1 |
Moderate deviation of intersection of ranges of random walks in the stable caseGrieves, Justin Anthony 01 December 2011 (has links)
Given p independent, symmetric random walks on d-dimensional integer lattice that are the domain of attraction for a stable distribution, we calculate the moderate deviation of the intersection of ranges of the random walks in the case where the walks intersect infinitely often as time goes to infinity. That is to say, we establish a weak law convergence of intersection of ranges to intersection local time of stable processes and use this convergence as a link to establish deviation results.
|
2 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)Paditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).
|
3 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 2)Paditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).
|
4 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 2)Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:6. Grenzwertsätze für mittlere Abweichungen für verschieden verteilte Zufallsgrößen S. 1
7. Beweise zum Abschnitt 6 S. 2
8. Diskussion der Ergebnisse S. 6
Literatur S. 10 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:6. Grenzwertsätze für mittlere Abweichungen für verschieden verteilte Zufallsgrößen S. 1
7. Beweise zum Abschnitt 6 S. 2
8. Diskussion der Ergebnisse S. 6
Literatur S. 10
|
5 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:1. Einführung S. 2
2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3
3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6
4. Beweis zum Abschnitt 2 S. 8
5. Beweise zum Abschnitt 3 S. 13 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:1. Einführung S. 2
2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3
3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6
4. Beweis zum Abschnitt 2 S. 8
5. Beweise zum Abschnitt 3 S. 13
|
6 |
Inégalités de déviations, principe de déviations modérées et théorèmes limites pour des processus indexés par un arbre binaire et pour des modèles markoviens / Deviation inequalities, moderate deviations principle and some limit theorems for binary tree-indexed processes and for Markovian models.Bitseki Penda, Siméon Valère 20 November 2012 (has links)
Le contrôle explicite de la convergence des sommes convenablement normalisées de variables aléatoires, ainsi que l'étude du principe de déviations modérées associé à ces sommes constituent les thèmes centraux de cette thèse. Nous étudions principalement deux types de processus. Premièrement, nous nous intéressons aux processus indexés par un arbre binaire, aléatoire ou non. Ces processus ont été introduits dans la littérature afin d'étudier le mécanisme de la division cellulaire. Au chapitre 2, nous étudions les chaînes de Markov bifurcantes. Ces chaînes peuvent être vues comme une adaptation des chaînes de Markov "usuelles'' dans le cas où l'ensemble des indices à une structure binaire. Sous des hypothèses d'ergodicité géométrique uniforme et non-uniforme d'une chaîne de Markov induite, nous fournissons des inégalités de déviations et un principe de déviations modérées pour les chaînes de Markov bifurcantes. Au chapitre 3, nous nous intéressons aux processus bifurcants autorégressifs d'ordre p (). Ces processus sont une adaptation des processus autorégressifs linéaires d'ordre p dans le cas où l'ensemble des indices à une structure binaire. Nous donnons des inégalités de déviations, ainsi qu'un principe de déviations modérées pour les estimateurs des moindres carrés des paramètres "d'autorégression'' de ce modèle. Au chapitre 4, nous traitons des inégalités de déviations pour des chaînes de Markov bifurcantes sur un arbre de Galton-Watson. Ces chaînes sont une généralisation de la notion de chaînes de Markov bifurcantes au cas où l'ensemble des indices est un arbre de Galton-Watson binaire. Elles permettent dans le cas de la division cellulaire de prendre en compte la mort des cellules. Les hypothèses principales que nous faisons dans ce chapitre sont : l'ergodicité géométrique uniforme d'une chaîne de Markov induite et la non-extinction du processus de Galton-Watson associé. Au chapitre 5, nous nous intéressons aux modèles autorégressifs linéaires d'ordre 1 ayant des résidus corrélés. Plus particulièrement, nous nous concentrons sur la statistique de Durbin-Watson. La statistique de Durbin-Watson est à la base des tests de Durbin-Watson, qui permettent de détecter l'autocorrélation résiduelle dans des modèles autorégressifs d'ordre 1. Nous fournissons un principe de déviations modérées pour cette statistique. Les preuves du principe de déviations modérées des chapitres 2, 3 et 4 reposent essentiellement sur le principe de déviations modérées des martingales. Les inégalités de déviations sont établies principalement grâce à l'inégalité d'Azuma-Bennet-Hoeffding et l'utilisation de la structure binaire des processus. Le chapitre 5 est né de l'importance qu'a l'ergodicité explicite des chaînes de Markov au chapitre 3. L'ergodicité géométrique explicite des processus de Markov à temps discret et continu ayant été très bien étudiée dans la littérature, nous nous sommes penchés sur l'ergodicité sous-exponentielle des processus de Markov à temps continu. Nous fournissons alors des taux explicites pour la convergence sous exponentielle d'un processus de Markov à temps continu vers sa mesure de probabilité d'équilibre. Les hypothèses principales que nous utilisons sont : l'existence d'une fonction de Lyapunov et d'une condition de minoration. Les preuves reposent en grande partie sur la construction du couplage et le contrôle explicite de la queue du temps de couplage. / The explicit control of the convergence of properly normalized sums of random variables, as well as the study of moderate deviation principle associated with these sums constitute the main subjects of this thesis. We mostly study two sort of processes. First, we are interested in processes labelled by binary tree, random or not. These processes have been introduced in the literature in order to study mechanism of the cell division. In Chapter 2, we study bifurcating Markov chains. These chains may be seen as an adaptation of "usual'' Markov chains in case the index set has a binary structure. Under uniform and non-uniform geometric ergodicity assumptions of an embedded Markov chain, we provide deviation inequalities and a moderate deviation principle for the bifurcating Markov chains. In chapter 3, we are interested in p-order bifurcating autoregressive processes (). These processes are an adaptation of $p$-order linear autoregressive processes in case the index set has a binary structure. We provide deviation inequalities, as well as an moderate deviation principle for the least squares estimators of autoregressive parameters of this model. In Chapter 4, we dealt with deviation deviation inequalities for bifurcating Markov chains on Galton-Watson tree. These chains are a generalization of the notion of bifurcating Markov chains in case the index set is a binary Galton-Watson tree. They allow, in case of cell division, to take into account cell's death. The main hypothesis that we do in this chapter are : uniform geometric ergodicity of an embedded Markov chain and the non-extinction of the associated Galton-Watson process. In Chapter 5, we are interested in first-order linear autoregressive models with correlated errors. More specifically, we focus on the Durbin-Watson statistic. The Durbin-Watson statistic is at the base of Durbin-Watson tests, which allow to detect serial correlation in the first-order autoregressive models. We provide a moderate deviation principle for this statistic. The proofs of moderate deviation principle of Chapter 2, 3 and 4 are essentially based on moderate deviation for martingales. To establish deviation inequalities, we use most the Azuma-Bennet-Hoeffding inequality and the binary structure of processes. Chapter 6 was born from the importance that explicit ergodicity of Markov chains has in Chapter 2. Since explicit geometric ergodicity of discrete and continuous time Markov processes has been well studied in the literature, we focused on the sub-exponential ergodicity of continuous time Markov Processes. We thus provide explicit rates for the sub-exponential convergence of a continuous time Markov process to its stationary distribution. The main hypothesis that we use are : existence of a Lyapunov fonction and of a minorization condition. The proofs are largely based on the coupling construction and the explicit control of the tail of the coupling time.
|
Page generated in 0.1016 seconds