Spelling suggestions: "subject:"große abweichungen"" "subject:"große formabweichungen""
1 |
Asymptotische Resultate über Lokalzeiten von Irrfahrten im ZdBecker, Mathias 15 January 2014 (has links) (PDF)
Gegenstand der vorliegenden Dissertation ist das Verhalten sogenannter Selbstüberschneidungslokalzeiten $\\|\\ell_t\\|_p^p$ einer zeitstetigen Irrfahrt $(S_r)_r$ auf dem $d$-dimensionalen Gitter $\\Z^d$.
Dabei ist für $p>1$ die Funktion $\\ell_t$ definiert durch
$$
\\ell_t(z):=\\int_{0}^{t}\\1_{\\{S_r=z\\}}\\,\\d r\\nonumber
$$
und bezeichnet die Aufenthaltsdauer der Irrfahrt bis zum Zeitpunkt $t\\in(0,\\infty)$ im Punkt $z\\in\\Z^d$.
Ziel ist es, ein Prinzip großer Abweichungen zu entwickeln, d.h. das Hauptaugenmerk liegt auf dem asymptotischen Verhalten der Wahrscheinlichkeit,
dass die Selbstüberschneidungslokalzeiten von ihrem Erwartungswert in erheblichem Maße nach oben abweichen. Mit anderen Worten; es soll das asymptotische Verhalten von
$$
\\log\\P(\\|\\ell_t\\|_p^p\\geq r^p_t)
$$
genau bestimmt werden, wobei $r_t^p\\in(0,\\infty)$ schneller als der Erwartungswert $\\E[\\|\\ell_t\\|_p^p]$ gegen unendlich streben soll.
Dieses Verhalten kann dabei durch $t$, $r_t$ und eine gewisse Variationsformel beschrieben werden.
Es wird sich herausstellen, dass es zwei Fälle zu betrachten gilt, in denen sich das probabilistisch beste Verhalten stark unterscheidet; die genaue Position des Phasenübergangs hängt dabei von den Parametern $p$ und $d$ ab.
Im Vorgriff auf die Resultate kann man festhalten, dass die nötigen Selbstüberschneidungen in kleinen Dimensionen (im sogenannten subkritischen Fall) über einen großen Bereich erfolgen,
aufgrund dessen bei der mathematischen Modellierung eine Reskalierung erforderlich ist.
In hohen Dimensionen (dem sogenannten superkritischen Fall) ist dies nicht nötig, da die erforderlichen Selbstüberschneidungen innerhalb eines begrenzten Intervalles erfolgen.
Das Interesse an der Untersuchung entstand unter anderem aus der Verbindung zu Modellen der statistischen Mechanik (parabolisches Anderson Modell) und zur Variationsanalysis.
In der Vergangenheit wurde eine Vielzahl an Methoden benutzt, um dieses Problem zu lösen.
In der vorliegenden Dissertation soll die sogenannte Momentenmethode bestmöglich ausgereizt werden und es wird gezeigt, welche Ergebnisse damit möglich sind.
|
2 |
Asymptotische Resultate über Lokalzeiten von Irrfahrten im ZdBecker, Mathias 13 November 2013 (has links)
Gegenstand der vorliegenden Dissertation ist das Verhalten sogenannter Selbstüberschneidungslokalzeiten $\\|\\ell_t\\|_p^p$ einer zeitstetigen Irrfahrt $(S_r)_r$ auf dem $d$-dimensionalen Gitter $\\Z^d$.
Dabei ist für $p>1$ die Funktion $\\ell_t$ definiert durch
$$
\\ell_t(z):=\\int_{0}^{t}\\1_{\\{S_r=z\\}}\\,\\d r\\nonumber
$$
und bezeichnet die Aufenthaltsdauer der Irrfahrt bis zum Zeitpunkt $t\\in(0,\\infty)$ im Punkt $z\\in\\Z^d$.
Ziel ist es, ein Prinzip großer Abweichungen zu entwickeln, d.h. das Hauptaugenmerk liegt auf dem asymptotischen Verhalten der Wahrscheinlichkeit,
dass die Selbstüberschneidungslokalzeiten von ihrem Erwartungswert in erheblichem Maße nach oben abweichen. Mit anderen Worten; es soll das asymptotische Verhalten von
$$
\\log\\P(\\|\\ell_t\\|_p^p\\geq r^p_t)
$$
genau bestimmt werden, wobei $r_t^p\\in(0,\\infty)$ schneller als der Erwartungswert $\\E[\\|\\ell_t\\|_p^p]$ gegen unendlich streben soll.
