61 |
A comparison of Bayesian model selection based on MCMC with an application to GARCH-type modelsMiazhynskaia, Tatiana, Frühwirth-Schnatter, Sylvia, Dorffner, Georg January 2003 (has links) (PDF)
This paper presents a comprehensive review and comparison of five computational methods for Bayesian model selection, based on MCMC simulations from posterior model parameter distributions. We apply these methods to a well-known and important class of models in financial time series analysis, namely GARCH and GARCH-t models for conditional return distributions (assuming normal and t-distributions). We compare their performance vis--vis the more common maximum likelihood-based model selection on both simulated and real market data. All five MCMC methods proved feasible in both cases, although differing in their computational demands. Results on simulated data show that for large degrees of freedom (where the t-distribution becomes more similar to a normal one), Bayesian model selection results in better decisions in favour of the true model than maximum likelihood. Results on market data show the feasibility of all model selection methods, mainly because the distributions appear to be decisively non-Gaussian. / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
62 |
Seleção de modelos lineares mistos utilizando critérios de informação / Mixed linear model selection using information criterionYamanouchi, Tatiana Kazue 18 August 2017 (has links)
O modelo misto é comumente utilizado em dados de medidas repetidas devido a sua flexibilidade de incorporar no modelo a correlação existente entre as observações medidas no mesmo indivíduo e a heterogeneidade de variâncias das observações feitas ao longo do tempo. Este modelo é composto de efeitos fixos, efeitos aleatórios e o erro aleatório e com isso na seleção do modelo misto muitas vezes é necessário selecionar os melhores componentes do modelo misto de tal forma que represente bem os dados. Os critérios de informação são ferramentas muito utilizadas na seleção de modelos, mas não há muitos estudos que indiquem como os critérios de informação se desempenham na seleção dos efeitos fixos, efeitos aleatórios e da estrutura de covariância que compõe o erro aleatório. Diante disso, neste trabalho realizou-se um estudo de simulação para avaliar o desempenho dos critérios de informação AIC, BIC e KIC na seleção dos componentes do modelo misto, medido pela taxa TP (Taxa de verdadeiro positivo). De modo geral, os critérios de informação se desempenharam bem, ou seja, tiveram altos valores de taxa TP em situações em que o tamanho da amostra é maior. Na seleção de efeitos fixos e na seleção da estrutura de covariância, em quase todas as situações, o critério BIC teve um desempenho melhor em relação aos critérios AIC e KIC. Na seleção de efeitos aleatórios nenhum critério teve um bom desempenho, exceto na seleção de efeitos aleatórios em que considera a estrutura de simetria composta, situação em que BIC teve o melhor desempenho. / The mixed model is commonly used in data of repeated measurements because of its flexibility to incorporate in the model the correlation existing between the observations measured in the same individual and the heterogeneity of variances of observations made over time. This model is composed of fixed effects, random effects and random error and with this in the selection of the mixed model it is often necessary to select the best components of the mixed model in such a way that it represents the data well. Information criteria are tools widely used in model selection, but there are not many studies that indicate how information criteria play out in the selection of fixed effects, random effects, and the covariance structure that makes up the random error. In this work, a simulation study was performed to evaluate the performance of the AIC, BIC and KIC information criteria in the selection of the components of the mixed model, measured by the TP (True positive Rate). In general, the information criteria performed well, that is, they had high TP rate in situations where the sample size is larger. In the selection of fixed effects and in the selection of the covariance structure, in almost all situations, the BIC criterion had a better performance in relation to the AIC and KIC criteria. In the selection of random effects no criterion had a good performance, except in the selection of Random effects in which it considers the compound symmetric structure, situation in which BIC had the best performance.
