• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Método adaptativo de Markov Chain Monte Carlo para manipulação de modelos Bayesianos

FIRMINO, Paulo Renato Alves 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T17:35:07Z (GMT). No. of bitstreams: 2 arquivo3632_1.pdf: 1762777 bytes, checksum: e94374ad230aa9afab9b590aa9caa2bd (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Ao longo dos anos, modelos Bayesianos vêm recebendo atenção especial da academia e em aplicações principalmente por possibilitarem uma combinação matemática entre corpos de evidência subjetiva e empírica. A metodologia de integração de Monte Carlo via cadeias de Markov é uma das principais classes de algoritmos para computar estimativas marginais a partir de modelos Bayesianos. Entre os métodos de integração de Monte Carlo via cadeias de Markov, o algoritmo de Metropolis-Hastings merece destaque. Em resumo, para o conjunto de d variáveis (ou componentes) do modelo Bayesiano, X = (X1, X2, , Xd), tal algoritmo elabora uma cadeia de Markov onde cada estado visitado é uma realização de X, x = (x1, x2, , xd), amostrada das distribuições de probabilidades condicionais das variáveis do modelo, f(xi| x1, x2, , xi-1, xi+1, , xd). Quando a simulação é governada por distribuições cuja amostragem direta é viável, o algoritmo de Metropolis-Hastings converge para o método de Gibbs e técnicas de redução de variância tais como Rao-Blackwellization podem ser adotadas. Caso contrário, diante de distribuições cuja amostragem direta é inviável, Rao-Blackwellization é possível a partir do método de griddy-Gibbs, que recorre a funções aproximadas. Esta tese propõe uma variante de griddy-Gibbs que pode ser também classificada como uma extensão do algoritmo de Metropolis-Hastings (diferentemente do método de griddy-Gibbs tradicional que descarta a possibilidade de se rejeitar os valores amostrados ao longo das simulações). Além disso, algoritmos de integração numérica adaptativos e técnicas de agrupamento, tais como o método adaptativo de Simpson e centroidal Voronoi tessellations, são adotados. Casos de estudo apontam o algoritmo proposto como uma boa alternativa a métodos existentes, promovendo estimativas mais precisas sob um menor consumo de recursos computacionais em muitas situações
2

Distribuição exponencial generalizada: uma análise bayesiana aplicada a dados de câncer / Generalized exponential distribution: a Bayesian analysis applied to cancer data

Boleta, Juliana 19 December 2012 (has links)
A técnica de análise de sobrevivência tem sido muito utilizada por pesquisadores na área de saúde. Neste trabalho foi usada uma distribuição em análise de sobrevivência recentemente estudada, chamada distribuição exponencial generalizada. Esta distribuição foi estudada sob todos os aspectos: para dados completos e censurados, sob a presençaa de covariáveis e considerando sua extensão para um modelo multivariado derivado de uma função cópula. Para exemplificação desta nova distribuição, foram utilizados dados reais de câncer (leucemia mielóide aguda e câncer gástrico) que possuem a presença de censuras e covariáveis. Os dados referentes ao câncer gástrico tem a particularidade de apresentar dois tempos de sobrevida, um relativo ao tempo global de sobrevida e o outro relativo ao tempo de sobrevida livre do evento, que foi utilizado para a aplicação do modelo multivariado. Foi realizada uma comparação com outras distribuições já utilizadas em análise de sobrevivência, como a distribuiçãoo Weibull e a Gama. Para a análise bayesiana adotamos diferentes distribuições a priori para os parâmetros. Foi utilizado, nas aplicações, métodos de simulação de MCMC (Monte Carlo em Cadeias de Markov) e o software Winbugs. / Survival analysis methods has been extensively used by health researchers. In this work it was proposed the use a survival analysis model recently studied, denoted as generalized exponential distribution. This distribution was studied in all respects: for complete data and censored, in the presence of covariates and considering its extension to a multivariate model derived from a copula function. To exemplify the use of these models, it was considered real cancer lifetime data (acute myeloid leukemia and gastric cancer) in presence of censored data and covariates. The assumed cancer gastric lifetime data has two survival responses, one related to the total lifetime of the patient and another one related to the time free of the disease, that is, multivariate data associated to each patient. In these applications there was considered a comparative study with standard existing lifetime distributions, as Weibull and gamma distributions.For a Bayesian analysis we assumed different prior distributions for the parameters of the model. For the simulation of samples of the joint posterior distribution of interest, we used standard MCMC (Markov Chain Monte Carlo) methods and the software Winbugs.
