• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local times of Brownian motion

Mukeru, Safari 09 1900 (has links)
After a review of the notions of Hausdorff and Fourier dimensions from fractal geometry and Fourier analysis and the properties of local times of Brownian motion, we study the Fourier structure of Brownian level sets. We show that if δa(X) is the Dirac measure of one-dimensional Brownian motion X at the level a, that is the measure defined by the Brownian local time La at level a, and μ is its restriction to the random interval [0, L−1 a (1)], then the Fourier transform of μ is such that, with positive probability, for all 0 ≤ β < 1/2, the function u → |u|β|μ(u)|2, (u ∈ R), is bounded. This growth rate is the best possible. Consequently, each Brownian level set, reduced to a compact interval, is with positive probability, a Salem set of dimension 1/2. We also show that the zero set of X reduced to the interval [0, L−1 0 (1)] is, almost surely, a Salem set. Finally, we show that the restriction μ of δ0(X) to the deterministic interval [0, 1] is such that its Fourier transform satisfies E (|ˆμ(u)|2) ≤ C|u|−1/2, u 6= 0 and C > 0. Key words: Hausdorff dimension, Fourier dimension, Salem sets, Brownian motion, local times, level sets, Fourier transform, inverse local times. / Decision Sciences / PhD. (Operations Research)
2

Local times of Brownian motion

Mukeru, Safari 09 1900 (has links)
After a review of the notions of Hausdorff and Fourier dimensions from fractal geometry and Fourier analysis and the properties of local times of Brownian motion, we study the Fourier structure of Brownian level sets. We show that if δa(X) is the Dirac measure of one-dimensional Brownian motion X at the level a, that is the measure defined by the Brownian local time La at level a, and μ is its restriction to the random interval [0, L−1 a (1)], then the Fourier transform of μ is such that, with positive probability, for all 0 ≤ β < 1/2, the function u → |u|β|μ(u)|2, (u ∈ R), is bounded. This growth rate is the best possible. Consequently, each Brownian level set, reduced to a compact interval, is with positive probability, a Salem set of dimension 1/2. We also show that the zero set of X reduced to the interval [0, L−1 0 (1)] is, almost surely, a Salem set. Finally, we show that the restriction μ of δ0(X) to the deterministic interval [0, 1] is such that its Fourier transform satisfies E (|ˆμ(u)|2) ≤ C|u|−1/2, u 6= 0 and C > 0. Key words: Hausdorff dimension, Fourier dimension, Salem sets, Brownian motion, local times, level sets, Fourier transform, inverse local times. / Decision Sciences / PhD. (Operations Research)
3

Asymptotische Resultate über Lokalzeiten von Irrfahrten im Zd

Becker, Mathias 15 January 2014 (has links) (PDF)
Gegenstand der vorliegenden Dissertation ist das Verhalten sogenannter Selbstüberschneidungslokalzeiten $\\|\\ell_t\\|_p^p$ einer zeitstetigen Irrfahrt $(S_r)_r$ auf dem $d$-dimensionalen Gitter $\\Z^d$. Dabei ist für $p>1$ die Funktion $\\ell_t$ definiert durch $$ \\ell_t(z):=\\int_{0}^{t}\\1_{\\{S_r=z\\}}\\,\\d r\\nonumber $$ und bezeichnet die Aufenthaltsdauer der Irrfahrt bis zum Zeitpunkt $t\\in(0,\\infty)$ im Punkt $z\\in\\Z^d$. Ziel ist es, ein Prinzip großer Abweichungen zu entwickeln, d.h. das Hauptaugenmerk liegt auf dem asymptotischen Verhalten der Wahrscheinlichkeit, dass die Selbstüberschneidungslokalzeiten von ihrem Erwartungswert in erheblichem Maße nach oben abweichen. Mit anderen Worten; es soll das asymptotische Verhalten von $$ \\log\\P(\\|\\ell_t\\|_p^p\\geq r^p_t) $$ genau bestimmt werden, wobei $r_t^p\\in(0,\\infty)$ schneller als der Erwartungswert $\\E[\\|\\ell_t\\|_p^p]$ gegen unendlich streben soll. Dieses Verhalten kann dabei durch $t$, $r_t$ und eine gewisse Variationsformel beschrieben werden. Es wird sich herausstellen, dass es zwei Fälle zu betrachten gilt, in denen sich das probabilistisch beste Verhalten stark unterscheidet; die genaue Position des Phasenübergangs hängt dabei von den Parametern $p$ und $d$ ab. Im Vorgriff auf die Resultate kann man festhalten, dass die nötigen Selbstüberschneidungen in kleinen Dimensionen (im sogenannten subkritischen Fall) über einen großen Bereich erfolgen, aufgrund dessen bei der mathematischen Modellierung eine Reskalierung erforderlich ist. In hohen Dimensionen (dem sogenannten superkritischen Fall) ist dies nicht nötig, da die erforderlichen Selbstüberschneidungen innerhalb eines begrenzten Intervalles erfolgen. Das Interesse an der Untersuchung entstand unter anderem aus der Verbindung zu Modellen der statistischen Mechanik (parabolisches Anderson Modell) und zur Variationsanalysis. In der Vergangenheit wurde eine Vielzahl an Methoden benutzt, um dieses Problem zu lösen. In der vorliegenden Dissertation soll die sogenannte Momentenmethode bestmöglich ausgereizt werden und es wird gezeigt, welche Ergebnisse damit möglich sind.
4

