Spelling suggestions: "subject:"mots"" "subject:"mois""
81 |
Coordination Polymer Modified Separator for Mitigating Polysulfide Shuttle Effect in Lithium-Sulfur BatteriesWan, Yi 19 November 2017 (has links)
The development of the new cathode and anode materials of Lithium-Ion Batteries (LIBs) with high energy density and outstanding electrochemical performance is of substantial technological importance due to the ever-increasing demand for economic and efficient energy storage system. Because of the abundance of element sulfur and high theoretical energy density, Lithium-Sulfur (Li-S) batteries have become one of the most promising candidates for the next-generation energy storage system. However, the shuttling effect of electrolyte-soluble polysulfides severely impedes the cell performance and commercialization of Li-S batteries, and significant progress have been made to mitigate this shuttle effect in the past two decades. Coordination polymers (CPs) or Metal-organic Frameworks (MOFs) have been attracted much attention by virtue of their controllable porosity, nanometer cavity sizes and high surface areas, which supposed to be an available material in suppressing polysulfide migration. In this thesis, we investigate different mechanisms of mitigating polysulfide diffusion by applying a layer of MOFs (including Y-FTZB, ZIF-7, ZIF-8, and HKUST-1) on a separator. We also fabricate a new free-standing 2D coordination polymer Zn2(Benzimidazolate)2(OH)2 with rich hydroxyl (OH-) groups by using a simple, scalable and low cost method at air/water surface. Our results suggest that the chemical stability, the cluster morphology and the surface function groups of MOFs shows a greater impact on minimizing the shuttling effect in Li-S batteries, other than the internal cavity size in MOFs. Meanwhile, the new design of 2D coordination polymer efficiently mitigate the shuttling effect in Li-S battery resulting in a largely promotion of the battery capacity to 1407 mAh g-1 at 0.1 C and excellent cycling performance (capacity retention of 98% after 200 cycles at 0.25C). Such excellent cell performance is mainly owing to the fancying physical and chemical structure controllability of MOFs or CPs, which has substantial potential for future commercial utilizations.
|
82 |
Solid-state NMR study of nitric oxide adsorption in carboxylate based MOFsKhan, Arafat Hossain 16 January 2020 (has links)
Solid-state NMR study of nitric oxide adsorption in MOFs.
Amine functionalized Cu3btc2 MOFs shows chemisorption of NO as NONOates.
NO also adsorbed in Cu open metal site(OMS). All of these information is characterized by 1H, 13C and 15N NMR studies.
NO adsoprtion in Al based MOFs MIL-100(Al) is investigated to get details about direct detection of OMS site by 27Al NMR.
First time detection of 15NO as dimer is acheived by 15N NMR studies.:Contents.............................................................................. v
List of Figures...................................................................... vii
Abbreviations............................................................................. ix
1 Motivation .............................................................................1
2 Introduction .............................................................................3
2.1 Nitric oxide (NO): A Potent Gasotransmitter . . . . . . . . . . . . . . . . . . 3
2.1.1 Biological action in human biology: . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Structure and chemistry of NO . . . . . . . . . . . . . . . . . . . . . . 4
2.2 NO storage in porous materials . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Physisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Chemisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Current NO storage materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Metal-organic frameworks (MOFs) . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Cu3btc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 MIL-100(Al) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Experimental techniques .............................................................................15
3.1 Nuclear spin interactions in solid-state NMR . . . . . . . . . . . . . . . . . . . 15
3.2 NMR Techniques and Pulse Sequences . . . . . . . . . . . . . . . . . . . . . . 19
3.3 NMR sample tube preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Gas adsorption procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Overview and enclosed papers 29
References .............................................................................121
5 Contribution .............................................................................137 / Gas storage in solids is becoming more important as a technology, with applications ranging in fields such as energy, the environment, and more importantly in biology and medicine. Porous solid storage materials are also increasingly important to advancements in science, as seen through their use in emergent gas-delivery technologies that include storage of the signaling molecule, nitric oxide (NO). The deficiencies of NO biosynthesis have been interconnected to a number of diseases, such as cardiovascular dysfunction, thrombosis and cancer. To date, one of the promising NO delivery materials are the metal-organic frameworks (MOFs), a new class of porous materials, which can store significant quantities of NO and then deliver it to specific sites in the body. MOFs contain open metal sites (OMS) that can physisorbed NO. Furthermore, amine functionalized MOFs can store NO covalently as N,N -diazeniumdiolates (NONOate).
