• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uma fórmula de Itô-Ventzell para caminhos Hölder / An Itô-Ventzell type formula for Hölder paths

Castrequini, Rafael Andretto, 1984- 26 August 2018 (has links)
Orientador: Pedro José Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T02:18:47Z (GMT). No. of bitstreams: 1 Castrequini_RafaelAndretto_D.pdf: 917541 bytes, checksum: c03f74c254be62fceaa032d8a3fd40ec (MD5) Previous issue date: 2014 / Resumo: Provaremos uma fórmula do tipo Itô-Ventzel para caminhos Hölder cujo expoente é maior que 1/3. Os exemplos fundamentais de caminhos onde a fórmula é válida é o movimento Browniano fracionário. Nossa fórmula estende (e coincide) a versão clássica feita por H. Kunita na década de 80. As ferramentas utilizadas residem no contexto dos rough paths seguindo a abordagem de M. Gubinelli. Tais tecnicas começaram a serem desenvolvidas por T. Lyons no final de 90. Como aplicação, estudaremos equações diferenciais dirigidas por caminhos cujo expoente é maior que 1/2 (Sistemas de Young). Onde a idéia aqui é empregar nossa fórmula aplicando o método das caracteristicas nesse contexto, seguindo novamente os trabalhos de H. Kunita / Abstract: We prove an Itô-Ventezel type formula for Hölder paths with exponent is greater than 1/3. The most important class of examples of theses paths is given by fractional Brownian motion. Our formula is an extension (and agree) to classic version done by H. Kunita in 80's. The technical tools used rely on rough path theory following M. Gubinelli's approach. Those techniques were developed in the late 90's. by T. Lyons. As an application, we study differential equations driven by paths with exponent greater than 1/2 (Young Systems). The ideia here is to employ our formula together with method of characteristics in this setting, following Kunita's work / Doutorado / Matematica / Doutor em Matemática
2

Homotopia entre trajetorias de equações dirigidas por caminhos rugosos / Homotopy between trajectories of equations driven by rough paths

Vieira, Marcelo Gonçalves Oliveira 11 December 2009 (has links)
Orientador: Pedro Jose Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T19:44:56Z (GMT). No. of bitstreams: 1 Vieira_MarceloGoncalvesOliveira_D.pdf: 804383 bytes, checksum: ab79ef394c82b721e298a47eaa86c2f6 (MD5) Previous issue date: 2009 / Resumo: Este trabalho aborda homotopias não usuais entre soluções de equações pertencentes a uma coleção de equações. Cada coleção de equações é denominada pelo termo sistema e neste trabalho são considerados dois tipos de sistemas, os sistemas de Young e os sistemas rugosos. Sob determinadas condições, mostramos que um conjunto de pontos acessíveis de um sistema de Young admite recobrimento e um resultado análogo para sistemas rugosos também é válido. Além disso, mostramos que a concatenação de trajetórias de um sistema ainda é uma trajetória deste sistema. Com esse resultado é possível definir uma operação entre as classes de homotopias de trajetórias de um sistema. Outro ponto abordado é estender ao contexto de um sistema de Young a noção de trajetórias regulares de equações diferenciais ordinárias pertencentes a um sistema de controle. Nesta direção obtivemos um resultado o qual diz que a concatenação entre uma trajetória regular e qualquer outra trajetória produz uma trajetória regular. Por fim, estudamos como o conceito de homotopia entre trajetórias de um sistema rugoso se relaciona com conjugação de sistemas e com equações diferenciais estocásticas. / Abstract: This work accosts unusual homotopy between solutions of equations belonging to a collection of equations. Each collection of equations is called by system and in this work are considered two types of systems, Young systems and rough systems. Under certain conditions, we show that a set of points accessible from an Young system admits covering and a similar result for rough systems is also valid. Furthermore, we show that the concatenation of trajectories of a system is also a trajectory of the system. With this result it is possible to define an operation between the classes of homotopy between trajectories of a system. Another point discussed is to extend to the context of trajectories of an Young system the notion of regularity of trajectories of ordinary differential equations belonging to a control system. In this way we obtain a result which says that the concatenation of a regular trajectory and any other trajectory produces a regular trajectory. Finally, we study how the concept of homotopy between trajectories of a rough system relates with conjugation of systems and stochastic differential equations. / Doutorado / Matematica / Doutor em Matemática
3