Large Deviations for Brownian Intersection Measures

Mukherjee, Chiranjib 18 October 2011 (has links) (PDF)
We consider p independent Brownian motions in ℝd. We assume that p ≥ 2 and p(d- 2) < d. Let ℓt denote the intersection measure of the p paths by time t, i.e., the random measure on ℝd that assigns to any measurable set A ⊂ ℝd the amount of intersection local time of the motions spent in A by time t. Earlier results of Chen derived the logarithmic asymptotics of the upper tails of the total mass ℓt(ℝd) as t →∞. In this paper, we derive a large-deviation principle for the normalised intersection measure t-pℓt on the set of positive measures on some open bounded set B ⊂ ℝd as t →∞ before exiting B. The rate function is explicit and gives some rigorous meaning, in this asymptotic regime, to the understanding that the intersection measure is the pointwise product of the densities of the normalised occupation times measures of the p motions. Our proof makes the classical Donsker-Varadhan principle for the latter applicable to the intersection measure. A second version of our principle is proved for the motions observed until the individual exit times from B, conditional on a large total mass in some compact set U ⊂ B. This extends earlier studies on the intersection measure by König and Mörters.
5

Asymptotische Resultate über Lokalzeiten von Irrfahrten im Zd

Becker, Mathias 13 November 2013 (has links)
Gegenstand der vorliegenden Dissertation ist das Verhalten sogenannter Selbstüberschneidungslokalzeiten $\\|\\ell_t\\|_p^p$ einer zeitstetigen Irrfahrt $(S_r)_r$ auf dem $d$-dimensionalen Gitter $\\Z^d$. Dabei ist für $p>1$ die Funktion $\\ell_t$ definiert durch $$ \\ell_t(z):=\\int_{0}^{t}\\1_{\\{S_r=z\\}}\\,\\d r\\nonumber $$ und bezeichnet die Aufenthaltsdauer der Irrfahrt bis zum Zeitpunkt $t\\in(0,\\infty)$ im Punkt $z\\in\\Z^d$. Ziel ist es, ein Prinzip großer Abweichungen zu entwickeln, d.h. das Hauptaugenmerk liegt auf dem asymptotischen Verhalten der Wahrscheinlichkeit, dass die Selbstüberschneidungslokalzeiten von ihrem Erwartungswert in erheblichem Maße nach oben abweichen. Mit anderen Worten; es soll das asymptotische Verhalten von $$ \\log\\P(\\|\\ell_t\\|_p^p\\geq r^p_t) $$ genau bestimmt werden, wobei $r_t^p\\in(0,\\infty)$ schneller als der Erwartungswert $\\E[\\|\\ell_t\\|_p^p]$ gegen unendlich streben soll. Dieses Verhalten kann dabei durch $t$, $r_t$ und eine gewisse Variationsformel beschrieben werden. Es wird sich herausstellen, dass es zwei Fälle zu betrachten gilt, in denen sich das probabilistisch beste Verhalten stark unterscheidet; die genaue Position des Phasenübergangs hängt dabei von den Parametern $p$ und $d$ ab. Im Vorgriff auf die Resultate kann man festhalten, dass die nötigen Selbstüberschneidungen in kleinen Dimensionen (im sogenannten subkritischen Fall) über einen großen Bereich erfolgen, aufgrund dessen bei der mathematischen Modellierung eine Reskalierung erforderlich ist. In hohen Dimensionen (dem sogenannten superkritischen Fall) ist dies nicht nötig, da die erforderlichen Selbstüberschneidungen innerhalb eines begrenzten Intervalles erfolgen. Das Interesse an der Untersuchung entstand unter anderem aus der Verbindung zu Modellen der statistischen Mechanik (parabolisches Anderson Modell) und zur Variationsanalysis. In der Vergangenheit wurde eine Vielzahl an Methoden benutzt, um dieses Problem zu lösen. In der vorliegenden Dissertation soll die sogenannte Momentenmethode bestmöglich ausgereizt werden und es wird gezeigt, welche Ergebnisse damit möglich sind.
6