3

Distribuição exponencial generalizada: uma análise bayesiana aplicada a dados de câncer / Generalized exponential distribution: a Bayesian analysis applied to cancer data

Juliana Boleta 19 December 2012 (has links)
A técnica de análise de sobrevivência tem sido muito utilizada por pesquisadores na área de saúde. Neste trabalho foi usada uma distribuição em análise de sobrevivência recentemente estudada, chamada distribuição exponencial generalizada. Esta distribuição foi estudada sob todos os aspectos: para dados completos e censurados, sob a presençaa de covariáveis e considerando sua extensão para um modelo multivariado derivado de uma função cópula. Para exemplificação desta nova distribuição, foram utilizados dados reais de câncer (leucemia mielóide aguda e câncer gástrico) que possuem a presença de censuras e covariáveis. Os dados referentes ao câncer gástrico tem a particularidade de apresentar dois tempos de sobrevida, um relativo ao tempo global de sobrevida e o outro relativo ao tempo de sobrevida livre do evento, que foi utilizado para a aplicação do modelo multivariado. Foi realizada uma comparação com outras distribuições já utilizadas em análise de sobrevivência, como a distribuiçãoo Weibull e a Gama. Para a análise bayesiana adotamos diferentes distribuições a priori para os parâmetros. Foi utilizado, nas aplicações, métodos de simulação de MCMC (Monte Carlo em Cadeias de Markov) e o software Winbugs. / Survival analysis methods has been extensively used by health researchers. In this work it was proposed the use a survival analysis model recently studied, denoted as generalized exponential distribution. This distribution was studied in all respects: for complete data and censored, in the presence of covariates and considering its extension to a multivariate model derived from a copula function. To exemplify the use of these models, it was considered real cancer lifetime data (acute myeloid leukemia and gastric cancer) in presence of censored data and covariates. The assumed cancer gastric lifetime data has two survival responses, one related to the total lifetime of the patient and another one related to the time free of the disease, that is, multivariate data associated to each patient. In these applications there was considered a comparative study with standard existing lifetime distributions, as Weibull and gamma distributions.For a Bayesian analysis we assumed different prior distributions for the parameters of the model. For the simulation of samples of the joint posterior distribution of interest, we used standard MCMC (Markov Chain Monte Carlo) methods and the software Winbugs.
4

Modelos de previsão de preços aplicados aos contratos futuros agropecuários / Price forecasting models applied to agricultural future contracts

Bressan, Aureliano Angel 04 February 2001 (has links)
Submitted by Nathália Faria da Silva (nathaliafsilva.ufv@gmail.com) on 2017-07-04T17:58:58Z No. of bitstreams: 1 texto completo.pdf: 538594 bytes, checksum: 6093b581fc640e6c06d18048d80424f2 (MD5) / Made available in DSpace on 2017-07-04T17:58:58Z (GMT). No. of bitstreams: 1 texto completo.pdf: 538594 bytes, checksum: 6093b581fc640e6c06d18048d80424f2 (MD5) Previous issue date: 2001-02-04 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Esta pesquisa trata da aplicabilidade de modelos de previsão de séries temporais como ferramenta de decisão de compra e venda de contratos futuros da BM&F, em datas próximas ao vencimento. Para fins empíricos, foram consideradas as commodities boi gordo, café e soja. O objetivo geral foi verificar qual modelo fornece as previsões mais precisas para cada série de preços considerada no mercado físico. O objetivo específico foi calcular os retornos médios de cada modelo em operações de compra e venda nos mercados futuros das commodities analisadas, de modo a fornecer um indicativo do potencial ou da limitação de cada um deles. Os modelos estudados foram os de Box & Jenkins (ARIMA), Redes Neurais, Estruturais e Bayesianos. Os dados utilizados corresponderam às cotações semanais de boi gordo, café e soja nos mercados físico e futuro. A discussão se baseou na hipótese de que esses modelos são instrumentos viáveis de auxílio à tomada de decisão por parte de agentes ligados ao agronegócio, reduzindo a incerteza quanto ao comportamento futuro dos preços. A análise foi conduzida, primeiramente, em termos de Erro Percentual de Previsão da série de preços do mercado físico para, em seguida, verificar os retornos em simulações de compra e venda de contratos futuros de cada produto, utilizando-se o Índice Sharpe, além do viés positivo ou negativo dessa média, através da estatística de simetria e do grau de dispersão dos retornos, medido pela curtose da distribuição destes. De modo geral, os resultados indicaram que: a) os modelos de previsão de séries temporais captam, de modo coerente, o padrão de comportamento dos preços analisados; b) há, contudo, diferenças de desempenho preditivo entre os modelos e entre cada mercado; e c) os retornos financeiros se mostraram positivos na maioria dos contratos analisados, indicando o potencial de utilização desses modelos em negociações de contratos para datas próximas ao vencimento, com destaque para operações fundamentadas nas previsões dos Modelos ARIMA e Estruturais. / This research deals with the usefulness of times series forecast models as a tool for buy and sell decisions of the brazilian BM&F future contracts, in dates nearby the expiration. For this purpose, the commodities considered were live cattle, coffee and soybeans. The general objective is to verify which model generates the most accurate forecasts for each price series of the considered commodities in the spot market. The specific objective is to calculate the medium returns of each model in buy and sell operations in each market of the analyzed commodities, in way to provide an indication of the potentials or limitations of each one.The models considered are the Box & Jenkins (ARIMA), Neural Networks, Structural and Bayesians time series models. The data utilized correspond to the weekly quotations of live cattle, coffee and soybeans in the spot and futures markets. The discussion is based on the hypothesis that those models are viable instruments to support decisions of economic agents participating in the agribussiness, reducing the uncertainty related to the future behavior of the spot prices. The analysis is carried out, firstly, in terms of Percentage Forecast Error for the price series in the spot market. Then, it verifies the returns in simulated buy and sell of future contracts of each product, using the Sharpe Index as a tool for comparsion, as well as the symmetry and kurtosis statistics. In general, the results indicate that: a) the time series forecast models capture coherently the pattern of the analyzed prices; b) there is, however, differences of forecast performance among the models and markets; and c) the financial returns are shown positive in most of the analyzed contracts, indicating the potential use of those models in negotiations of contracts for dates close to the expiration, with prominence for operations based in the forecasts of the ARIMA and Structural models.