Dieses Verhalten kann dabei durch $t$, $r_t$ und eine gewisse Variationsformel beschrieben werden.
Es wird sich herausstellen, dass es zwei Fälle zu betrachten gilt, in denen sich das probabilistisch beste Verhalten stark unterscheidet; die genaue Position des Phasenübergangs hängt dabei von den Parametern $p$ und $d$ ab.
Im Vorgriff auf die Resultate kann man festhalten, dass die nötigen Selbstüberschneidungen in kleinen Dimensionen (im sogenannten subkritischen Fall) über einen großen Bereich erfolgen,
aufgrund dessen bei der mathematischen Modellierung eine Reskalierung erforderlich ist.
In hohen Dimensionen (dem sogenannten superkritischen Fall) ist dies nicht nötig, da die erforderlichen Selbstüberschneidungen innerhalb eines begrenzten Intervalles erfolgen.
Das Interesse an der Untersuchung entstand unter anderem aus der Verbindung zu Modellen der statistischen Mechanik (parabolisches Anderson Modell) und zur Variationsanalysis.
In der Vergangenheit wurde eine Vielzahl an Methoden benutzt, um dieses Problem zu lösen.
In der vorliegenden Dissertation soll die sogenannte Momentenmethode bestmöglich ausgereizt werden und es wird gezeigt, welche Ergebnisse damit möglich sind.
|
3 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)Paditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).
|
4 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 2)Paditz, Ludwig 27 May 2013 (has links) (PDF)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden. / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).
|
5 |
Das parabolische Anderson-Modell mit Be- und EntschleunigungSchmidt, Sylvia 24 January 2011 (has links) (PDF)
We describe the large-time moment asymptotics for the parabolic Anderson model where the speed of the diffusion is coupled with time, inducing an acceleration or deceleration. We find a lower critical scale, below which the mass flow gets stuck. On this scale, a new interesting variational problem arises in the description of the asymptotics. Furthermore, we find an upper critical scale above which the potential enters the asymptotics only via some average, but not via its extreme values. We make out altogether five phases, three of which can be described by results that are qualitatively similar to those from the constant-speed parabolic Anderson model in earlier work by various authors. Our proofs consist of adaptations and refinements of their methods, as well as a variational convergence method borrowed from finite elements theory.
|
6 |
Das parabolische Anderson-Modell mit Be- und EntschleunigungSchmidt, Sylvia 15 December 2010 (has links)
We describe the large-time moment asymptotics for the parabolic Anderson model where the speed of the diffusion is coupled with time, inducing an acceleration or deceleration. We find a lower critical scale, below which the mass flow gets stuck. On this scale, a new interesting variational problem arises in the description of the asymptotics. Furthermore, we find an upper critical scale above which the potential enters the asymptotics only via some average, but not via its extreme values. We make out altogether five phases, three of which can be described by results that are qualitatively similar to those from the constant-speed parabolic Anderson model in earlier work by various authors. Our proofs consist of adaptations and refinements of their methods, as well as a variational convergence method borrowed from finite elements theory.
|
7 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 2)Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:6. Grenzwertsätze für mittlere Abweichungen für verschieden verteilte Zufallsgrößen S. 1
7. Beweise zum Abschnitt 6 S. 2
8. Diskussion der Ergebnisse S. 6
Literatur S. 10 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:6. Grenzwertsätze für mittlere Abweichungen für verschieden verteilte Zufallsgrößen S. 1
7. Beweise zum Abschnitt 6 S. 2
8. Diskussion der Ergebnisse S. 6
Literatur S. 10
|
8 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:1. Einführung S. 2
2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3
3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6
4. Beweis zum Abschnitt 2 S. 8
5. Beweise zum Abschnitt 3 S. 13 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:1. Einführung S. 2
2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3
3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6
4. Beweis zum Abschnitt 2 S. 8
5. Beweise zum Abschnitt 3 S. 13
|
9 |
Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten NormalverteilungPaditz, Ludwig 28 May 2013 (has links) (PDF)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt.
Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden.
International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert:
Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß.
Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert.
Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten.
Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen.
Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet.
Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend.
Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given.
Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest.
International two main directions have emerged in the theory of limit theorems:
Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process.
First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution.
As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants.
Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically.
Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time.
In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly.
The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
|
10 |
Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten NormalverteilungPaditz, Ludwig 25 August 1977 (has links)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt.
Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden.
International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert:
Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß.
Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert.
Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten.
Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen.
Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet.
Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend.
Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given.
Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest.
International two main directions have emerged in the theory of limit theorems:
Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process.
First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution.
As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants.
Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically.
Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time.
In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly.
The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
|
Page generated in 0.1143 seconds