• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 246
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 265
  • 265
  • 180
  • 171
  • 101
  • 86
  • 60
  • 56
  • 54
  • 44
  • 40
  • 36
  • 34
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Métodos alternativos de previsão de safras agrícolas / Alternative Crop Prediction Methods

Daniel Lima Miquelluti 23 January 2015 (has links)
O setor agrícola é, historicamente, um dos pilares da economia brasileira, e apesar de ter sua importância diminuída com o desenvolvimento do setor industrial e de serviços ainda é responsável por dar dinamismo econômico ao país, bem como garantir a segurança alimentar, auxiliar no controle da inflação e na formação de reservas monetárias. Neste contexto as safras agrícolas exercem grande influência no comportamento do setor e equilíbrio no mercado agrícola. Foram desenvolvidas diversas metodologias de previsão de safra, sendo em sua maioria modelos de simulação de crescimento. Entretanto, recentemente os modelos estatísticos vem sendo utilizados mais comumente devido às suas predições mais rápidas em períodos anteriores à colheita. No presente trabalho foram avaliadas duas destas metodologias, os modelos ARIMA e os Modelos Lineares Dinâmicos (MLD), sendo utilizada tanto a inferência clássica quanto a bayesiana. A avaliação das metodologias deu-se por meio da análise das previsões dos modelos, bem como da facilidade de implementação e poder computacional necessário. As metodologias foram aplicadas a dados de produção de soja para o município de Mamborê-PR, no período de 1980 a 2013, sendo área plantada (ha) e precipitação acumulada (mm) variáveis auxiliares nos modelos de regressão dinâmica. Observou-se que o modelo ARIMA (2,1,0) reparametrizado na forma de um MLD e estimado por meio de máxima verossimilhança, gerou melhores previsões do que aquelas obtidas com o modelo ARIMA(2,1,0) não reparametrizado. / The agriculture is, historically, one of Brazil\'s economic pillars, and despite having it\'s importance diminished with the development of the industry and services it still is responsible for giving dynamism to the country inland\'s economy, ensuring food security, controlling inflation and assisting in the formation of monetary reserves. In this context the agricultural crops exercise great influence in the behaviour of the sector and agricultural market balance. Diverse crop forecast methods were developed, most of them being growth simulation models, however, recently the statistical models are being used due to its capability of forecasting early when compared to the other models. In the present thesis two of these methologies were evaluated, ARIMA and Dynamic Linear Models, utilizing both classical and bayesian inference. The forecast accuracy, difficulties in the implementation and computational power were some of the caracteristics utilized to assess model efficiency. The methodologies were applied to Soy production data of Mamborê-PR, in the 1980-2013 period, also noting that planted area (ha) and cumulative precipitation (mm) were auxiliary variables in the dynamic regression. The ARIMA(2,1,0) reparametrized in the DLM form and adjusted through maximum likelihood generated the best forecasts, folowed by the ARIMA(2,1,0) without reparametrization.
152

Modelos lineares e não lineares de efeitos mistos para respostas censuradas usando as distribuições normal e t-Student multivariadas / Linear and nonlinear mixed-effects models with censored response using the multivariate normal and Student-t distributions