5

Influência da estrutura da vegetação sobre a diversidade e detectabilidade das espécies de aves do Cerrado / Influence of vegetation structure on the diversity and detectability of Cerrado birds

Rodrigues, Rodolpho Credo 12 August 2016 (has links)
Em diversos estudos ao redor do globo, a estrutura e heterogeneidade da vegetação têm se mostrado um fator determinante na diversidade de espécies de aves e também de outros grupos de animais. O Cerrado é o segundo mais extenso e mais ameaçado bioma de ocorrência no Brasil. Este bioma também é caracterizado por um evidente gradiente ambiental de estrutura e heterogeneidade de vegetação. Na presente tese analisamos a influência da estrutura e heterogeneidade da vegetação sobre a diversidade em comunidades de aves do Cerrado. Nossa expectativa era corroborar a “Hipótese de Heterogeneidade de Habitats”, que propõe que quanto maior a estrutura e heterogeneidade da vegetação, maior será a diversidade de espécies. No primeiro capítulo, realizamos uma compilação sistemática de estudos publicados sobre a diversidade de aves em áreas ocupadas por algumas fisionomias típicas de Cerrado lato sensu, com o intuito de analisar o conhecimento obtido até então acerca da relação entre diversidade de aves e a estrutura da vegetação no Cerrado. Foram selecionadas 72 amostras de 22 estudos, sendo que estas amostras variaram quanto ao tipo fisionomia amostrada e o método amostral empregado, além de também estarem disponíveis em diferentes artigos e serem realizadas em diferentes regiões geográficas. Para análises destes dados, utilizamos a análise de modelos lineares generalizados de efeitos mistos (modelo com distribuição de erros poisson), que permite analisar os efeitos de variáveis fixas e aleatórias sobre a variável explicativa (riqueza de espécies). As variáveis fixas foram o tipo de vegetação amostrada (vegetação campestre, savânica e florestal) e o método amostral empregado (ponto fixo, transecto e redes de neblina). Já as variáveis de efeito aleatório utilizadas foram o estudo onde os dados foram publicados, o autor de cada estudo e a localidade geográfica. O efeito destas variáveis aleatórias poderiam afetar somente os interceptos das relações entre as variáveis fixas e a variável explicativa ou poderiam alterar a relação entre as variáveis fixas e explicativa. Construímos diversos modelos a partir da combinação de variáveis de efeito fixo e aleatório e a seleção do modelo mais parcimonioso foi feito por meio do critério AICc (critério de informação de Akaike corrigido para pequenas amostras). O modelo que apresentou menor valor de AICc (mais parcimonioso) foi aquele que incluiu os efeitos de ambas variáveis de efeito fixo (fisionomia e método amostral) e também um efeito da interação entre estas duas variáveis. Neste modelo também foram incluídos os efeitos das variáveis aleatórias estudo e localidade geográfica sobre os interceptos das relações entre as variáveis de efeito fixo e a variável explicativa. Estes resultados mostraram que a riqueza de espécies de aves em nosso estudo variou não só em função da fisionomia e do método amostral empregado, mas dependendo do método amostral utilizado a relação entre riqueza e fisionomia também foi alterada. Portanto, esta interação não permitiu que fosse estimada a relação entre fisionomia e riqueza sem considerar o efeito dos métodos. Já os efeitos das variáveis aleatórias mostraram que a variação estimada nos interceptos entre estudos foi duas vezes maior do que a variação estimada entre localidades geográficas. O efeito da interação entre as variáveis fisionomia e método amostral apontou para a existência de heterogeneidade de detecção entre locais com diferentes fisionomias, além também de um efeito das fisionomias na efetividade dos diferentes métodos amostrais. A influência dos métodos amostrais no número de espécies observadas em cada fisonomia pode ser esperada devido às diferenças intrínsecas dos métodos, já que ponto fixo e transecto são baseados em contatos visuais e auditivos com as espécies, enquanto que o método de rede de neblina consiste na captura passiva das espécies que voam na altura das redes. Assim, redes de neblina podem ser mais efetivas em habitats menos estruturados (por ex. campos limpos e sujos), onde a rede alcança quase todo os estratos de vegetação. No entanto, o método de transecto pode ser mais efetivo que o método de ponto fixo em áreas de florestas, pois nestes hábitats as espécies tendem a ter territórios menores e o deslocamento do observador proporciona ao observador cobrir um maior número de terrítórios. Por outro lado, o ponto fixo pode ser mais vantajoso por não produzir ruído e afugentar as espécies, o que pode ser uma desvantagem do método de transecto. Outros fatores, como a experiência e número de observadores, número de pontos amostrais, número de redes utilizadas e comprimento de transectos, podem explicar a grande variação estimada entre os estudos. Uma das maneiras de se contornar estes efeitos metodológicos é utilizar métodos desenvolvidos especialmente para lidar com diferentes probabilidades de detecção entre espécies, entre sítios e até métodos amostrais, o que poderia render dados mais confiáveis para o estudo da ecologia das espécies e para a elaboração de planos de manejo e/ou conservação. No segundo capítulo, a relação entre diversidade de aves e estrutura da vegetação foi analisada a partir de dados coletados em campo e utilizando um protocolo de amostragem específico para se estimar e considerar os efeitos da vegetação sobre a detecção das espécies. As amostragens foram realizadas em um dos maiores e mais preservados