Large Deviations for Brownian Intersection Measures

Mukherjee, Chiranjib 27 July 2011 (has links)
We consider p independent Brownian motions in ℝd. We assume that p ≥ 2 and p(d- 2) < d. Let ℓt denote the intersection measure of the p paths by time t, i.e., the random measure on ℝd that assigns to any measurable set A ⊂ ℝd the amount of intersection local time of the motions spent in A by time t. Earlier results of Chen derived the logarithmic asymptotics of the upper tails of the total mass ℓt(ℝd) as t →∞. In this paper, we derive a large-deviation principle for the normalised intersection measure t-pℓt on the set of positive measures on some open bounded set B ⊂ ℝd as t →∞ before exiting B. The rate function is explicit and gives some rigorous meaning, in this asymptotic regime, to the understanding that the intersection measure is the pointwise product of the densities of the normalised occupation times measures of the p motions. Our proof makes the classical Donsker-Varadhan principle for the latter applicable to the intersection measure. A second version of our principle is proved for the motions observed until the individual exit times from B, conditional on a large total mass in some compact set U ⊂ B. This extends earlier studies on the intersection measure by König and Mörters.
7

Robust stochastic analysis with applications

Prömel, David Johannes 02 December 2015 (has links)
Diese Dissertation präsentiert neue Techniken der Integration für verschiedene Probleme der Finanzmathematik und einige Anwendungen in der Wahrscheinlichkeitstheorie. Zu Beginn entwickeln wir zwei Zugänge zur robusten stochastischen Integration. Der erste, ähnlich der Ito’schen Integration, basiert auf einer Topologie, erzeugt durch ein äußeres Maß, gegeben durch einen minimalen Superreplikationspreis. Der zweite gründet auf der Integrationtheorie für rauhe Pfade. Wir zeigen, dass das entsprechende Integral als Grenzwert von nicht antizipierenden Riemannsummen existiert und dass sich jedem "typischen Preispfad" ein rauher Pfad im Ito’schen Sinne zuordnen lässt. Für eindimensionale "typische Preispfade" wird sogar gezeigt, dass sie Hölder-stetige Lokalzeiten besitzen. Zudem erhalten wir Verallgemeinerungen von Föllmer’s pfadweiser Ito-Formel. Die Integrationstheorie für rauhe Pfade kann mit dem Konzept der kontrollierten Pfade und einer Topologie, welche die Information der Levy-Fläche enthält, entwickelt werden. Deshalb untersuchen wir hinreichende Bedingungen an die Kontrollstruktur für die Existenz der Levy-Fläche. Dies führt uns zur Untersuchung von Föllmer’s Ito-Formel aus der Sicht kontrollierter Pfade. Para-kontrollierte Distributionen, kürzlich von Gubinelli, Imkeller und Perkowski eingeführt, erweitern die Theorie rauher Pfade auf den Bereich von mehr-dimensionale Parameter. Wir verallgemeinern diesen Ansatz von Hölder’schen auf Besov-Räume, um rauhe Differentialgleichungen zu lösen, und wenden die Ergebnisse auf stochastische Differentialgleichungen an. Zum Schluß betrachten wir stark gekoppelte Systeme von stochastischen Vorwärts-Rückwärts-Differentialgleichungen (FBSDEs) und erweitern die Theorie der Existenz, Eindeutigkeit und Regularität der sogenannten Entkopplungsfelder auf Markovsche FBSDEs mit lokal Lipschitz-stetigen Koeffizienten. Als Anwendung wird das Skorokhodsche Einbettungsproblem für Gaußsche Prozesse mit nichtlinearem Drift gelöst. / In this thesis new robust integration techniques, which are suitable for various problems from stochastic analysis and mathematical finance, as well as some applications are presented. We begin with two different approaches to stochastic integration in robust financial mathematics. The first one is inspired by Ito’s integration and based on a certain topology induced by an outer measure corresponding to a minimal superhedging price. The second approach relies on the controlled rough path integral. We prove that this integral is the limit of non-anticipating Riemann sums and that every "typical price path" has an associated Ito rough path. For one-dimensional "typical price paths" it is further shown that they possess Hölder continuous local times. Additionally, we provide various generalizations of Föllmer’s pathwise Ito formula. Recalling that rough path theory can be developed using the concept of controlled paths and with a topology including the information of Levy’s area, sufficient conditions for the pathwise existence of Levy’s area are provided in terms of being controlled. This leads us to study Föllmer’s pathwise Ito formulas from the perspective of controlled paths. A multi-parameter extension to rough path theory is the paracontrolled distribution approach, recently introduced by Gubinelli, Imkeller and Perkowski. We generalize their approach from Hölder spaces to Besov spaces to solve rough differential equations. As an application we deal with stochastic differential equations driven by random functions. Finally, considering strongly coupled systems of forward and backward stochastic differential equations (FBSDEs), we extend the existence, uniqueness and regularity theory of so-called decoupling fields to Markovian FBSDEs with locally Lipschitz continuous coefficients. These results allow to solve the Skorokhod embedding problem for a class of Gaussian processes with non-linear drift.

Page generated in 0.063 seconds