|
63 |
Flexible shrinkage in high-dimensional Bayesian spatial autoregressive modelsPfarrhofer, Michael, Piribauer, Philipp January 2019 (has links) (PDF)
Several recent empirical studies, particularly in the regional economic growth literature, emphasize the importance of explicitly accounting for uncertainty surrounding model specification. Standard approaches to deal with the problem of model uncertainty involve the use of Bayesian model-averaging techniques. However, Bayesian model-averaging for spatial autoregressive models suffers from severe drawbacks both in terms of computational time and possible extensions to more flexible econometric frameworks. To alleviate these problems, this paper presents two global-local shrinkage priors in the context of high-dimensional matrix exponential spatial specifications. A simulation study is conducted to evaluate the performance of the shrinkage priors. Results suggest that they perform particularly well in high-dimensional environments, especially when the number of parameters to estimate exceeds the number of observations. Moreover, we use pan-European regional economic growth data to illustrate the performance of the proposed shrinkage priors.
|
64 |
Chromosome 3D Structure Modeling and New Approaches For General Statistical InferenceRongrong Zhang (5930474) 03 January 2019 (has links)
<div>This thesis consists of two separate topics, which include the use of piecewise helical models for the inference of 3D spatial organizations of chromosomes and new approaches for general statistical inference. The recently developed Hi-C technology enables a genome-wide view of chromosome</div><div>spatial organizations, and has shed deep insights into genome structure and genome function. However, multiple sources of uncertainties make downstream data analysis and interpretation challenging. Specically, statistical models for inferring three-dimensional (3D) chromosomal structure from Hi-C data are far from their maturity. Most existing methods are highly over-parameterized, lacking clear interpretations, and sensitive to outliers. We propose a parsimonious, easy to interpret, and robust piecewise helical curve model for the inference of 3D chromosomal structures</div><div>from Hi-C data, for both individual topologically associated domains and whole chromosomes. When applied to a real Hi-C dataset, the piecewise helical model not only achieves much better model tting than existing models, but also reveals that geometric properties of chromatin spatial organization are closely related to genome function.</div><div><br></div><div><div>For potential applications in big data analytics and machine learning, we propose to use deep neural networks to automate the Bayesian model selection and parameter estimation procedures. Two such frameworks are developed under different scenarios. First, we construct a deep neural network-based Bayes estimator for the parameters of a given model. The neural Bayes estimator mitigates the computational challenges faced by traditional approaches for computing Bayes estimators. When applied to the generalized linear mixed models, the neural Bayes estimator</div><div>outperforms existing methods implemented in R packages and SAS procedures. Second, we construct a deep convolutional neural networks-based framework to perform</div><div>simultaneous Bayesian model selection and parameter estimation. We refer to the neural networks for model selection and parameter estimation in the framework as the</div><div>neural model selector and parameter estimator, respectively, which can be properly trained using labeled data systematically generated from candidate models. Simulation</div><div>study shows that both the neural selector and estimator demonstrate excellent performances.</div></div><div><br></div><div><div>The theory of Conditional Inferential Models (CIMs) has been introduced to combine information for efficient inference in the Inferential Models framework for priorfree</div><div>and yet valid probabilistic inference. While the general theory is subject to further development, the so-called regular CIMs are simple. We establish and prove a</div><div>necessary and sucient condition for the existence and identication of regular CIMs. More specically, it is shown that for inference based on a sample from continuous</div><div>distributions with unknown parameters, the corresponding CIM is regular if and only if the unknown parameters are generalized location and scale parameters, indexing</div><div>the transformations of an affine group.</div></div>
|
65 |
Ranked sparsity: a regularization framework for selecting features in the presence of prior informational asymmetryPeterson, Ryan Andrew 01 May 2019 (has links)
In this dissertation, we explore and illustrate the concept of ranked sparsity, a phenomenon that often occurs naturally in the presence of derived variables. Ranked sparsity arises in modeling applications when an expected disparity exists in the quality of information between different feature sets. Its presence can cause traditional model selection methods to fail because statisticians commonly presume that each potential parameter is equally worthy of entering into the final model - we call this principle "covariate equipoise". However, this presumption does not always hold, especially in the presence of derived variables. For instance, when all possible interactions are considered as candidate predictors, the presumption of covariate equipoise will often produce misclassified and opaque models. The sheer number of additional candidate variables grossly inflates the number of false discoveries in the interactions, resulting in unnecessarily complex and difficult-to-interpret models with many (truly spurious) interactions. We suggest a modeling strategy that requires a stronger level of evidence in order to allow certain variables (e.g. interactions) to be selected in the final model. This ranked sparsity paradigm can be implemented either with a modified Bayesian information criterion (RBIC) or with the sparsity-ranked lasso (SRL).