remanescentes de Cerrado (Parque Nacional Grande Sertão Veredas-PARNA GSV) e consistiram do registro das espécies de aves em 32 áreas dispostas em um gradiente de vegetação de Cerrado, que variaram desde campos limpos e sujos, campos cerrado a cerrados sensu stricto. O cálculo da riqueza de espécies de aves em cada sítio foi realizado através de modelos de ocupação-detecção, adaptados para estimar a riqueza de espécies em comunidades. A vegetação, por sua vez, foi medida a partir de estimativas de presença da vegetação entre 0 e 4 m de altura (16 intervalos de 22,5 cm cada um) e duas variáveis de estrutura foram obtidas a partir de uma análise de componentes principais, que foi aplicada para resumir a variação da presença de vegetação nos 16 intervalos de altura. Estas variáveis de vegetação foram relacionadas tanto com a ocupação quanto com a detecção das espécies, já que a estrutura da vegetação poderia influenciar não só a ocorrência mas também a detecção das espécies. O dia da amostragem e também a temperatura no momento da amostragem também foram incluídas como covariáveis que poderiam afetar a detecção. Após a estimativa da riqueza de espécies pelo modelo de ocupação-detecção para comunidades, esta riqueza estimada foi relacionada por uma função quadrática com a estrutura da vegetação usando um modelo bayesiano de metanálise, que permitiu incluir a incerteza nas estimativas de riqueza na análise. A título de comparação, também foi ajustado um modelo quadrático GLM (distribuição de erros normal) aos dados de riqueza observada. Os resultados mostraram que a riqueza estimada a partir dos dados das 38 espécies mais detectadas durante as amostragens teve uma fraca relação com as duas covariáveis de estrutura de vegetação, sendo que houve uma maior riqueza de espécies em sítios com vegetação intermediária em altura e uma maior riqueza de espécies de aves em sítios onde houve maior presença de vegetação abaixo de 2 m de altura. No entanto, as relações entre riqueza estimada e estas covariáveis foi menos intensa mas qualitativamente similar às relações entre a riqueza observada e as covariáveis de vegetação. A menor intensidade nas relações da riqueza estimada foi evidenciada principalmente em ambos os extremos do gradiente de estrutura vertical da vegetação e também nas áreas com menor presença de vegetação abaixo de 2 m. Estes resultados mostraram que o efeito da detecção pode alterar o efeito da relação entre riqueza de espécies e estrutura de vegetação. Além disso, ao menos para as 38 espécies mais comumente encontradas na área de estudo, os resultados apontam para a importância de todo o gradiente de estrutura da vegetação para a manutenção da riqueza de espécies de aves no Cerrado. Futuros estudos que visem aprimorar o uso destes modelos de ocupação e detecção para comunidades são fundamentais para permitir o uso dos dados de todas as espécies da comunidade. Além disto, outros estudos que se proponham a analisar a dinâmica e composição das comunidades de aves nestes gradientes de estrutura de vegetação são fundamentais para um maior conhecimento sobre a ecologia e conservação das aves no Cerrado / In several studies around the globe, the structure and diversity of vegetation have been shown to be a determining factor in the diversity of species of birds and also other groups of animals. The Cerrado is the second most extensive and most threatened biome occurrence in Brazil. This biome is also characterized by an obvious environmental gradient of vegetation structure and heterogeneity. In this thesis we analysed the influence of the structure and diversity of the vegetation on the diversity in the Cerrado bird communities. Our expectation was to support the “Habitat Heterogeneity Hypothesis” which suggests that the higher the structure and diversity of vegetation, the greater the diversity of species. In the first chapter, we conducted a systematic compilation of published studies on the diversity of birds in areas occupied by some typical physiognomy of Cerrado textit lato sensu, in order to analyze the knowledge obtained so far about the relationship between diversity of birds and the structure of the vegetation in the Cerrado. We selected 72 samples from 22 studies, and these samples varied as the sampled vegetation physiognomy, the sampling method used, and they also are available in different articles and be carried out in different geographical regions. We performed the analysis of generalized linear mixed effects models (model poisson distribution errors), which allows us to analyse the effects of fixed and random variables on the explanatory variable (species richness). Fixed variables were the type of sampled vegetation (grassland, savanna and forest) and the sample method employed (fixed point, transect and mist nets). The random variables used were the study where the data were published, the author of each study and geographic location. These random variables could only affect the intercepts of the relationship between fixed and variable explanatory variable or could alter the relationship between fixed and explanatory variables. We built several models from the combination of fixed and random effects variables and selection the most parsimonious model was made by the AIC criterion (Akaike information criterion corrected for small samples). The model that showed lower value of AIC (more parsimonious) was the one that included the effects of both fixed effect variables (physiognomy and sampling method) and also an effect of the interaction between these two variables. In this model were also included the effects of random variables study and