Chaque noeud mobile avec une position inconnue collecte les coordonnées des noeuds ancres, les attribue des poids en fonction de différentes métriques (par exemple, la qualité de la liaison sans fil, le temps de réception) et enfin estime sa position en tant que la moyenne pondérée de toutes les coordonnées collectées. La deuxième contribution de cette thèse consiste en un algorithme de détection de conflit nommé SLIDE. SLIDE est distribué et à faible complexité: chaque noeuds mobile utilise des simples inégalités mathématiques afin de prédire avec précision et en temps opportun les futurs conflits avec les noeuds voisins. En outre, SLIDE abandonne l’hypothèse restrictive des positions et vitesses précises ainsi que des communications non perturbées afin de garantir son efficacité dans les applications du monde réel. La troisième et dernière contribution de cette thèse est un modèle stochastique qui évalue les risques des conflits dans un réseau sans fil mobile où les noeuds mobiles se déplacent dans le même espace partagé. Contrairement à la plupart des modèles stochastiques existants, le modèle proposé est simple, générique et ne nécessite que deux paramètres d’entrée: le nombre de noeuds mobiles et le paramètre λ caractérisant le temps d’inter-contact entre une paire de noeuds mobiles. Le paramètre λ peut être difficile à estimer expérimentalement. Nous proposons donc une expression générique pour λ et puis nous la spécifions pour deux modèles de mobilité couramment utilisés. Toutes les contributions de cette thèse sont validées en utilisant des simulations basées sur le simulateur d’événements discrets OMNeT ++. / A mobile wireless network is a collection of mobile nodes connected via wireless links. The mobile node can be a person carrying a mobile terminal, an animal with an embedded sensor (electronic tag), a vehicle or any other mobile device with wireless communication capabilities. This thesis deals with two fundamental issues in mobile wireless networks: localization and conflict detection. Localization is the estimation of the absolute or relative positions of the mobile nodes. Conflict detection is the prediction of potential future conflicts between the mobile nodes. A conflict is a situation in which two or more mobile nodes are within an unsafe distance from one another. Conflict detection is a crucial requirement for mobile networks where the nodes can get too close to each other and collide.The first contribution of this thesis is a new weighted localization algorithm for mobile wireless networks. The proposed algorithm is distributed and requires low computational and communication overheads enabling its use in resource-limited nodes. In particular, a small set of nodes with known positions, called beacon nodes, are periodically broadcasting their coordinates. A mobile node with an unknown position collects the beacon nodes coordinates, attributes them weights based on different metrics (e.g, link quality, reception time) and finally estimates its position as the weighted average of all the collected coordinates. The second contribution of this thesis consists in a straight line conflict detection algorithm called SLIDE. SLIDE is distributed and lightweight: each mobile node uses simple mathematical inequalities in order to accurately and timely predict future conflicts with the surrounding nodes. Furthermore, SLIDE drops the restrictive assumption of perfect sensing capabilities and perturbation-free environment in order to guarantee its efficiency in real world applications. The third and last contribution of this thesis is a stochastic model that assesses the conflicts risks in a mobile wireless network where the mobile nodes are moving in the same shared space. Unlike most of the existing stochastic models, the proposed model is simple, generic and requires only two input parameters: the number of mobile nodes and the parameter λ characterizing the inter-contact time between a pair of mobile nodes. The parameter λ may be difficult to estimate experimentally. We therefore provide a generic explicit expression for λ and then specify this generic expression for two commonly used mobility models. All the contributions of this thesis are validated through extensive simulations based on the discrete-event simulator OMNeT++.
14

Dynamic sensor deployment in mobile wireless sensor networks using multi-agent krill herd algorithm