The thesis at hand is a collection of the publications written and co-authored by the author. The following thesis will investigate NO adsorption of one of the most highly studied carboxylate-based MOFs, Cu3btc2, and its amine derivatives, and MIL-100(Al) [Materials Institute Lavoisier] by magic angle spinning (MAS) NMR. However, NMR observation of Cu3btc2 is quite difficult, because it behaves as a paramagnet at room temperature. This paramagnetic behavior originates from the presence of antiferromagnetically coupled Cu-Cu ions, which result in an S=1 electronic state at higher temperatures (above 90 K). In that case, a significant insight into the understanding of NO interaction and the changing of electronic properties of NO loaded Cu3btc2 and the formation of NONOate in Cu3(NH2btc)2, which is known as University of Hamburg materials (UHM-30), has been obtained by MAS NMR. In paper (A) the effect of NO adsorption on the Cu3btc2 and UHM-30 has been followed by adsorbing different amounts of NO/Cu via the gas phase. The relevant NMR parameters, e.g., chemical shift, hyperfine coupling and 1H T1 of NO loaded MOFs displayed the change of electron density at the Cu site because of NO adsorption as well as indirect suggestion of NONOate formation. Further studies are carried out on the secondary amine functionalized MOFs, Cu3(NHRbtc)2, as they opened up the greater potential for NONOate formation in the MOFs. The structural characterization of four different Cu3(NHRbtc)2 is carried out by MAS NMR in (B) which revealed better incorporation of the btc ligand compared to NHRbtc in MOFs. In (C) NO loaded UHM-37 is extensively investigated by MAS NMR in order to understand the sorption priority, e.g., chemisorption or physiosorption. The multinuclear approach together with the fact that the MOFs contain antiferromagnetically coupled Cu-Cu pairs and NO being paramagnetic shows significant effects on spectra that allow for the deduction of adsorption effects in these MOFs. In the amine-functionalized UHM-37, first chemisorption of NO takes place to form NONOates. When this reaction is completed, additional adsorption at the OMS takes place. This observation is also in accordance with observed 13C shift changes upon NO adsorption. With 15N-labeled NO, we were able to directly determine signals of NONOate formation in UHM-37. To the best of our knowledge, this is the first report on 15N NMR data of NONOates in porous systems. In (D), NO interaction of another type of carboxylate MOF, MIL-100(Al) is investigated by 1H, 13C and 27Al MAS NMR. 27Al NMR data show that half of all Al sites are free for gas adsorption and that additional Al(OH)3 is present inside the pores, which is well-documented by 27Al 1H HETCOR spectra. 1H T1 of NO loaded MIL-100(Al) decreases with NO loading representing uniform distribution of NO in the MOF. In addition, the MIL-100(Al) five-coordinated Al site intensity is decreasing with increasing NO loading, while six-coordinated site intensity is increasing and a maximum of 1 NO per Al trimer can be adsorbed. This indicates rather weak NO adsorption. The magnetic properties of NO make it quite interesting for NMR measurements. Therefore, isotopically leveled bulk 15NO is studied for the first time by NMR in (E). The manuscript is accepted for publication and is included in this thesis. 15N NMR spectra have been obtained in the liquid and the solid state. The dynamic equilibrium ranges between (NO)2 and NO is characterized in gas - liquid transition temperature of NO. The variation of 15N chemical shift, line width and 15N T1 of NO with temperature represents the fast dynamic equilibrium. SQUID measurements are carried out on the same sample for further confirmation of the NMR results.:Contents.............................................................................. v
List of Figures...................................................................... vii
Abbreviations............................................................................. ix
1 Motivation .............................................................................1
2 Introduction .............................................................................3
2.1 Nitric oxide (NO): A Potent Gasotransmitter . . . . . . . . . . . . . . . . . . 3
2.1.1 Biological action in human biology: . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Structure and chemistry of NO . . . . . . . . . . . . . . . . . . . . . . 4
2.2 NO storage in porous materials . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Physisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Chemisorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Current NO storage materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Metal-organic frameworks (MOFs) . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Cu3btc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 MIL-100(Al) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Experimental techniques .............................................................................15