In chapter 1, we provide a philosophical motivation for ranked sparsity by describing situations where traditional model selection methods fail. Chapter 1 also presents some of the relevant literature, and motivates why ranked sparsity methods are necessary in the context of interactions. Finally, we introduce RBIC and SRL as possible recourses. In chapter 2, we explore the performance of SRL relative to competing methods for selecting polynomials and interactions in a series of simulations. We show that the SRL is a very attractive method because it is fast, accurate, and does not tend to inflate the number of Type I errors in the interactions. We illustrate its utility in an application to predict the survival of lung cancer patients using a set of gene expression measurements and clinical covariates, searching in particular for gene-environment interactions, which are very difficult to find in practice.
In chapter 3, we present three extensions of the SRL in very different contexts. First, we show how the method can be used to optimize for cost and prediction accuracy simulataneously when covariates have differing collection costs. In this setting, the SRL produces what we call "minimally invasive" models, i.e. models that can easily (and cheaply) be applied to new data. Second, we investigate the use of the SRL in the context of time series regression, where we evaluate our method against several other state-of-the-art techniques in predicting the hourly number of arrivals at the Emergency Department of the University of Iowa Hospitals and Clinics. Finally, we show how the SRL can be utilized to balance model stability and model adaptivity in an application which uses a rich new source of smartphone thermometer data to predict flu incidence in real time.
|
66 |
Model selection criteria in the presence of missing data based on the Kullback-Leibler discrepancySparks, JonDavid 01 December 2009 (has links)
An important challenge in statistical modeling involves determining an appropriate structural form for a model to be used in making inferences and predictions. Missing data is a very common occurrence in most research settings and can easily complicate the model selection problem. Many useful procedures have been developed to estimate parameters and standard errors in the presence of missing data;however, few methods exist for determining the actual structural form of a modelwhen the data is incomplete.
In this dissertation, we propose model selection criteria based on the Kullback-Leiber discrepancy that can be used in the presence of missing data. The criteria are developed by accounting for missing data using principles related to the expectation maximization (EM) algorithm and bootstrap methods. We formulate the criteria for three specific modeling frameworks: for the normal multivariate linear regression model, a generalized linear model, and a normal longitudinal regression model. In each framework, a simulation study is presented to investigate the performance of the criteria relative to their traditional counterparts. We consider a setting where the missingness is confined to the outcome, and also a setting where the missingness may occur in the outcome and/or the covariates. The results from the simulation studies indicate that our criteria provide better protection against underfitting than their traditional analogues.
We outline the implementation of our methodology for a general discrepancy measure. An application is presented where the proposed criteria are utilized in a study that evaluates the driving performance of individuals with Parkinson's disease under low contrast (fog) conditions in a driving simulator.
|
67 |
INFERENCE USING BHATTACHARYYA DISTANCE TO MODEL INTERACTION EFFECTS WHEN THE NUMBER OF PREDICTORS FAR EXCEEDS THE SAMPLE SIZEJanse, Sarah A. 01 January 2017 (has links)
In recent years, statistical analyses, algorithms, and modeling of big data have been constrained due to computational complexity. Further, the added complexity of relationships among response and explanatory variables, such as higher-order interaction effects, make identifying predictors using standard statistical techniques difficult. These difficulties are only exacerbated in the case of small sample sizes in some studies. Recent analyses have targeted the identification of interaction effects in big data, but the development of methods to identify higher-order interaction effects has been limited by computational concerns. One recently studied method is the Feasible Solutions Algorithm (FSA), a fast, flexible method that aims to find a set of statistically optimal models via a stochastic search algorithm. Although FSA has shown promise, its current limits include that the user must choose the number of times to run the algorithm. Here, statistical guidance is provided for this number iterations by deriving a lower bound on the probability of obtaining the statistically optimal model in a number of iterations of FSA. Moreover, logistic regression is severely limited when two predictors can perfectly separate the two outcomes. In the case of small sample sizes, this occurs quite often by chance, especially in the case of a large number of predictors. Bhattacharyya distance is proposed as an alternative method to address this limitation. However, little is known about the theoretical properties or distribution of B-distance. Thus, properties and the distribution of this distance measure are derived here. A hypothesis test and confidence interval are developed and tested on both simulated and real data.