Andaliby Joghataie, Amir 18 May 2018 (has links)
A Wireless Sensor Network (WSN) is a group of spatially dispersed sensors that monitor the physical conditions of the environment and collect data at a central location. Sensor deployment is one of the main design aspects of WSNs as this a ffects network coverage. In general, WSN deployment methods fall into two categories: planned deployment and random deployment. This thesis considers planned sensor deployment of a Mobile Wireless Sensor Network (MWSN), which is defined as selectively deciding the locations of the mobile sensors under the given constraints to optimize the coverage of the network. Metaheuristic algorithms are powerful tools for the modeling and optimization of problems. The Krill Herd Algorithm (KHA) is a new nature-inspired metaheuristic algorithm which can be used to solve the sensor deployment problem. A Multi-Agent System (MAS) is a system that contains multiple interacting agents. These agents are autonomous entities that interact with their environment and direct their activity towards achieving speci c goals. Agents can also learn or use their knowledge to accomplish a mission. Multi-agent systems can solve problems that are very difficult or even impossible for monolithic systems to solve. In this work, a modification of KHA is proposed which incorporates MAS to obtain a Multi-Agent Krill Herd Algorithm (MA-KHA). To test the performance of the proposed method, five benchmark global optimization problems are used. Numerical results are presented which show that MA-KHA performs better than the KHA by finding better solutions. The proposed MA-KHA is also employed to solve the sensor deployment problem. Simulation results are presented which indicate that the agent-agent interactions in MA-KHA improves the WSN coverage in comparison with Particle Swarm Optimization (PSO), the Firefly Algorithm (FA), and the KHA. / Graduate
15

Novel Online Data Cleaning Protocols for Data Streams in Trajectory, Wireless Sensor Networks

Pumpichet, Sitthapon 12 November 2013 (has links)
The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or “dirty” sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.
16

Hierarchical routing and cross-layer mechanisms for improving video streaming quality of service over mobile wireless ad hoc networks

Arce Vila, Pau 20 March 2014 (has links)
This thesis dissertation addresses the problem of providing video streaming services over mobile wireless ad hoc networks. This sort of network represents a hostile environment for this kind of realtime data transmission to the extent that obtaining a good quality of viewer experience is challenging and still under study. Besides the research point of view, providing high-quality multimedia services is decisive for the practical usability and feasibility of wireless ad hoc networks so that service providers can broaden the range of services offered. So far, mobile wireless ad hoc networks have been used to provide network connection among users who could not have connectivity otherwise. However, quality expectations and requirements have been increased notably, fostered by the advent of real-time multimedia applications over mobile devices. Due to the considerable processing and bandwidth constraints underlying these types of devices, coupled with their ability to move freely, it becomes a difficult task to achieve an acceptable quality of service throughout the entire video transmission. Thus, the contribution of this thesis work is twofold. On the one hand, the main problems and limitations that may be encountered and should be faced when deploying real-time services over mobile wireless ad hoc networks are analyzed and discussed. Bandwidth constraints and node mobility are portrayed as the major causes that prevent good quality of service and smooth video playback. On the other hand, following then the aim of improving video streaming quality, this thesis proposes practical solutions that involve diverse routing and cross-layer techniques. One of the proposed approaches focuses on hierarchical routing. Hierarchical arrangement of network nodes may reduce packet interference as well as offer a structured architecture that reduces control traffic overhead. Particularly, the proposed hierarchical routing protocol aims at providing scalability when the number of nodes grows, while maintaining complexity as low as possible. The resulting reduction in packet losses and video playback interruptions finally enhances the quality of received video streams. Furthermore, on the basis that the nodes in an ad hoc network are willing to perform routing tasks, every node could become essential for the proper network operation and routing performance. In tune with this philosophy, a new cross-layer mechanism for recovering lost packets is proposed. By overhearing packets over the wireless shared medium, any node in the surrounding area of the destination endpoint can altruistically retransmit those video packets that have not been correctly received at destination. Moreover, due to the video awareness and frame prioritization algorithm considered in this proposal, it becomes very convenient for real-time video streaming services. The results show that the presented mechanism succeeds in improving video quality and user experience, especially when packet losses are caused due to the mobility of the destination node. / Arce Vila, P. (2014). Hierarchical routing and cross-layer mechanisms for improving video streaming quality of service over mobile wireless ad hoc networks [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/36538 / Alfresco
17