Matos, Larissa Avila, 1987- 20 August 2018 (has links)
Orientador: Víctor Hugo Lachos Dávila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T06:44:43Z (GMT). No. of bitstreams: 1 Matos_LarissaAvila_M.pdf: 2008810 bytes, checksum: 0aee0c4f4bbf58ba67490d26cdd300ba (MD5) Previous issue date: 2012 / Resumo: Modelos mistos são geralmente usados para representar dados longitudinais ou de medidas repetidas. Uma complicação adicional surge quando a resposta é censurada, por exemplo, devido aos limites de quantificação do ensaio utilizado. Distribuições normais para os efeitos aleatórios e os erros residuais são geralmente assumidas, mas tais pressupostos fazem as inferências vulneráveis, 'a presença de outliers. Motivados por uma preocupação da sensibilidade para potenciais outliers ou dados com caudas mais pesadas do que a normal, pretendemos desenvolver nessa dissertação, inferência para modelos lineares e não lineares de efeito misto censurados (NLMEC / LMEC) com base na distribui ção t- Student multivariada, sendo uma alternativa flexível ao uso da distribuição normal correspondente. Propomos um algoritmo ECM para computar as estimativas de máxima verossimilhança para os NLMEC / LMEC. Este algoritmo utiliza expressões fechadas no passo-E, que se baseia em fórmulas para a média e a variância de uma distribui ção t-multivariada truncada. O algoritmo proposto é implementado, pacote tlmec do R. Também propomos aqui um algoritmo ECM exato para os modelos lineares e não lineares de efeito misto censurados, com base na distribuição normal multivariada, que nos permite desenvolver análise de influência local para modelos de efeito misto com base na esperança condicional da função log-verossilhança dos dados completos. Os procedimentos desenvolvidos são ilustrados com a análise longitudinal da carga viral do HIV, apresentada em dois estudos recentes sobre a AIDS / Abstract: Mixed models are commonly used to represent longitudinal or repeated measures data. An additional complication arises when the response is censored, for example, due to limits of quantification of the assay used. Normal distributions for random effects and residual errors are usually assumed, but such assumptions make inferences vulnerable to the presence of outliers. Motivated by a concern of sensitivity to potential outliers or data with tails longer-than-normal, we aim to develop in this dissertation inference for linear and nonlinear mixed effects models with censored response (NLMEC/LMEC) based on the multivariate Student-t distribution, being a flexible alternative to the use of the corresponding normal distribution. We propose an ECM algorithm for computing the maximum likelihood estimates for NLMEC/LMEC. This algorithm uses closed-form expressions at the E-step, which relies on formulas for the mean and variance of a truncated multivariate-t distribution. The proposed algorithm is implemented in the R package tlmec. We also propose here an exact ECM algorithm for linear and nonlinear mixed effects models with censored response based on the multivariate normal distribution, which enable us to developed local influence analysis for mixed effects models on the basis of the conditional expectation of the complete-data log-likelihood function. The developed procedures are illustrated with two case studies, involving the analysis of longitudinal HIV viral load in two recent AIDS studies / Mestrado / Estatistica / Mestre em Estatística
153

Modelos de regressão Birnbaum-Saunders baseados na distribuição normal assimétrica centrada / Birnbaum-Saunders regression models based on skew-normal centered distribution

Chaves, Nathalia Lima, 1989- 26 August 2018 (has links)
Orientadores: Caio Lucidius Naberezny Azevedo, Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:33:37Z (GMT). No. of bitstreams: 1 Chaves_NathaliaLima_M.pdf: 3044792 bytes, checksum: 8fea3cd9d074997b605026a7a4526c35 (MD5) Previous issue date: 2015 / Resumo: A classe de modelos Birnbaum-Saunders (BS) foi desenvolvida a partir de problemas que surgiram na área de confiabilidade de materiais. Tais problemas, em geral, são ligados ao estudo de fadiga de materiais. No entanto, nos últimos tempos, essa classe de modelos tem sido aplicada em áreas fora do referido contexto como, por exemplo, em ciências da saúde, ambiental, florestal, demográficas, atuariais, financeira, entre outras, devido à sua grande versatilidade. Neste trabalho desenvolvemos a distribuição Birnbaum-Saunders (BS) baseada na normal assimétrica padrão sob a parametrização centrada (BSNAC) que, além de representar uma extensão da distribuição BS usual, apresenta diversas vantagens em relação à distribuição BS baseada na distribuição normal assimétrica sob a parametrização usual. Desenvolvemos também um modelo de regressão linear log-Birnbaum-Saunders. Apresentamos, tanto para a distribuição BSNAC quanto para o respectivo modelo de regressão, diversas propriedades. Desenvolvemos procedimentos de estimação sob os enfoques frenquentista e bayesiano, bem como ferramentas de diagnóstico para os modelos propostos, contemplando análise residual e medidas de influência. Realizamos estudos de simulação, considerando diferentes cenários, com o intuito de comparar as estimativas frequentistas e bayesianas, bem como avaliar o desempenho das medidas de diagnóstico. A metodologia aqui proposta foi ilustrada tanto com dados provenientes de estudos de simulação, quanto com conjuntos de dados reais / Abstract: The class of Birnbaum-Saunders (BS) models was developed from problems that arose in the field of material reliability. These problems generally are related to the study of material fatigue. However, in the last years, this class of models has been applied in areas outside that context, such as in health sciences, environmental, forestry, demographic, actuarial, financial, among others, due to its great versatility. In this work, we developed the skew-normal Birnbaum-Saunders distribution under the centered parameterization (BSNAC), which also represents an extension of the usual BS distribution and presents several advantages over the BS distribution based on the skew-normal distribution under the usual parameterization. We also developed a log-Birnbaum-Saunders linear regression model. We present several properties of both BSNAC distribution and the related regression model. We develop estimation procedures under the frequentist and Bayesian approaches, as well as diagnostic tools for the proposed models, contemplating residual analysis and measures of influence. We conducted simulation studies considering different scenarios, in order to compare the frequentist and Bayesian estimates and evaluate the performance of diagnostic measures. The methodology proposed here is illustrated with data sets from both simulation studies and real data sets / Mestrado / Estatistica / Mestra em Estatística
154