3.1 Nuclear spin interactions in solid-state NMR . . . . . . . . . . . . . . . . . . . 15
3.2 NMR Techniques and Pulse Sequences . . . . . . . . . . . . . . . . . . . . . . 19
3.3 NMR sample tube preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Gas adsorption procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Overview and enclosed papers 29
References .............................................................................121
5 Contribution .............................................................................137
|
83 |
Synthesis of chiral zirconium-based metal-organic frameworks as solid catalysts in asymmetric carbon-carbon coupling reactionsNguyen, Khoa Dang 29 January 2020 (has links)
Comprehensive understanding of chirality has played a crucial role for ensuring safety and efficacy of drug products. In many cases, two optical configurations of a chiral molecule exhibit substantially different physiological behaviour, and thus the preparation of single enantiomers has become as an essential topic in the pharmaceutical industry.1-2 Enantiomerically pure compounds could generally be achieved by separation from racemic mixtures or direct synthesis of enantiopure molecules. Either way, chiral materials which are employed as stationary phase in chiral columns or chiral catalysis, are a basic condition to decide to enantiomeric excess of resulting mixtures. Despite obtaining high enantiomeric purity, the chiral separation of racemic mixtures is considered as an expensive and inefficient approach due to undesired enantiomers, while asymmetric synthesis, which enables dominant formation of the single enantiomers, is an atom-economical method. However, the development of efficient heterogeneous chiral catalysts has been still required further investigations to provide more potential options for asymmetric organic reactions, especially carbon-carbon bond formations, which are key steps in organic synthesis.1-3
In recent years, metal-organic frameworks have emerged as one of the most intriguing solid porous materials. Together with the highly active catalytic centers, wide structural and functional variations, MOFs have been successfully employed as heterogeneous catalysts for a variety of organic transformations.4-5 However, very few achievements relating to MOFs as asymmetric catalysts have been reported to date because of their low thermal and chemical stabilities. Such solid stable frameworks, the Zr-MOFs offers great opportunities for designing novel effective asymmetric catalysts.1, 6-9 This is an interesting, but also challenging topic with many open issues:
• How can we introduce effectively enantiopure active sites into Zr-MOFs?
• Are there any positive or negative impacts of Zr-nets on the performance of chiral catalytic sites?
• If any, is it possible to control these effects during the reaction phase?
• How is the recyclability of these chiral Zr-MOFs?
Finding answers for these questions are the core of this thesis. In Chapter 3, DUT-67, an 8-connected zirconium and 2,5-thiophenedicarboxylate based MOF, was post synthetically functionalized by L-proline via solvent assisted linker incorporation to obtain a chiral base catalyst. The parent monocarboxylate could be almost completely exchanged by L-proline after 5 days of treatment. The resulting chiral DUT-67, DUT-67-Pro, was demonstrated to be a promising heterogeneous catalyst for the asymmetric Michael addition of cyclohexanone to trans-β-nitrostyrene with excellent yield (up to 96%) and enantioselectivity comparable to that of L-proline in homogeneous reaction (ee approximately 38%). The Zr-MOF could be reused at least 5 times without substantial degradation in crystallinity or catalytic activity. No leaching of catalytically active species into the liquid phase was detected over 5 cycles.
A further understanding regarding the role of catalytic active sites, including Zr-clusters and L-proline, in asymmetric aldol addition of cyclohexanone and 4-nitro-benzaldehyde is investigated in Chapter 4 to clarify the predominant formation of syn-products as well as the absence of enantioselectivity in previous catalytic systems. The presence and location of L-proline into DUT-67 was confirmed by Solid-state MAS and DNP NMR data. The chiral DUT-67-Pro catalyst exhibits an excellent catalytic activity at low temperature (298 K) with an unprecedented syn-(S,S)-product selectivity in an asymmetric aldol addition reaction of cyclohexanone to 4-nitrobenzaldehyde (yield = 95%, ee = 96%). Comparative catalytic studies using a molecular Zr6-cluster model compound indicate the Zr6-moiety to be responsible for this inverse diastereoselectivity compared to well-established L-proline organocatalysis and a mechanism is proposed to explain the Zr6-cluster-mediated syn-selectivity. Masking residual acidic active sites in the cluster of the framework was found to be a key prerequisite to achieve the high enantioselectivity. The purely heterogeneous catalytic system based on DUT-67-Pro is highly stable and can be recycled several times.
