• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et classification des données de grande dimension : application à l'analyse d'images.

Bouveyron, Charles 28 September 2006 (has links) (PDF)
Le thème principal d'étude de cette thèse est la modélisation et la classification des données de grande<br />dimension. Partant du postulat que les données de grande dimension vivent dans des sous-espaces de<br />dimensions intrinsèques inférieures à la dimension de l'espace original et que les données de classes<br />différentes vivent dans des sous-espaces différents dont les dimensions intrinsèques peuvent être aussi<br />différentes, nous proposons une re-paramétrisation du modèle de mélange gaussien. En forçant certains<br />paramètres à être communs dans une même classe ou entre les classes, nous exhibons une famille de 28 modèles gaussiens adaptés aux données de grande dimension, allant du modèle le plus général au modèle le plus parcimonieux. Ces modèles gaussiens sont ensuite utilisés pour la discrimination et la classification<br />automatique de données de grande dimension. Les classifieurs associés à ces modèles sont baptisés respectivement High Dimensional Discriminant Analysis (HDDA) et High Dimensional Data Clustering (HDDC) et<br />leur construction se base sur l'estimation par la méthode du maximum de vraisemblance des paramètres du<br />modèle. La nature de notre re-paramétrisation permet aux méthodes HDDA et HDDC de ne pas être perturbées par le mauvais conditionnement ou la singularité des matrices de covariance empiriques des classes et d'être<br />efficaces en terme de temps de calcul. Les méthodes HDDA et HDDC sont ensuite mises en dans le cadre d'une<br />approche probabiliste de la reconnaissance d'objets dans des images. Cette approche, qui peut être<br />supervisée ou faiblement supervisée, permet de localiser de manière probabiliste un objet dans une<br />nouvelle image. Notre approche est validée sur des bases d'images récentes et comparée aux meilleures<br />méthodes actuelles de reconnaissance d'objets.
2

Impact des multitrajets sur les performances des systèmes de navigation par satellite : contribution à l'amélioration de la précision de localisation par modélisation bayésienne

Nahimana, Donnay Fleury 19 February 2009 (has links) (PDF)
De nombreuses solutions sont développées pour diminuer l'influence des multitrajets sur la précision et la disponibilité des systèmes GNSS. L'intégration de capteurs supplémentaires dans le système de localisation est l'une des solutions permettant de compenser notamment l'absence de données satellitaires. Un tel système est certes d'une bonne précision mais sa complexité et son coût limitent un usage très répandu.Cette thèse propose une approche algorithmique destinée à améliorer la précision des systèmes GNSS en milieu urbain. L'étude se base sur l'utilisation des signaux GNSS uniquement et une connaissance de l'environnement proche du récepteur à partir d'un modèle 3D du lieu de navigation.La méthode présentée intervient à l'étape de filtrage du signal reçu par le récepteur GNSS. Elle exploite les techniques de filtrage statistique de type Monte Carlo Séquentiels appelées filtre particulaire. L'erreur de position en milieu urbain est liée à l'état de réception des signaux satellitaires (bloqué, direct ou réfléchi). C'est pourquoi une information sur l'environnement du récepteur doit être prise en compte. La thèse propose également un nouveau modèle d'erreurs de pseudodistance qui permet de considérer les conditions de réception du signal dans le calcul de la position.Dans un premier temps, l'état de réception de chaque satellite reçu est supposé connu dans le filtre particulaire. Une chaîne de Markov, valable pour une trajectoire connue du mobile, est préalablement définie pour déduire les états successifs de réception des satellites. Par la suite, on utilise une distribution de Dirichlet pour estimer les états de réception des satellites
3

Model-based clustering and model selection for binned data. / Classification automatique à base de modèle et choix de modèles pour les données discrétisées