geographic location of the intercepts of the relationship between the fixed effect variables and the explanatory variable. These results showed that the bird species richness in our study varied not only in terms of physiognomy and sample method, but depending on the sampling method used the relationship between richness and physiognomy has also changed. Therefore, this interaction does not allowed us to estimate the relationship between physiognomy and richness without considering the effect of the methods. Since the effects of random variables showed that the variation in the estimated intercept between studies was twice larger than the estimated variation between geographic locations. The effect of interaction between the vegetation physiognomy and sampling method variables pointed to the existence of heterogeneity detection between locations with different physiognomies, in addition also of an effect of the physiognomies in the effectiveness of different sampling methods. The influence of the sampling method in the number of species observed in each physiognomy may be expected due to intrinsic differences in the methods, since fixed point counts and transect are based on visual and aural contacts with the species, while the mist net method consists in passive capture of species flying at the time of the networks. Thus, mist nets may be more effective in less structured environments (eg. Clean and dirty fields) where the net reaches virtually all vegetation layers. However, transect method can be more effective than the fixed point method in areas of forests since in these habitats species tend to have smaller territory areas, and the observer movement provides the observer cover greater areas. On the other hand, the point counts can be more advantageous not to produce noise and chase species, which may be a disadvantage of transect method. Other factors, such as experience and number of observers, the number of sampling points, the number of nets used and length of transects, may explain the wide variation between studies estimated. One of the ways to overcome these methodological effects is to use methods developed especially to deal with different probabilities of detection of species, between sites and sampling methods, which could yield more reliable data for the ecological study of the species and the development of management plans and/or conservation. In the second chapter, the relationship between diversity of birds and vegetation structure was analysed from data collected in the field and using a specific sampling protocol to estimate and consider the effects of vegetation on the detection of species. The samples were taken in one of the largest and well preserved remnants of Cerrado (Grande Sertão Veredas National Park-PARNA GSV) and consisted of the record of bird speciesin 32 areas arranged in a Cerrado vegetation gradient, ranging from grasslands, open and dense savannas. The calculation of the bird species richness at each site was conducted using occupancy-detection models adapted to estimate the number of species in communities. The vegetation, in turn, was measured from estimates of the presence of vegetation in height intervals between 0 and 4 m (16 intervals of 22.5 cm each) and two structure variables were obtained from a principal component analysis applied to summarize the variation of the vegetation presence in height intervals. These vegetation variables were related to both the occupation and detection of species, since the vegetation structure could influence not only the occurrence but also the detection of species. The day of sampling and also the temperature at the time of sampling were also included as covariates that may a_ect the detection. After the estimation of species richness by model occupancy detection for communities, this estimated richness was related by a quadratic function with the vegetation structure using a Bayesian meta-analysis model, which allowed us include uncertainty in richness estimates. By way of comparison, we also fit a quadratic model GLM (normal distribution errors) to the observed richness data. The results showed that the richness estimated from the data of the 38 most detected species during sampling had a weak relationship with both covariates vegetation structure, and there was a greater number of species at sites with intermediate vegetation height and greater bird species richness in places where there was a greater presence of vegetation below 2 m in height. However, relations between estimated richness and these covariates was less intense but qualitatively similar to the relationship between observed richness and vegetation covariates. The lowest intensity in the estimated richness relationship was observed mainly at both ends of the vertical gradient of vegetation and also in areas with less presence of vegetation below 2 m. These results showed that the effect of detection can change the effect of the relationship between species richness and vegetation structure. Moreover, at least for the 38 species most commonly found in the study area, the results point to the importance of the entire vegetation structure gradient to maintain the bird species richness in Cerrado. Future studies aiming to improve the use of these models of occupation and detection for communities are essential to allow the use of data of all species in the community. In addition, other studies that propose to analyse the dynamics and composition of bird communities in these vegetation structure gradients are fundamental for a better understanding of the ecology and conservation of Cerrado birds
6