Lastly, a novel chiral diimine Zr-MOF, namely DUT-136, synthesized from one-pot reaction of ZrCl4 with 4-formylbenzoic acid, and (R,R)-1, 2-diphenylethylenediamine as an enantiopure core will be described in Chapter 5. Inspired from the versatile transformation of the C=N double bonds, a variety of post-synthetic methods, including oxidation, reduction, and metalation, was employed to modify DUT-136 for formation of the chiral amide-, amine-, and Ni-DUT-136, respectively. The catalytic behaviour of these post-synthetically modified materials was then evaluated in a wide range of asymmetric organic transformations, including the Friedel Craft alkylation, the Michael addition, the aldol reaction and the Ni-catalyzed C-C coupling.
The research on synthesis of chiral Zr-MOFs and their catalytic behavior in this work are expected to provide a better understanding or at least give to other scientists open ideas for further deeper studies regarding this topic in the future.
|
84 |
NMR-SPEKTROSKOPIE AN FLEXIBLEN UND CHIRALEN METAL-ORGANIC FRAMEWORKS (MOFs): NMR-SPEKTROSKOPIE AN FLEXIBLEN UND CHIRALEN METAL-ORGANIC FRAMEWORKS (MOFs)Hoffmann, Herbert C. 17 July 2014 (has links)
Es wurden verschiedene NMR-spektrokopische Messungen an flexiblen und chiralen MOFs durchgeführt. Zur Untersuchung der Porensysteme kamen 129Xe-NMR und 13C-NMR an adsorbiertem CO2 zum Einsatz, während die MOF-Gitter und ihre Wechselwirkungen mit adsorbierten Gastmolekülen mittels 13C- und 1H-MAS-NMR-Spektroskopie studiert wurden. Während DUT-8(Ni) Flexibilität zeigt, weist DUT-8(Cu) ein starres Gitter auf. Die Flexibilität der sogenannten Solid-Solutions hängt in ausgeprägter Weise vom Verhältnis der funktionalisierten bdc-Linker 2,5-bme-bdc und db-bdc ab. Dieses Verhältnis hat zudem einen großen Einfluss auf die Orientierung der adsorbierten CO2-Moleküle. Es wurde erstmals eine Methode vorgestellt, die den Festkörper-NMR-spektroskopischen Nachweis chiraler Seitengruppen in chiralen MOFs erlaubt, wie anhand des chiral modifizierten UMCM-1 (ChirUMCM-1) demonstriert wurde. Die Chiralität kann einen NMR-spektroskopisch messbaren Einfluss auf die intrinsische Dynamik des MOF-Gitters ausüben, wie am chiral modifizierten DUT-32 deutlich wurde, dessen chirale Seitengruppe selektiv 15N- und 13C-isotopenmarkiert wurde.
|
85 |
Selbstdiffusion von Wasser in Schüttungen nanoporöser Kristalle für die adsorptive WärmetransformationSplith, Tobias 16 January 2019 (has links)
Die Diffusion von Wasser wurde im zeolithischen Silicoaluminophosphat SAPO-34 sowie den metallorganischen Gerüstverbindungen Aluminiumfumarat, MIL-100(Al) und CAU-10-H mittels Kernspinresonanz mit gepulsten Feldgradienten untersucht. Diese mikrokristallinen, nanoporösen Wirtsysteme stellen vielversprechende und zum Teil bereits eingesetzte Materialien für die adsorptive Wärmetransformation dar. Die Diffusion von Wasser im Aluminiumfumarat und im MIL-100(Al) wird durch einen Austausch der Wassermoleküle zwischen den Porenräumen der Wirtsysteme und der die Kristalle umgebenden Gasphase beeinflusst. Für die Auswertung wurde ein bekanntes Zweibereichsmodell für die Spezialfälle der behinderten (MIL-100(Al)) und anisotropen (Aluminiumfumarat) intrakristallinen Diffusion erweitert. Mittels numerischer Intergration ermöglicht diese Methodik eine über die Variation der Beobachtungszeit konsistente Beschreibung der NMR-Daten und liefert Informationen über die intrakristalline Diffusion sowie über die mittleren Aufenthaltszeiten der Moleküle.:1 Einleitung und Motivation