Wu, Jingwen 28 January 2014 (has links)
Cette thèse étudie les approches de classification automatique basées sur les modèles de mélange gaussiens et les critères de choix de modèles pour la classification automatique de données discrétisées. Quatorze algorithmes binned-EM et quatorze algorithmes bin-EM-CEM sont développés pour quatorze modèles de mélange gaussiens parcimonieux. Ces nouveaux algorithmes combinent les avantages des données discrétisées en termes de réduction du temps d’exécution et les avantages des modèles de mélange gaussiens parcimonieux en termes de simplification de l'estimation des paramètres. Les complexités des algorithmes binned-EM et bin-EM-CEM sont calculées et comparées aux complexités des algorithmes EM et CEM respectivement. Afin de choisir le bon modèle qui s'adapte bien aux données et qui satisfait les exigences de précision en classification avec un temps de calcul raisonnable, les critères AIC, BIC, ICL, NEC et AWE sont étendus à la classification automatique de données discrétisées lorsque l'on utilise les algorithmes binned-EM et bin-EM-CEM proposés. Les avantages des différentes méthodes proposées sont illustrés par des études expérimentales. / This thesis studies the Gaussian mixture model-based clustering approaches and the criteria of model selection for binned data clustering. Fourteen binned-EM algorithms and fourteen bin-EM-CEM algorithms are developed for fourteen parsimonious Gaussian mixture models. These new algorithms combine the advantages in computation time reduction of binning data and the advantages in parameters estimation simplification of parsimonious Gaussian mixture models. The complexities of the binned-EM and the bin-EM-CEM algorithms are calculated and compared to the complexities of the EM and the CEM algorithms respectively. In order to select the right model which fits well the data and satisfies the clustering precision requirements with a reasonable computation time, AIC, BIC, ICL, NEC, and AWE criteria, are extended to binned data clustering when the proposed binned-EM and bin-EM-CEM algorithms are used. The advantages of the different proposed methods are illustrated through experimental studies.
4

Impact des multitrajets sur les performances des systèmes de navigation par satellite : contribution à l'amélioration de la précision de localisation par modélisation bayésienne / Multipath impact on the performances of satellite navigation systems : contribution to the enhancement of location accuracy towards bayesian modeling

Nahimana, Donnay Fleury 19 February 2009 (has links)
De nombreuses solutions sont développées pour diminuer l'influence des multitrajets sur la précision et la disponibilité des systèmes GNSS. L'intégration de capteurs supplémentaires dans le système de localisation est l'une des solutions permettant de compenser notamment l'absence de données satellitaires. Un tel système est certes d'une bonne précision mais sa complexité et son coût limitent un usage très répandu.Cette thèse propose une approche algorithmique destinée à améliorer la précision des systèmes GNSS en milieu urbain. L'étude se base sur l'utilisation des signaux GNSS uniquement et une connaissance de l'environnement proche du récepteur à partir d'un modèle 3D du lieu de navigation.La méthode présentée intervient à l'étape de filtrage du signal reçu par le récepteur GNSS. Elle exploite les techniques de filtrage statistique de type Monte Carlo Séquentiels appelées filtre particulaire. L'erreur de position en milieu urbain est liée à l'état de réception des signaux satellitaires (bloqué, direct ou réfléchi). C'est pourquoi une information sur l'environnement du récepteur doit être prise en compte. La thèse propose également un nouveau modèle d'erreurs de pseudodistance qui permet de considérer les conditions de réception du signal dans le calcul de la position.Dans un premier temps, l'état de réception de chaque satellite reçu est supposé connu dans le filtre particulaire. Une chaîne de Markov, valable pour une trajectoire connue du mobile, est préalablement définie pour déduire les états successifs de réception des satellites. Par la suite, on utilise une distribution de Dirichlet pour estimer les états de réception des satellites / Most of the GNSS-based transport applications are employed in dense urban areas. One of the reasons of bad position accuracy in urban area is the obstacle's presence (building and trees). Many solutions are developed to decrease the multipath impact on accuracy and availability of GNSS systems. Integration of supplementary sensors into the localisation system is one of the solutions used to supply a lack of GNSS data. Such systems offer good accuracy but increase complexity and cost, which becomes inappropriate to equip a large fleet of vehicles.This thesis proposes an algorithmic approach to enhance the position accuracy in urban environment. The study is based on GNSS signals only and knowledge of the close reception environment with a 3D model of the navigation area.The method impacts the signal filtering step of the process. The filtering process is based on Sequential Monte Carlo methods called particle filter. As the position error in urban area is related to the satellite reception state (blocked, direct or reflected), information of the receiver environment is taken into account. A pseudorange error model is also proposed to fit satellite reception conditions. In a first work, the reception state of each satellite is assumed to be known. A Markov chain is defined for a known trajectory of the vehicle and is used to determine the successive reception states of each signal. Then, the states are estimated using a Dirichlet distribution
5

Détection du fondamental de la parole en temps réel : application aux voix pathologiques