Influência da estrutura da vegetação sobre a diversidade e detectabilidade das espécies de aves do Cerrado / Influence of vegetation structure on the diversity and detectability of Cerrado birds

Rodolpho Credo Rodrigues 12 August 2016 (has links)
Em diversos estudos ao redor do globo, a estrutura e heterogeneidade da vegetação têm se mostrado um fator determinante na diversidade de espécies de aves e também de outros grupos de animais. O Cerrado é o segundo mais extenso e mais ameaçado bioma de ocorrência no Brasil. Este bioma também é caracterizado por um evidente gradiente ambiental de estrutura e heterogeneidade de vegetação. Na presente tese analisamos a influência da estrutura e heterogeneidade da vegetação sobre a diversidade em comunidades de aves do Cerrado. Nossa expectativa era corroborar a “Hipótese de Heterogeneidade de Habitats”, que propõe que quanto maior a estrutura e heterogeneidade da vegetação, maior será a diversidade de espécies. No primeiro capítulo, realizamos uma compilação sistemática de estudos publicados sobre a diversidade de aves em áreas ocupadas por algumas fisionomias típicas de Cerrado lato sensu, com o intuito de analisar o conhecimento obtido até então acerca da relação entre diversidade de aves e a estrutura da vegetação no Cerrado. Foram selecionadas 72 amostras de 22 estudos, sendo que estas amostras variaram quanto ao tipo fisionomia amostrada e o método amostral empregado, além de também estarem disponíveis em diferentes artigos e serem realizadas em diferentes regiões geográficas. Para análises destes dados, utilizamos a análise de modelos lineares generalizados de efeitos mistos (modelo com distribuição de erros poisson), que permite analisar os efeitos de variáveis fixas e aleatórias sobre a variável explicativa (riqueza de espécies). As variáveis fixas foram o tipo de vegetação amostrada (vegetação campestre, savânica e florestal) e o método amostral empregado (ponto fixo, transecto e redes de neblina). Já as variáveis de efeito aleatório utilizadas foram o estudo onde os dados foram publicados, o autor de cada estudo e a localidade geográfica. O efeito destas variáveis aleatórias poderiam afetar somente os interceptos das relações entre as variáveis fixas e a variável explicativa ou poderiam alterar a relação entre as variáveis fixas e explicativa. Construímos diversos modelos a partir da combinação de variáveis de efeito fixo e aleatório e a seleção do modelo mais parcimonioso foi feito por meio do critério AICc (critério de informação de Akaike corrigido para pequenas amostras). O modelo que apresentou menor valor de AICc (mais parcimonioso) foi aquele que incluiu os efeitos de ambas variáveis de efeito fixo (fisionomia e método amostral) e também um efeito da interação entre estas duas variáveis. Neste modelo também foram incluídos os efeitos das variáveis aleatórias estudo e localidade geográfica sobre os interceptos das relações entre as variáveis de efeito fixo e a variável explicativa. Estes resultados mostraram que a riqueza de espécies de aves em nosso estudo variou não só em função da fisionomia e do método amostral empregado, mas dependendo do método amostral utilizado a relação entre riqueza e fisionomia também foi alterada. Portanto, esta interação não permitiu que fosse estimada a relação entre fisionomia e riqueza sem considerar o efeito dos métodos. Já os efeitos das variáveis aleatórias mostraram que a variação estimada nos interceptos entre estudos foi duas vezes maior do que a variação estimada entre localidades geográficas. O efeito da interação entre as variáveis fisionomia e método amostral apontou para a existência de heterogeneidade de detecção entre locais com diferentes fisionomias, além também de um efeito das fisionomias na efetividade dos diferentes métodos amostrais. A influência dos métodos amostrais no número de espécies observadas em cada fisonomia pode ser esperada devido às diferenças intrínsecas dos métodos, já que ponto fixo e transecto são baseados em contatos visuais e auditivos com as espécies, enquanto que o método de rede de neblina consiste na captura passiva das espécies que voam na altura das redes. Assim, redes de neblina podem ser mais efetivas em habitats menos estruturados (por ex. campos limpos e sujos), onde a rede alcança quase todo os estratos de vegetação. No entanto, o método de transecto pode ser mais efetivo que o método de ponto fixo em áreas de florestas, pois nestes hábitats as espécies tendem a ter territórios menores e o deslocamento do observador proporciona ao observador cobrir um maior número de terrítórios. Por outro lado, o ponto fixo pode ser mais vantajoso por não produzir ruído e afugentar as espécies, o que pode ser uma desvantagem do método de transecto. Outros fatores, como a experiência e número de observadores, número de pontos amostrais, número de redes utilizadas e comprimento de transectos, podem explicar a grande variação estimada entre os estudos. Uma das maneiras de se contornar estes efeitos metodológicos é utilizar métodos desenvolvidos especialmente para lidar com diferentes probabilidades de detecção entre espécies, entre sítios e até métodos amostrais, o que poderia render dados mais confiáveis para o estudo da ecologia das espécies e para a elaboração de planos de manejo e/ou conservação. No segundo capítulo, a relação entre diversidade de aves e estrutura da vegetação foi analisada a partir de dados coletados em campo e utilizando um protocolo de amostragem específico para se estimar e considerar os efeitos da vegetação sobre a detecção das espécies. As amostragens foram realizadas em um dos maiores e mais preservados remanescentes de