2 Ausgewählte kristalline nanoporöse Wirtsysteme
2.1 Silicoaluminophosphat SAPO-34
2.2 Aluminiumfumarat
2.3 Aluminiumisophthalat CAU-10-H
2.4 Aluminiumform des MIL-100
3 Grundlagen der verwendeten Methoden
3.1 Selbstdiffusion
3.1.1 Lösung der Diffusionsgleichung
3.1.2 Diffusion in Gasen
3.1.3 Diffusion als aktivierter Prozess
3.2 Kernspinresonanz
3.2.1 Phänomenologische Beschreibung
3.2.2 Diffusionsuntersuchungen mit gepulsten Feldgradienten
3.2.3 Impulsfolge des stimulierten Spin-Echos mit gepulsten Feldgradienten
4 Das Zweibereichsmodell und seine Weiterentwicklung
4.1 Das Zweibereichsmodell für isotrope Diffusion in beiden Bereichen
4.1.1 Schematische Darstellung des Modells
4.1.2 Mathematische Beschreibung des Modells
4.1.3 Gemittelter Diffusionskoeffizient und Zeitregime des Austauschs
4.2 Anisotrope Diffusion in der intrakristallinen Phase
4.2.1Allgemeine Beschreibung von anisotroper Diffusion in einer Schüttung
4.2.2 Anisotrope Diffusion in einem Zweibereichssystem
4.2.3 Über mehrere Austausche gemittelter Diffusionskoeffizient für anisotrope Diffusion
4.3 Behinderte intrakristalline Diffusion
4.3.1 Allgemeine Beschreibung von behinderter Diffusion
4.3.2 Behinderte Diffusion in einem Zweibereichssystem
4.3.3 Sonderfälle der behinderten Diffusion im Zweibereichsmodell
4.4 Numerische Näherung der Spin-Echo-Dämpfungskurven in Zweibereichssystemen
4.4.1 Allgemeine Näherung durch Riemann-Summe
4.4.2 Näherung unter Berücksichtigung der kurzen mittleren interkristallinen Aufenthaltszeiten
4.4.3 Abschätzung des Näherungsfehlers
5 Probenpräparation und Durchführung der PFG NMR-Experimente
5.1 Synthese und Charakterisierung
5.1.1 Silicoaluminophosphat SAPO-34
5.1.2 Aluminiumfumarat
5.1.3 Aluminiumisophthalat CAU-10-H
5.1.4 Aluminiumform des MIL-100
5.2 Probenvorbereitung und 1H-Relaxometrie
5.3 Diffusionsmessungen bei kurzen transversalen Relaxationszeiten
5.4 Durchführung der NMR-Diffusionsuntersuchungen
5.4.1 Allgemeine Durchführung
5.4.2 Wasser in SAPO-34-Kristallen
5.4.3 Wasser in großen Al-FUM-Kristallen
5.4.4 Wasser in einer binderbasierten Schicht von kleinen Al-FUM-Kristallen
5.4.5 Wasser in CAU-10-H-Kristallen
5.4.6 Wasser in MIL-100(Al)-Kristallen
6 Selbstdiffusion von Wasser in den porösen Wirtsystemen
6.1 Selbstdiffusion in SAPO-34
6.2 Selbstdiffusion in großen Al-FUM-Kristallen
6.2.1 Auswertung mit dem Modell der anisotropen Diffusion
6.2.2 Auswertung mit dem für anisotrope Diffusion erweiterten Zweibereichsmodell
6.2.3 Diskussion der ermittelten Selbstdiffusionskoeffzienten
6.3 Selbstdiffusion in einer Schicht von Al-FUM-Kristallen
6.4 Selbstdiffusion in CAU-10-H
6.5 Selbstdiffusion in MIL-100(Al)
6.5.1 Auswertung über den Anstieg bei großen Werten von q^2∆
6.5.2 Auswertung mit dem erweiterten Zweibereichsmodell
6.5.3 Vergleich der beiden Auswertungsmethoden und Diskussion der Ergebnisse
7 Zusammenfassung und Ausblick