Bahja, Fadoua 15 June 2013 (has links) (PDF)
Cette thèse s'inscrit dans le cadre des travaux de recherche qui visent la détermination de la fréquence fondamentale du signal de parole. La première contribution est relative au développement d'algorithmes de détection du pitch en temps réel à partir d'une autocorrélation circulaire du signal d'excitation glottique. Parmi tous les algorithmes de détection du pitch, décrits dans la littérature, rares sont ceux qui peuvent résoudre correctement tous les problèmes li'es au suivi du contour du pitch. Pour cette raison, nous avons élargi notre champ d'investigation et avons proposé de nouveaux algorithmes fondés sur la transformation en ondelettes. Pour évaluer les performances des algorithmes proposés, nous avons utilisé deux bases de données : Bagshaw et Keele. Les résultats que nous avons obtenus montrent clairement que nos algorithmes surclassent les meilleurs algorithmes de référence décrits dans la littérature. La deuxième contribution de cette thèse concerne la réalisation d'un système de conversion de voix dans le but d'améliorer la voix pathologique. Nous parlons dans ce cas d'un système de correction de voix. Notre principal apport, concernant la conversion vocale, consiste en la prédiction des coefficients cepstraux de Fourier relatifs au signal d'excitation glottique. Grâce à ce nouveau type de prédiction, nous avons pu réaliser des systèmes de conversion de voix dont les résultats, qu'ils soient objectifs ou subjectifs, valident l'approche proposée.
6

Modèles de covariance pour l'analyse et la classification de signaux électroencéphalogrammes / Covariance models for electroencephalogramm signals analysis and classification

Spinnato, Juliette 06 July 2015 (has links)
Cette thèse s’inscrit dans le contexte de l’analyse et de la classification de signaux électroencéphalogrammes (EEG) par des méthodes d’analyse discriminante. Ces signaux multi-capteurs qui sont, par nature, très fortement corrélés spatialement et temporellement sont considérés dans le plan temps-fréquence. En particulier, nous nous intéressons à des signaux de type potentiels évoqués qui sont bien représentés dans l’espace des ondelettes. Par la suite, nous considérons donc les signaux représentés par des coefficients multi-échelles et qui ont une structure matricielle électrodes × coefficients. Les signaux EEG sont considérés comme un mélange entre l’activité d’intérêt que l’on souhaite extraire et l’activité spontanée (ou "bruit de fond"), qui est largement prépondérante. La problématique principale est ici de distinguer des signaux issus de différentes conditions expérimentales (classes). Dans le cas binaire, nous nous focalisons sur l’approche probabiliste de l’analyse discriminante et des modèles de mélange gaussien sont considérés, décrivant dans chaque classe les signaux en termes de composantes fixes (moyenne) et aléatoires. Cette dernière, caractérisée par sa matrice de covariance, permet de modéliser différentes sources de variabilité. Essentielle à la mise en oeuvre de l’analyse discriminante, l’estimation de cette matrice (et de son inverse) peut être dégradée dans le cas de grandes dimensions et/ou de faibles échantillons d’apprentissage, cadre applicatif de cette thèse. Nous nous intéressons aux alternatives qui se basent sur la définition de modèle(s) de covariance(s) particulier(s) et qui permettent de réduire le nombre de paramètres à estimer. / The present thesis finds itself within the framework of analyzing and classifying electroencephalogram signals (EEG) using discriminant analysis. Those multi-sensor signals which are, by nature, highly correlated spatially and temporally are considered, in this work, in the timefrequency domain. In particular, we focus on low-frequency evoked-related potential-type signals (ERPs) that are well described in the wavelet domain. Thereafter, we will consider signals represented by multi-scale coefficients and that have a matrix structure electrodes × coefficients. Moreover, EEG signals are seen as a mixture between the signal of interest that we want to extract and spontaneous activity (also called "background noise") which is overriding. The main problematic is here to distinguish signals from different experimental conditions (class). In the binary case, we focus on the probabilistic approach of the discriminant analysis and Gaussian mixtures are used, describing in each class the signals in terms of fixed (mean) and random components. The latter, characterized by its covariance matrix, allow to model different variability sources. The estimation of this matrix (and of its inverse) is essential for the implementation of the discriminant analysis and can be deteriorated by high-dimensional data and/or by small learning samples, which is the application framework of this thesis. We are interested in alternatives that are based on specific covariance model(s) and that allow to decrease the number of parameters to estimate.

Page generated in 0.0932 seconds