Avaliação de técnicas de diagnóstico para a análise de dados com medidas repetidas / Evaluation of diagnostic techniques for the analysis of data with repeated measures

Kurusu, Ricardo Salles 26 April 2013 (has links)
Dentre as possíveis propostas encontradas na literatura estatística para analisar dados oriundos de estudos com observações correlacionadas, estão os modelos condicionais e os modelos marginais. Diversas técnicas têm sido propostas para a análise de diagnóstico nesses modelos. O objetivo deste trabalho é apresentar algumas das técnicas de diagnóstico disponíveis para os dois tipos de modelos e avaliá-las por meio de estudos de simulação. As técnicas apresentadas também foram aplicadas em um conjunto de dados reais. / Conditional and marginal models are among the possibilities in statistical literature to analyze data from studies with correlated observations. Several techniques have been proposed for diagnostic analysis in these models. The objective of this work is to present some of the diagnostic techniques available for both modeling approaches and to evaluate them by simulation studies. The presented techniques were also applied in a real dataset.
155

Avaliação de técnicas de diagnóstico para a análise de dados com medidas repetidas / Evaluation of diagnostic techniques for the analysis of data with repeated measures

Ricardo Salles Kurusu 26 April 2013 (has links)
Dentre as possíveis propostas encontradas na literatura estatística para analisar dados oriundos de estudos com observações correlacionadas, estão os modelos condicionais e os modelos marginais. Diversas técnicas têm sido propostas para a análise de diagnóstico nesses modelos. O objetivo deste trabalho é apresentar algumas das técnicas de diagnóstico disponíveis para os dois tipos de modelos e avaliá-las por meio de estudos de simulação. As técnicas apresentadas também foram aplicadas em um conjunto de dados reais. / Conditional and marginal models are among the possibilities in statistical literature to analyze data from studies with correlated observations. Several techniques have been proposed for diagnostic analysis in these models. The objective of this work is to present some of the diagnostic techniques available for both modeling approaches and to evaluate them by simulation studies. The presented techniques were also applied in a real dataset.
156

Empréstimos bancários e operações de redesconto: um estudo sobre modelos de demanda para instituições financeiras / Loans and overnight funds: study on demand for financial institutions