Cerrado (Parque Nacional Grande Sertão Veredas-PARNA GSV) e consistiram do registro das espécies de aves em 32 áreas dispostas em um gradiente de vegetação de Cerrado, que variaram desde campos limpos e sujos, campos cerrado a cerrados sensu stricto. O cálculo da riqueza de espécies de aves em cada sítio foi realizado através de modelos de ocupação-detecção, adaptados para estimar a riqueza de espécies em comunidades. A vegetação, por sua vez, foi medida a partir de estimativas de presença da vegetação entre 0 e 4 m de altura (16 intervalos de 22,5 cm cada um) e duas variáveis de estrutura foram obtidas a partir de uma análise de componentes principais, que foi aplicada para resumir a variação da presença de vegetação nos 16 intervalos de altura. Estas variáveis de vegetação foram relacionadas tanto com a ocupação quanto com a detecção das espécies, já que a estrutura da vegetação poderia influenciar não só a ocorrência mas também a detecção das espécies. O dia da amostragem e também a temperatura no momento da amostragem também foram incluídas como covariáveis que poderiam afetar a detecção. Após a estimativa da riqueza de espécies pelo modelo de ocupação-detecção para comunidades, esta riqueza estimada foi relacionada por uma função quadrática com a estrutura da vegetação usando um modelo bayesiano de metanálise, que permitiu incluir a incerteza nas estimativas de riqueza na análise. A título de comparação, também foi ajustado um modelo quadrático GLM (distribuição de erros normal) aos dados de riqueza observada. Os resultados mostraram que a riqueza estimada a partir dos dados das 38 espécies mais detectadas durante as amostragens teve uma fraca relação com as duas covariáveis de estrutura de vegetação, sendo que houve uma maior riqueza de espécies em sítios com vegetação intermediária em altura e uma maior riqueza de espécies de aves em sítios onde houve maior presença de vegetação abaixo de 2 m de altura. No entanto, as relações entre riqueza estimada e estas covariáveis foi menos intensa mas qualitativamente similar às relações entre a riqueza observada e as covariáveis de vegetação. A menor intensidade nas relações da riqueza estimada foi evidenciada principalmente em ambos os extremos do gradiente de estrutura vertical da vegetação e também nas áreas com menor presença de vegetação abaixo de 2 m. Estes resultados mostraram que o efeito da detecção pode alterar o efeito da relação entre riqueza de espécies e estrutura de vegetação. Além disso, ao menos para as 38 espécies mais comumente encontradas na área de estudo, os resultados apontam para a importância de todo o gradiente de estrutura da vegetação para a manutenção da riqueza de espécies de aves no Cerrado. Futuros estudos que visem aprimorar o uso destes modelos de ocupação e detecção para comunidades são fundamentais para permitir o uso dos dados de todas as espécies da comunidade. Além disto, outros estudos que se proponham a analisar a dinâmica e composição das comunidades de aves nestes gradientes de estrutura de vegetação são fundamentais para um maior conhecimento sobre a ecologia e conservação das aves no Cerrado / In several studies around the globe, the structure and diversity of vegetation have been shown to be a determining factor in the diversity of species of birds and also other groups of animals. The Cerrado is the second most extensive and most threatened biome occurrence in Brazil. This biome is also characterized by an obvious environmental gradient of vegetation structure and heterogeneity. In this thesis we analysed the influence of the structure and diversity of the vegetation on the diversity in the Cerrado bird communities. Our expectation was to support the “Habitat Heterogeneity Hypothesis” which suggests that the higher the structure and diversity of vegetation, the greater the diversity of species. In the first chapter, we conducted a systematic compilation of published studies on the diversity of birds in areas occupied by some typical physiognomy of Cerrado textit lato sensu, in order to analyze the knowledge obtained so far about the relationship between diversity of birds and the structure of the vegetation in the Cerrado. We selected 72 samples from 22 studies, and these samples varied as the sampled vegetation physiognomy, the sampling method used, and they also are available in different articles and be carried out in different geographical regions. We performed the analysis of generalized linear mixed effects models (model poisson distribution errors), which allows us to analyse the effects of fixed and random variables on the explanatory variable (species richness). Fixed variables were the type of sampled vegetation (grassland, savanna and forest) and the sample method employed (fixed point, transect and mist nets). The random variables used were the study where the data were published, the author of each study and geographic location. These random variables could only affect the intercepts of the relationship between fixed and variable explanatory variable or could alter the relationship between fixed and explanatory variables. We built several models from the combination of fixed and random effects variables and selection the most parsimonious model was made by the AIC criterion (Akaike information criterion corrected for small samples). The model that showed lower value of AIC (more parsimonious) was the one that included the effects of both fixed effect variables (physiognomy and sampling method) and also an effect of the interaction between these two variables. In this model were also included the effects of random variables study and geographic location