Networking And Security Solutions For Vanet Initial Deployment Stage

Aslam, Baber 01 January 2012 (has links)
Vehicular ad hoc network (VANET) is a special case of mobile networks, where vehicles equipped with computing/communicating devices (called "smart vehicles") are the mobile wireless nodes. However, the movement pattern of these mobile wireless nodes is no more random, as in case of mobile networks, rather it is restricted to roads and streets. Vehicular networks have hybrid architecture; it is a combination of both infrastructure and infrastructure-less architectures. The direct vehicle to vehicle (V2V) communication is infrastructure-less or ad hoc in nature. Here the vehicles traveling within communication range of each other form an ad hoc network. On the other hand, the vehicle to infrastructure (V2I) communication has infrastructure architecture where vehicles connect to access points deployed along roads. These access points are known as road side units (RSUs) and vehicles communicate with other vehicles/wired nodes through these RSUs. To provide various services to vehicles, RSUs are generally connected to each other and to the Internet. The direct RSU to RSU communication is also referred as I2I communication. The success of VANET depends on the existence of pervasive roadside infrastructure and sufficient number of smart vehicles. Most VANET applications and services are based on either one or both of these requirements. A fully matured VANET will have pervasive roadside network and enough vehicle density to enable VANET applications. However, the initial deployment stage of VANET will be characterized by the lack of pervasive roadside infrastructure and low market penetration of smart vehicles. It will be economically infeasible to initially install a pervasive and fully networked iv roadside infrastructure, which could result in the failure of applications and services that depend on V2I or I2I communications. Further, low market penetration means there are insufficient number of smart vehicles to enable V2V communication, which could result in failure of services and applications that depend on V2V communications. Non-availability of pervasive connectivity to certification authorities and dynamic locations of each vehicle will make it difficult and expensive to implement security solutions that are based on some central certificate management authority. Nonavailability of pervasive connectivity will also affect the backend connectivity of vehicles to the Internet or the rest of the world. Due to economic considerations, the installation of roadside infrastructure will take a long time and will be incremental thus resulting in a heterogeneous infrastructure with non-consistent capabilities. Similarly, smart vehicles will also have varying degree of capabilities. This will result in failure of applications and services that have very strict requirements on V2I or V2V communications. We have proposed several solutions to overcome the challenges described above that will be faced during the initial deployment stage of VANET. Specifically, we have proposed:  A VANET architecture that can provide services with limited number of heterogeneous roadside units and smart vehicles with varying capabilities.  A backend connectivity solution that provides connectivity between the Internet and smart vehicles without requiring pervasive roadside infrastructure or large number of smart vehicles.  A security architecture that does not depend on pervasive roadside infrastructure or a fully connected V2V network and fulfills all the security requirements. v  Optimization solutions for placement of a limited number of RSUs within a given area to provide best possible service to smart vehicles. The optimal placement solutions cover both urban areas and highways environments
18

The Interrelationships between Technical Standards and Industry Structures: Actor-Network Based Case Studies of the Mobile Wireless and Television Industries in the US and the UK

Tilson, David Albert 04 April 2008 (has links)
No description available.
19

The optimization of multiple antenna broadband wireless communications : a study of propagation, space-time coding and spatial envelope correlation in Multiple Input, Multiple Output radio systems

Dia'meh, Yousef Ali January 2013 (has links)
This work concentrates on the application of diversity techniques and space time block coding for future mobile wireless communications. The initial system analysis employs a space-time coded OFDM transmitter over a multipath Rayleigh channel, and a receiver which uses a selection combining diversity technique. The performance of this combined scenario is characterised in terms of the bit error rate and throughput. A novel four element QOSTBC scheme is introduced, it is created by reforming the detection matrix of the original QOSTBC scheme, for which an orthogonal channel matrix is derived. This results in a computationally less complex linear decoding scheme as compared with the original QOSTBC. Space time coding schemes for three, four and eight transmitters were also derived using a Hadamard matrix. The practical optimization of multi-antenna networks is studied for realistic indoor and mixed propagation scenarios. The starting point is a detailed analysis of the throughput and field strength distributions for a commercial dual band 802.11n MIMO radio operating indoors in a variety of line of sight and non-line of sight scenarios. The physical model of the space is based on architectural schematics, and realistic propagation data for the construction materials. The modelling is then extended and generalized to a multi-storey indoor environment, and a large mixed site for indoor and outdoor channels based on the Bradford University campus. The implications for the physical layer are also explored through the specification of antenna envelope correlation coefficients. Initially this is for an antenna module configuration with two independent antennas in close proximity. An operational method is proposed using the scattering parameters of the system and which incorporates the intrinsic power losses of the radiating elements. The method is extended to estimate the envelope correlation coefficient for any two elements in a general (N,N) MIMO antenna array. Three examples are presented to validate this technique, and very close agreement is shown to exist between this method and the full electromagnetic analysis using the far field antenna radiation patterns.
20