Koyama, Sérgio Mikio 03 April 2007 (has links)
A identificação dos fatores que influenciam o processo de escolha do tomador na demanda por crédito apresenta não apenas um interesse mercadológico, mas também em termos acadêmicos e para o formulador de políticas públicas, buscando determinar os impactos de uma decisão que influencia o ambiente macroeconômico, bem como o comportamento dos agentes. Nestes termos, os modelos tradicionais de análise da demanda muitas vezes apresentam suposições pouco realistas e bastante restritivas, necessárias para o processo de estimação dos parâmetros de interesse. Os Modelos Lineares Generalizados Mistos com Variáveis Latentes (GLLAMM) constituem uma classe de modelos que abrangem os tradicionais modelos lineares generalizados e os modelos lineares generalizados mistos, possibilitando uma maior flexibilidade na combinação de um processo de escolha discreta com a determinação dos valores demandados de forma contínua, não impondo um processo único para todas as instituições analisadas, nem tão pouco do processo de escolha. Esta classe de modelos foi aplicada para estudar a demanda por empréstimos bancários utilizando-se informações de uma rica base de dados, a Central de Risco de Crédito do Banco Central. Assim, foi possível a identificação de variáveis como a duração da operação e a classificação de risco da operação que apresentam uma maior relevância no processo de escolha do banco, enquanto que outras, como as garantias, mostraram-se mais importante no volume a ser demandado. A identificação de nichos específicos de algumas instituições foi possível a partir desta análise. A flexibilidade desta classe de modelos também foi utilizada no intuito de se identificar os fatores que influenciam a demanda por crédito pelos bancos nas operações de redesconto, tendo conseguido tratar o problema de superdispersão ocasionado pelo excesso de zeros neste conjunto de dados. Adicionalmente, tanto efeitos diretos quanto indiretos da taxa de redesconto foram possíveis de serem estudados a partir da inclusão de efeitos aleatórios tanto no intercepto, possibilitando a incorporação de efeitos específicos de cada instituição financeira, bem como nos coeficientes, captando comportamentos individuais de cada banco frente a um mesmo estímulo. / The aim of this study is to identify the variables that affect borrower´s decision-making process through the estimation of loan demand equations. This research is relevant not only for market practitioners, but also to academics and to policy-makers, concerned with the evaluation of possible impacts of decision on the economic environment and on the agent´s behavior. Traditional models for demand estimation make unreasonable and very restrictive assumptions to estimate the parameters of interest. Generalized Linear Latent and Mixed Models (GLLAMM) constitute a class of models that includes the traditional Generalized Linear Models (GLM) and Generalized Linear Mixed Models (GLMM), which offer more flexibility and they are particularly suitable to situations that combine discrete choice with continuous decisions. Therefore, we can estimate individual equation for each bank simultaneously. This class of models was applied to study the demand for bank loans using a rich dataset provided by the Central Bank?s Credit Risk Bureau. Among the analyzed variables, the loan maturity and the credit risk classification were important in the bank choice while warranties were important in the decision related to the amount borrowed. Moreover, we could also identify specific market segments for some banks. The flexibility of this class of models was also used to identify the factors affecting the demand for overnight funds by commercial banks. This model overcomes overdispersion problems caused by excess of zeros found in the dataset. Additionally, we identified the direct and indirect effects of rediscount rate through the inclusion of random effects in the intercept (incorporating specific effects for each bank) and other coefficients (identifying individual behavior of each bank regarding the same stimuli).
157

Análise de diagnóstico em modelos semiparamétricos normais / Diagnostic analysis in semiparametric normal models