Teoria de rough paths via integração algebrica / Rough paths theory via algebraic integration

Castrequini, Rafael Andretto, 1984- 14 August 2018 (has links)
Orientador: Pedro Jose Catuogno / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatística e Computação Cientifica / Made available in DSpace on 2018-08-14T14:39:55Z (GMT). No. of bitstreams: 1 Castrequini_RafaelAndretto_M.pdf: 934326 bytes, checksum: e4c45bc1efde09bbe52710c44eab8bbf (MD5) Previous issue date: 2009 / Resumo: Introduzimos a teoria dos p-rough paths seguindo a abordagem de M. Gubinelli, conhecida por integração algébrica. Durante toda a dissertação nos restringimos ao caso 1 </= p < 3, o que e suficiente para lidar com trajetórias do movimento Browniano e aplicações ao Cálculo Estocástico. Em seguida, estudamos as equações diferenciais associadas aos rough paths, onde nós conectamos a abordagem de A. M. Davie (as equações) e a abordagem de M. Gubinelli (as integrais). No final da dissertação, aplicamos a teoria de rough path ao cálculo estocástico, mais precisamente relacionando as integrais de Itô e Stratonovich com a integral ao longo de caminhos. / Abstract: We introduce p-Rough Path Theory following M. Gubinelli_s approach, as known as algebraic integration. Throughout this masters thesis, we are concerned only in the case where 1 </= p < 3, witch is enough to deal with trajectories of a Brownnian motion and some applications to Stochastic Calculus. Afterwards, we study differential equations related to rough paths, where we connect the approach of A. M. Davie to equations with the approach of M. Gubinelli to integrals. At the end of this work, we apply the theory of rough paths to stochastic calculus, more precisely, we related the integrals of Itô and Stratonovich to integral along paths. / Mestrado / Sistemas estocasticos / Mestre em Matemática
4

Rough path properties for local time of symmetric alpha stable processes

Wang, Qingfeng January 2012 (has links)
No description available.
5

The expected signature of a stochastic process

Ni, Hao January 2012 (has links)
The signature of the path provides a top down description of a path in terms of its eects as a control. It is a group-like element in the tensor algebra and is an essential object in rough path theory. When the path is random, the linear independence of the signatures of different paths leads one to expect, and it has been proved in simple cases, that the expected signature would capture the complete law of this random variable. It becomes of great interest to be able to compute examples of expected signatures. In this thesis, we aim to compute the expected signature of various stochastic process solved by a PDE approach. We consider the case for an Ito diffusion process up to a fixed time, and the case for the Brownian motion up to the first exit time from a domain. We manage to derive the PDE of the expected signature for both cases, and find that this PDE system could be solved recursively. Some specific examples are included herein as well, e.g. Ornstein-Uhlenbeck (OU) processes, Brownian motion and Levy area coupled with Brownian motion.
6

Partial sum process of orthogonal series as rough process

Yang, Danyu January 2012 (has links)
In this thesis, we investigate the pathwise regularity of partial sum process of general orthogonal series, and prove that the partial sum process is a geometric 2-rough process under the same condition as in Menshov-Rademacher Theorem. For Fourier series, the condition can be improved, and an equivalent condition on the limit function is identified.
7