Uma solução de roteamento para redes de sensores sem fio móveis heterogêneas

Vilela, Mateus Aparecido 28 September 2012 (has links)
Made available in DSpace on 2016-06-02T19:06:10Z (GMT). No. of bitstreams: 1 5631.pdf: 1787133 bytes, checksum: c363525148fa6a5fe71608e7a8ffcf4c (MD5) Previous issue date: 2012-09-28 / Universidade Federal de Sao Carlos / The Wireless Sensor Networks (WSNs) and Mobile Wireless Sensor Networks (MWSNs) are being increasingly used by different applications, such as monitoring of animals, monitoring of vital signs, environmental monitoring, surveillance and protection of critical infrastructure, leaking gas, among many others. Some of these applications are already making use of mobile sensor nodes, such as underwater monitoring, precision agriculture, among many others. Due to restricted resources of sensor nodes, especially in relation to energy consumption, the development for solutions based on WSN and MWSN becomes limited. The use of mobile sensor nodes, which typically has more computational resources, power and communication, can help to reduce the energy consumption of fixed nodes, increasing the lifetime of the network. Networks that use mobile sensor nodes (fixed and mobile) with different types of hardware are called Wireless Sensor Networks Heterogeneous Mobile. This paper presents the RAHMoN (Routing Algorithm for Heterogeneous Mobile Networks), which makes use of data aggregation technique to reduce the traffic transmissions on the network, hierarchy of nodes (clustering), and use of sensor nodes (fixed and mobile) that collaborate to deliver data to a sink node at high speed. In RAHMoN, the network is configured using the techniques of inundation (flooding) and inundation reverse (reverse flooding) to collect the fixed position of sensor nodes and form an adjacency matrix. This matrix helps to build routes for data delivery to the sink and is stored in the mobile sensor nodes. Results show that our solution can guarantee a high packages delivery rate, low latency and reduce the delay of packet delivery. The solution was compared with the WHISPER, present in the literature and also focused on the delivery of data to sink node at high speed. / As Redes de sensores sem Fio (RSSFs) e Redes de Sensores Sem Fio Móveis (RSSFMs) estão sendo cada vez mais utilizadas por diferentes aplicações, tais como: monitoramento de animais, monitoramento de sinais vitais, monitoramento ambiental, vigilância e proteção de infraestruturas críticas, vazamento de gás, dentre inúmeras outras. Algumas dessas aplicações já fazem uso de nós sensores móveis. Devido aos recursos restritos dos nós sensores, principalmente em relação ao consumo energético, o desenvolvimento de soluções baseadas em RSSF e RSSFM torna-se limitado. O uso de nós sensores móveis, que tipicamente têm mais recursos computacionais, de energia e de comunicação, pode ajudar a reduzir o consumo de energia dos nós fixos, aumentando o tempo de vida da rede. Redes que utilizam nós sensores (fixos e móveis) com diferentes tipos de hardware são denominadas Redes de Sensores Sem Fio Móvel Heterogênea. Neste trabalho é apresentado o RAHMoN (Routing Algorithm for Heterogeneous Mobile Networks), que faz uso da técnica de agregação de dados para reduzir o tráfego de transmissões na rede, da hierarquização de nós (clustering), da utilização de nós sensores (fixos e móveis) e de um sink em alta velocidade. No RAHMoN, a rede é configurada utilizando flooding e flooding reverse para coletar a posição dos nós sensores fixos e formar uma matriz de adjacência. Essa matriz auxilia na construção de rotas durante a entrega dos dados para o sink e será armazenada nos nós sensores móveis. Resultados de avaliação mostram que a nossa solução consegue garantir uma alta taxa de entrega de pacotes, diminuir a latência e reduzir o atraso de entrega dos pacotes. A solução foi comparada com o WHISPER, presente na literatura e também voltado à entrega de dados para o nó sink em alta velocidade.

Page generated in 0.0862 seconds