Noda, Gleyce Rocha 18 April 2013 (has links)
Nesta dissertação apresentamos métodos de diagnóstico em modelos semiparamétricos sob erros normais, em especial os modelos semiparamétricos com uma variável explicativa não paramétrica, conhecidos como modelos lineares parciais. São utilizados splines cúbicos para o ajuste da variável resposta e são aplicadas funções de verossimilhança penalizadas para a obtenção dos estimadores de máxima verossimilhança com os respectivos erros padrão aproximados. São derivadas também as propriedades da matriz hat para esse tipo de modelo, com o objetivo de utilizá-la como ferramenta na análise de diagnóstico. Gráficos normais de probabilidade com envelope gerado também foram adaptados para avaliar a adequabilidade do modelo. Finalmente, são apresentados dois exemplos ilustrativos em que os ajustes são comparados com modelos lineares normais usuais, tanto no contexto do modelo aditivo normal simples como no contexto do modelo linear parcial. / In this master dissertation we present diagnostic methods in semiparametric models under normal errors, specially in semiparametric models with one nonparametric explanatory variable, also known as partial linear model. We use cubic splines for the nonparametric fitting, and penalized likelihood functions are applied for obtaining maximum likelihood estimators with their respective approximate standard errors. The properties of the hat matrix are also derived for this kind of model, aiming to use it as a tool for diagnostic analysis. Normal probability plots with simulated envelope graphs were also adapted to evaluate the model suitability. Finally, two illustrative examples are presented, in which the fits are compared with usual normal linear models, such as simple normal additive and partially linear models.
158

Modelos lineares mistos em dados longitudionais com o uso do pacote ASReml-R / Linear Mixed Models with longitudinal data using ASReml-R package

Alcarde, Renata 10 April 2012 (has links)
Grande parte dos experimentos instalados atualmente é planejada para que sejam realizadas observações ao longo do tempo, ou em diferentes profundidades, enfim, tais experimentos geralmente contem um fator longitudinal. Uma maneira de se analisar esse tipo de conjunto de dados é utilizando modelos mistos, por meio da inclusão de fatores de efeito aleatório e, fazendo uso do método da máxima verossimilhança restrita (REML), podem ser estimados os componentes de variância associados a tais fatores com um menor viés. O pacote estatístico ASReml-R, muito eficiente no ajuste de modelos lineares mistos por possuir uma grande variedade de estruturas para as matrizes de variâncias e covariâncias já implementadas, apresenta o inconveniente de nao ter como objetos as matrizes de delineamento X e Z, nem as matrizes de variâncias e covariâncias D e , sendo estas de grande importância para a verificação das pressuposições do modelo. Este trabalho reuniu ferramentas que facilitam e fornecem passos para a construção de modelos baseados na aleatorização, tais como o diagrama de Hasse, o diagrama de aleatorização e a construção de modelos mistos incluindo fatores longitudinais. Sendo o vetor de resíduos condicionais e o vetor de parâmetros de efeitos aleatórios confundidos, ou seja, não independentes, foram obtidos resíduos, denominados na literatura, resíduos com confundimento mínimo e, como proposta deste trabalho foi calculado o EBLUP com confudimento mínimo. Para tanto, foram implementadas funções que, utilizando os objetos de um modelo ajustado com o uso do pacote estatístico ASReml-R, tornam disponíveis as matrizes de interesse e calculam os resíduos com confundimento mínimo e o EBLUP com confundimento m´nimo. Para elucidar as técnicas neste apresentadas e salientar a importância da verificação das pressuposições do modelo adotado, foram considerados dois exemplos contendo fatores longitudinais, sendo o primeiro um experimento simples, visando a comparação da eficiência de diferentes coberturas em instalações avícolas, e o segundo um experimento realizado em três fases, contendo fatores inteiramente confundidos, com o objetivos de avaliar características do papel produzido por diferentes espécies de eucaliptos em diferentes idades. / Currently, most part of the experiments installed is designed to be carried out observations over time or at different depths. These experiments usually have a longitudinal factor. One way of analyzing this data set is by using mixed models through means of inclusion of random effect factors, and it is possible to estimate the variance components associated to such factors with lower bias by using the Restricted maximum likelihood method (REML). The ASRemi-R statistic package, very efficient in fitting mixed linear models because it has a wide variety of structures for the variance - covariance matrices already implemented, presents the disadvantage of having neither the design matricesX and Z, nor the variance - covariance matrices D and , and they are very important to verify the assumption of the model. This paper gathered tools which facilitate and provide steps to build models based on randomization such as the Hasse diagram, randomization diagram and the mixed model formulations including longitudinal factors. Since the conditional residuals and random effect parameters are confounded, that is, not independent, it was calculated residues called in the literature as least confounded residuals and as a proposal of this work, it was calculated the least confound EBLUP. It was implemented functions which using the objects of fitted models with the use of the ASReml-R statistic package becoming available the matrices of interests and calculate the least confounded residuals and the least confounded EBLUP. To elucidate the techniques shown in this paper and highlight the importance of the verification of the adopted models assumptions, it was considered two examples with longitudinal factors. The former example was a simple experiment and the second one conducted in three phases, containing completely confounded factors, with the purpose of evaluating the characteristics of the paper produced by different species of eucalyptus from different ages.
159