Contributions to Rough Paths and Stochastic PDEs

Prakash Chakraborty (9114407) 27 July 2020 (has links)
Probability theory is the study of random phenomena. Many dynamical systems with random influence, in nature or artificial complex systems, are better modeled by equations incorporating the intrinsic stochasticity involved. In probability theory, stochastic partial differential equations (SPDEs) generalize partial differential equations through random force terms and coefficients, while stochastic differential equations (SDEs) generalize ordinary differential equations. They are both abound in models involving Brownian motion throughout science, engineering and economics. However, Brownian motion is just one example of a random noisy input. The goal of this thesis is to make contributions in the study and applications of stochastic dynamical systems involving a wider variety of stochastic processes and noises. This is achieved by considering different models arising out of applications in thermal engineering, population dynamics and mathematical finance.<br><div><br></div><div>1. Power-type non-linearities in SDEs with rough noise: We consider a noisy differential equation driven by a rough noise that could be a fractional Brownian motion, a generalization of Brownian motion, while the equation's coefficient behaves like a power function. These coefficients are interesting because of their relation to classical population dynamics models, while their analysis is particularly challenging because of the intrinsic singularities. Two different methods are used to construct solutions: (i) In the one-dimensional case, a well-known transformation is used; (ii) For multidimensional situations, we find and quantify an improved regularity structure of the solution as it approaches the origin. Our research is the first successful analysis of the system described under a truly rough noise context. We find that the system is well-defined and yields non-unique solutions. In addition, the solutions possess the same roughness as that of the noise.<br></div><div><br></div><div>2. Parabolic Anderson model in rough environment: The parabolic Anderson model is one of the most interesting and challenging SPDEs used to model varied physical phenomena. Its original motivation involved bound states for electrons in crystals with impurities. It also provides a model for the growth of magnetic field in young stars and has an interpretation as a population growth model. The model can be expressed as a stochastic heat equation with additional multiplicative noise. This noise is traditionally a generalized derivative of Brownian motion. Here we consider a one dimensional parabolic Anderson model which is continuous in space and includes a more general rough noise. We first show that the equation admits a solution and that it is unique under some regularity assumptions on the initial condition. In addition, we show that it can be represented using the Feynman-Kac formula, thus providing a connection with the SPDE and a stochastic process, in this case a Brownian motion. The bulk of our study is devoted to explore the large time behavior of the solution, and we provide an explicit formula for the asymptotic behavior of the logarithm of the solution.<br></div><div><br></div><div>3. Heat conduction in semiconductors: Standard heat flow, at a macroscopic level, is modeled by the random erratic movements of Brownian motions starting at the source of heat. However, this diffusive nature of heat flow predicted by Brownian motion is not observed in certain materials (semiconductors, dielectric solids) over short length and time scales. The thermal transport in these materials is more akin to a super-diffusive heat flow, and necessitates the need for processes beyond Brownian motion to capture this heavy tailed behavior. In this context, we propose the use of a well-defined Lévy process, the so-called relativistic stable process to better model the observed phenomenon. This process captures the observed heat dynamics at short length-time scales and is also closely related to the relativistic Schrödinger operator. In addition, it serves as a good candidate for explaining the usual diffusive nature of heat flow under large length-time regimes. The goal is to verify our model against experimental data, retrieve the best parameters of the process and discuss their connections to material thermal properties.<br></div><div><br></div><div>4. Bond-pricing under partial information: We study an information asymmetry problem in a bond market. Especially we derive bond price dynamics of traders with different levels of information. We allow all information processes as well as the short rate to have jumps in their sample paths, thus representing more dramatic movements. In addition we allow the short rate to be modulated by all information processes in addition to having instantaneous feedbacks from the current levels of itself. A fully informed trader observes all information which affects the bond price while a partially informed trader observes only a part of it. We first obtain the bond price dynamic under the full information, and also derive the bond price of the partially informed trader using Bayesian filtering method. The key step is to perform a change of measure so that the dynamic under the new measure becomes computationally efficient.</div>
8

Volterra rough equations

Xiaohua Wang (11558110) 13 October 2021 (has links)
We extend the recently developed rough path theory to the case of more rough noise and/or more singular Volterra kernels. It was already observed that the Volterra rough path introduced there did not satisfy any geometric relation, similar to that observed in classical rough path theory. Thus, an extension of the theory to more irregular driving signals requires a deeper understanding of the specific algebraic structure arising in the Volterra rough path. Inspired by the elements of "non-geometric rough paths" developed, we provide a simple description of the Volterra rough path and the controlled Volterra process in terms of rooted trees, and with this description we are able to solve rough Volterra equations driven by more irregular signals.
9