|
68 |
EXAMINING THE CONFIRMATORY TETRAD ANALYSIS (CTA) AS A SOLUTION OF THE INADEQUACY OF TRADITIONAL STRUCTURAL EQUATION MODELING (SEM) FIT INDICESLiu, Hangcheng 01 January 2018 (has links)
Structural Equation Modeling (SEM) is a framework of statistical methods that allows us to represent complex relationships between variables. SEM is widely used in economics, genetics and the behavioral sciences (e.g. psychology, psychobiology, sociology and medicine). Model complexity is defined as a model’s ability to fit different data patterns and it plays an important role in model selection when applying SEM. As in linear regression, the number of free model parameters is typically used in traditional SEM model fit indices as a measure of the model complexity. However, only using number of free model parameters to indicate SEM model complexity is crude since other contributing factors, such as the type of constraint or functional form are ignored.
To solve this problem, a special technique, Confirmatory Tetrad Analysis (CTA) is examined. A tetrad refers to the difference in the products of certain covariances (or correlations) among four random variables. A structural equation model often implies that some tetrads should be zero. These model implied zero tetrads are called vanishing tetrads. In CTA, the goodness of fit can be determined by testing the null hypothesis that the model implied vanishing tetrads are equal to zero. CTA can be helpful to improve model selection because different functional forms may affect the model implied vanishing tetrad number (t), and models not nested according to the traditional likelihood ratio test may be nested in terms of tetrads.
In this dissertation, an R package was created to perform CTA, a two-step method was developed to determine SEM model complexity using simulated data, and it is demonstrated how the number of vanishing tetrads can be helpful to indicate SEM model complexity in some situations.
|
69 |
Probabilistic pairwise model comparisons based on discrepancy measures and a reconceptualization of the p-valueRiedle, Benjamin N. 01 May 2018 (has links)
Discrepancy measures are often employed in problems involving the selection and assessment of statistical models. A discrepancy gauges the separation between a fitted candidate model and the underlying generating model. In this work, we consider pairwise comparisons of fitted models based on a probabilistic evaluation of the ordering of the constituent discrepancies. An estimator of the probability is derived using the bootstrap.
In the framework of hypothesis testing, nested models are often compared on the basis of the p-value. Specifically, the simpler null model is favored unless the p-value is sufficiently small, in which case the null model is rejected and the more general alternative model is retained. Using suitably defined discrepancy measures, we mathematically show that, in general settings, the Wald, likelihood ratio (LR) and score test p-values are approximated by the bootstrapped discrepancy comparison probability (BDCP). We argue that the connection between the p-value and the BDCP leads to potentially new insights regarding the utility and limitations of the p-value. The BDCP framework also facilitates discrepancy-based inferences in settings beyond the limited confines of nested model hypothesis testing.
|
70 |
Passive detection of radionuclides from weak and poorly resolved gamma-ray energy spectraKump, Paul 01 July 2012 (has links)
Large passive detectors used in screening for special nuclear materials at ports of entry are characterized by poor spectral resolution, making identification of radionuclides a difficult task. Most identification routines, which fit empirical shapes and use derivatives, are impractical in these situations. Here I develop new, physics-based methods to determine the presence of spectral signatures of one or more of a set of isotopes. Gamma-ray counts are modeled as Poisson processes, where the average part is taken to be the model and the difference between the observed gamma-ray counts and the average is considered random noise. In the linear part, the unknown coefficients represent the intensites of the isotopes. Therefore, it is of great interest not to estimate each coefficient, but rather determine if the coefficient is non-zero, corresponding to the presence of the isotope. This thesis provides new selection algorithms, and, since detector data is undoubtedly finite, this unique work emphasizes selection when data is fixed and finite.
|
Page generated in 0.1079 seconds