Testes de hipóteses para componentes de variância utilizando estatísticas U / U-tests for variance components in linear mixed models.

Nobre, Juvencio Santos 09 August 2007 (has links)
Nós consideramos decomposições de estatísticas $U$ para obter testes para componentes de variância. As distribuições assintóticas das estatísticas de testes sob a hipótese nula são obtidas supondo apenas a existência do quarto momento do erro condicional e do segundo momento dos efeitos aleatórios. Isso permite sua utilização em uma classe bastante ampla de distribuições. Sob a suposição adicional de existência do quarto momento dos efeitos aleatórios, obtemos também a distribuição assintótica das estatísticas sob uma seqüência de hipóteses alternativas locais. Comparamos a eficiência dos testes propostos com aqueles dos testes clássicos, obtidos sob suposição de normalidade, por meio de estudos de simu-lação. Os testes propostos se mostram mais adequados nas situações em que a amostra é de tamanho moderado ou grande, independentemente da distribuição das fontes de variação, e nas situações em que existe fortes afastamentos da normalidade. / We consider decompositions of U-statistics to obtain tests for null variance components in linear mixed models. Their asymptotic distributions under the null hypothesis are obtained only assuming the existence of the first four moments of the conditional error distribution and the existence of the first two moments of the random effects distribution. Thus, the proposed U-tests may be employed in a large class of models. Under the additional assumption of the existence of the fourth moment of the distribution of the random effects, we also obtain the asymptotic distribution of the U-tests under a sequence of local hypothesis. We compare their efficiency with that of classical tests derived under the assumption of normality, through simulation studies. The proposed tests are more efficient in situations where the sample size is moderate or large, independently of the distribution of the sources of variation; they also perform better in situations where the underlying distributions are far from normal.
160

Necrose da gordura epipericárdica: análise clínica e radiológica de uma entidade pouco conhecida / Epipericardial fat necrosis: clinical and radiological analysis of?an unknown entity