Rough path theory via fractional calculus / 非整数階微積分によるラフパス理論

Ito, Yu 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19121号 / 情博第567号 / 新制||情||100(附属図書館) / 32072 / 京都大学大学院情報学研究科複雑系科学専攻 / (主査)教授 木上 淳, 教授 磯 祐介, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
10

Studies of robustness in stochastic analysis and mathematical finance

Perkowski, Nicolas Simon 07 February 2014 (has links)
Diese Dissertation behandelt Fragen aus der stochastischen Analysis und der Finanzmathematik, die sich unter dem Begriff der Robustheit zusammenfassen lassen. Zunächst betrachten wir finanzmathematische Modelle mit Arbitragemöglichkeiten. Wir identifizieren die Abwesenheit von Arbitragemöglichkeiten der ersten Art (NA1) als minimale Eigenschaft, die in jedem finanzmathematischen Modell gelten muss, und zeigen, dass (NA1) äquivalent zur Existenz eines dominierenden lokalen Martingalmaßes ist. Als Beispiel für Prozesse, die (NA1) erfüllen, studieren wir stetige lokale Martingale, die darauf bedingt werden nie Null zu treffen. Anschließend verwenden wir eine modellfreie Version der (NA1) Eigenschaft, die es erlaubt, qualitative Eigenschaften von “typischen Preistrajektorien” zu beschreiben. Hier konstruieren wir ein pfadweises Itô-Integral. Dies deutet an, dass sich typische Preispfade als rough-path-Integratoren verwenden lassen. Nun entwickeln wir mittels Fourierentwicklungen einen alternativen Zugang zur rough-path-Theorie. Wir zerlegen das Integral in drei Operatoren mit verschiedenen Eigenschaften. So wird offensichtlich, dass Integratoren mit der Regularität der Brownschen Bewegung mit ihrer Lévy-Fläche versehen werden müssen, um ein pfadweise stetiges Integral zu erhalten. Daraufhin bemerken wir, dass die Integration zweier Funktionen gegeneinander äquivalent dazu ist, eine Funktion mit der Ableitung einer anderen (im Allgemeinen eine Distribution) zu multiplizieren. In höheren Dimensionen ist das Multiplikationsproblem jedoch allgemeiner. Wir verwenden Littlewood-Paley-Theorie, um unseren Fourier-Zugang zur rough-path-Theorie auf Funktionen mehrdimensionaler Variablen zu erweitern. Wir konstruieren einen Operator, der für Funktionen mit dem punktweisen Produkt übereinstimmt und in einer geeigneten Topologie stetig ist. Nun lassen sich stochastische partielle Differentialgleichungen lösen, die bisher aufgrund von Nichtlinearitäten nicht zugänglich waren. / This thesis deals with various problems from stochastic analysis and from mathematical finance that can best be summarized under the common theme of robustness. We begin by studying financial market models with arbitrage opportunities. We identify the weak notion of absence of arbitrage opportunities of the first kind (NA1) as the minimal property that every sensible asset price model should satisfy, and we prove that (NA1) is equivalent to the existence of a dominating local martingale. As examples of processes that satisfy (NA1) but do not admit equivalent local martingale measures, we study continuous local martingales conditioned not to hit zero. We continue by working with a model free formulation of the (NA1) property, which permits to describe qualitative properties of “typical asset price trajectories”. We construct a pathwise Itô integral for typical price paths. Our results indicate that typical price paths can be used as integrators in the theory of rough paths. Next, we use a Fourier series expansion to develop an alternative approach to rough path integration. We decompose the integral into three components with different behavior. Then it is easy to see that integrators with the regularity of the Brownian motion must be equipped with their Lévy area to obtain a pathwise continuous integral operator. We now note that integrating two functions against each other is equivalent to multiplying one with the derivative of the other, which will in general only be a distribution. In higher index dimensions however, the multiplication problem is more general. We use Littlewood-Paley theory to extend our Fourier approach from rough path integrals to multiplying functions of a multidimensional index. We construct an operator which agrees with the usual product for smooth functions, and which is continuous in a suitable topology. We apply this to solve stochastic partial differential equations that were previously difficult to access due to nonlinearities.

Page generated in 0.0573 seconds