of the intercepts of the relationship between the fixed effect variables and the explanatory variable. These results showed that the bird species richness in our study varied not only in terms of physiognomy and sample method, but depending on the sampling method used the relationship between richness and physiognomy has also changed. Therefore, this interaction does not allowed us to estimate the relationship between physiognomy and richness without considering the effect of the methods. Since the effects of random variables showed that the variation in the estimated intercept between studies was twice larger than the estimated variation between geographic locations. The effect of interaction between the vegetation physiognomy and sampling method variables pointed to the existence of heterogeneity detection between locations with different physiognomies, in addition also of an effect of the physiognomies in the effectiveness of different sampling methods. The influence of the sampling method in the number of species observed in each physiognomy may be expected due to intrinsic differences in the methods, since fixed point counts and transect are based on visual and aural contacts with the species, while the mist net method consists in passive capture of species flying at the time of the networks. Thus, mist nets may be more effective in less structured environments (eg. Clean and dirty fields) where the net reaches virtually all vegetation layers. However, transect method can be more effective than the fixed point method in areas of forests since in these habitats species tend to have smaller territory areas, and the observer movement provides the observer cover greater areas. On the other hand, the point counts can be more advantageous not to produce noise and chase species, which may be a disadvantage of transect method. Other factors, such as experience and number of observers, the number of sampling points, the number of nets used and length of transects, may explain the wide variation between studies estimated. One of the ways to overcome these methodological effects is to use methods developed especially to deal with different probabilities of detection of species, between sites and sampling methods, which could yield more reliable data for the ecological study of the species and the development of management plans and/or conservation. In the second chapter, the relationship between diversity of birds and vegetation structure was analysed from data collected in the field and using a specific sampling protocol to estimate and consider the effects of vegetation on the detection of species. The samples were taken in one of the largest and well preserved remnants of Cerrado (Grande Sertão Veredas National Park-PARNA GSV) and consisted of the record of bird speciesin 32 areas arranged in a Cerrado vegetation gradient, ranging from grasslands, open and dense savannas. The calculation of the bird species richness at each site was conducted using occupancy-detection models adapted to estimate the number of species in communities. The vegetation, in turn, was measured from estimates of the presence of vegetation in height intervals between 0 and 4 m (16 intervals of 22.5 cm each) and two structure variables were obtained from a principal component analysis applied to summarize the variation of the vegetation presence in height intervals. These vegetation variables were related to both the occupation and detection of species, since the vegetation structure could influence not only the occurrence but also the detection of species. The day of sampling and also the temperature at the time of sampling were also included as covariates that may a_ect the detection. After the estimation of species richness by model occupancy detection for communities, this estimated richness was related by a quadratic function with the vegetation structure using a Bayesian meta-analysis model, which allowed us include uncertainty in richness estimates. By way of comparison, we also fit a quadratic model GLM (normal distribution errors) to the observed richness data. The results showed that the richness estimated from the data of the 38 most detected species during sampling had a weak relationship with both covariates vegetation structure, and there was a greater number of species at sites with intermediate vegetation height and greater bird species richness in places where there was a greater presence of vegetation below 2 m in height. However, relations between estimated richness and these covariates was less intense but qualitatively similar to the relationship between observed richness and vegetation covariates. The lowest intensity in the estimated richness relationship was observed mainly at both ends of the vertical gradient of vegetation and also in areas with less presence of vegetation below 2 m. These results showed that the effect of detection can change the effect of the relationship between species richness and vegetation structure. Moreover, at least for the 38 species most commonly found in the study area, the results point to the importance of the entire vegetation structure gradient to maintain the bird species richness in Cerrado. Future studies aiming to improve the use of these models of occupation and detection for communities are essential to allow the use of data of all species in the community. In addition, other studies that propose to analyse the dynamics and composition of bird communities in these vegetation structure gradients are fundamental for a better understanding of the ecology and conservation of Cerrado birds

Page generated in 0.0726 seconds