Giassi, Karina de Souza 08 November 2016 (has links)
Introdução: a necrose da gordura epipericárdica é uma entidade caracterizada por dor torácica súbita de forte intensidade e ventilatório-dependente em indivíduos previamente hígidos, com menos de 50 casos descritos na literatura. O achado característico na tomografia computadorizada de tórax é de uma lesão arredondada com atenuação de gordura e graus variáveis de densificação dos planos adiposos adjacentes localizada na gordura epipericárdica. O tratamento é sintomático com analgésicos e as alterações radiológicas tendem a regredir em poucas semanas. O aumento do número de casos, nos últimos anos, sugere que a entidade possa ser subdiagnosticada. O objetivo do estudo foi estimar a frequência da necrose numa população e comparar dados clínicos e laboratoriais com um grupo controle. Material e Métodos: 7463 tomografias computadorizadas de tórax realizadas no pronto atendimento de um hospital quaternário, de julho de 2011 a dezembro de 2014 foram avaliadas por um radiologista na busca de imagens compatíveis com necrose da gordura epipericárdica. Vinte pacientes foram selecionados e comparados com um grupo controle pareado por idade e sexo, numa proporção de 1:5 pacientes com dor torácica atípica, que também realizaram tomografia computadorizada de tórax neste período. Os dados clínicos e laboratoriais foram comparados por meio de modelos de regressão linear e os aspectos de imagem e os relatórios das tomografias dos pacientes com a necrose foram avaliados individualmente. A frequência da NGE nos pacientes que realizaram tomografia computadorizada de tórax no pronto atendimento por dor torácica foi estimada. O estudo obteve aprovação do Comitê de Ética. Resultados: a média de idade dos pacientes com a necrose foi 42 ± 13 anos e, desses, 25% mulheres (5 pacientes). A necrose esteve presente em 2.15% dos indivíduos que realizaram tomografia de tórax por dor torácica e em 0.26% de todos os pacientes que realizaram tomografia de tórax no pronto atendimento. A lesão é mais frequente do lado esquerdo (p = 0.01, IC = 0.56-0.94) e está associada à derrame pleural ipsilateral (p=0.01, IC 0.36-0.80) e atelectasia (p=0.01, IC 0.58-0.99) (p=0.01, IC 0.36-0.80). No contexto de dor torácica não coronariana, a necrose tem maior probabilidade de ocorrer na ausência de outros sintomas (p=0.005, IC -5.83, -1.27) e com o não uso de medicamentos (p= 0.01 e IC-3.33, -0.40). A análise dos relatórios das tomografias de tórax mostrou um aumento nas taxas de diagnóstico ao longo dos anos. Conclusão: pacientes com dor torácica atípica que não fazem uso de medicamentos e não possuem outros sintomas associados na ocasião do atendimento exibem maior probabilidade de apresentar necrose da gordura epipericárdica. A incidência da necrose na população estudada foi de 2.15%. O conhecimento da entidade contribui para a melhora da taxa de diagnóstico / Introduction: Epipericardial fat necrosis is characteryzed by an acute onset of pleuritic chest pain in previously healthy patients. There are less than 50 cases described in english literature. The diagnosis is made by chest tomography and the deffinitive finding is a small ovoid fat attenuation lesion with mild to moderate surrounding strandings inside the epipericardial fat. The treatment is symptomatic, by relieving the symptoms with analgesics, and the radiological findings tend to disappear in a few weeks. There is an important raise of the diagnosis in the last years, what suggests that epipericardial fat necrosis is probably underdiagnosed. The objective of the study is to estimate the frequency of the necrosis in a group of patients and to compare clinical and laboratorial data with a control group. Material and Methods: The Ethics Committee approved this study. The 7463 chest tomography were performed in the emergency department of a quaternary hospital from July 2011 to December 2014. One radiologist read the images of all chest tomography and sought for image findings compatible with epipericardial fat necrosis. Twenty patients were diagnosed with epipericardial fat necrosis and compared with a control group paired by age and sex. The control group consisted of 100 patients with non-coronary chest pain who performed a chest tomography in the same period. The clinical and laboratorial data were compared using linear regression models. The imaging findings and the radiology reports were evaluated. The frequency of epipericardial fat necrosis in this group of patients was estimated. Results: The mean age of the necrosis group was 42 ± 13 years (25% women). Epipericardial fat necrosis was present in 2.15% of the patients who performed a chest tomography because of chest pain and in 0.26% of all patients that performed a chest tomography for any reason in the emergency department in the period. Epipericardial fat necrosis is more frequent in the left side (p = 0.01, IC = 0.56-0.94). It is associated with ipsilateral pleural effusion (p=0.01, IC 0.36-0.80) and atelectasis (p=0.01, IC 0.58-0.99). Epipericardial fat necrosis is more likely to occur in the absence of other symptoms (p=0.005, IC -5.83, -1.27) and in patients who are not in use of any medication (p= 0.01 e IC-3.33, -0.40). The radiological reports demonstrated increased rates of the diagnosis of epipericardial fat necrosis over the years. Conclusion: Patients who are in the emergency department with isolated atipical acute chest pain and are not in use of medications are more likely to have epipericardial fat necrosis. The frequency of the necrosis in this population was 2.15%. The knowledge of the entity leads to an increased rate of radiological diagnosis

Page generated in 0.0688 seconds