A Anhang / The diffusion of water in the zeolitic silicoaluminophosphate SAPO-34 and the metal-organic frameworks aluminum fumarate, MIL-100(Al) and CAU-10-H was studied by means of pulsed field gradient nuclear magnetic resonance. These microcrystalline nanoporous host systems are promising materials for adsorptive heat transformation applications. The diffusion of water in aluminum fumarate and in MIL-100(Al) is influenced by an exchange between the intracrystalline pore space and the intercrystalline void space. For the evaluation of the data the two-site exchange model was extended to the cases of restricted (MIL-100(Al)) and anisotropic (aluminum fumarate) intracrystalline diffusion. By means of numerical integration this method allows a consistent description of the NMR data and yields information about the intracrystalline diffusion and the mean residence times of the molecules.:1 Einleitung und Motivation
2 Ausgewählte kristalline nanoporöse Wirtsysteme
2.1 Silicoaluminophosphat SAPO-34
2.2 Aluminiumfumarat
2.3 Aluminiumisophthalat CAU-10-H
2.4 Aluminiumform des MIL-100
3 Grundlagen der verwendeten Methoden
3.1 Selbstdiffusion
3.1.1 Lösung der Diffusionsgleichung
3.1.2 Diffusion in Gasen
3.1.3 Diffusion als aktivierter Prozess
3.2 Kernspinresonanz
3.2.1 Phänomenologische Beschreibung
3.2.2 Diffusionsuntersuchungen mit gepulsten Feldgradienten
3.2.3 Impulsfolge des stimulierten Spin-Echos mit gepulsten Feldgradienten
4 Das Zweibereichsmodell und seine Weiterentwicklung
4.1 Das Zweibereichsmodell für isotrope Diffusion in beiden Bereichen
4.1.1 Schematische Darstellung des Modells
4.1.2 Mathematische Beschreibung des Modells
4.1.3 Gemittelter Diffusionskoeffizient und Zeitregime des Austauschs
4.2 Anisotrope Diffusion in der intrakristallinen Phase
4.2.1Allgemeine Beschreibung von anisotroper Diffusion in einer Schüttung
4.2.2 Anisotrope Diffusion in einem Zweibereichssystem
4.2.3 Über mehrere Austausche gemittelter Diffusionskoeffizient für anisotrope Diffusion
4.3 Behinderte intrakristalline Diffusion
4.3.1 Allgemeine Beschreibung von behinderter Diffusion
4.3.2 Behinderte Diffusion in einem Zweibereichssystem
4.3.3 Sonderfälle der behinderten Diffusion im Zweibereichsmodell
4.4 Numerische Näherung der Spin-Echo-Dämpfungskurven in Zweibereichssystemen
4.4.1 Allgemeine Näherung durch Riemann-Summe
4.4.2 Näherung unter Berücksichtigung der kurzen mittleren interkristallinen Aufenthaltszeiten
4.4.3 Abschätzung des Näherungsfehlers
5 Probenpräparation und Durchführung der PFG NMR-Experimente
5.1 Synthese und Charakterisierung
5.1.1 Silicoaluminophosphat SAPO-34
5.1.2 Aluminiumfumarat
5.1.3 Aluminiumisophthalat CAU-10-H
5.1.4 Aluminiumform des MIL-100
5.2 Probenvorbereitung und 1H-Relaxometrie
5.3 Diffusionsmessungen bei kurzen transversalen Relaxationszeiten
5.4 Durchführung der NMR-Diffusionsuntersuchungen
5.4.1 Allgemeine Durchführung
5.4.2 Wasser in SAPO-34-Kristallen
5.4.3 Wasser in großen Al-FUM-Kristallen
5.4.4 Wasser in einer binderbasierten Schicht von kleinen Al-FUM-Kristallen
5.4.5 Wasser in CAU-10-H-Kristallen
5.4.6 Wasser in MIL-100(Al)-Kristallen
6 Selbstdiffusion von Wasser in den porösen Wirtsystemen
6.1 Selbstdiffusion in SAPO-34
6.2 Selbstdiffusion in großen Al-FUM-Kristallen
6.2.1 Auswertung mit dem Modell der anisotropen Diffusion
6.2.2 Auswertung mit dem für anisotrope Diffusion erweiterten Zweibereichsmodell
6.2.3 Diskussion der ermittelten Selbstdiffusionskoeffzienten
6.3 Selbstdiffusion in einer Schicht von Al-FUM-Kristallen
6.4 Selbstdiffusion in CAU-10-H
6.5 Selbstdiffusion in MIL-100(Al)
6.5.1 Auswertung über den Anstieg bei großen Werten von q^2∆
6.5.2 Auswertung mit dem erweiterten Zweibereichsmodell
6.5.3 Vergleich der beiden Auswertungsmethoden und Diskussion der Ergebnisse
7 Zusammenfassung und Ausblick
A Anhang
|
86 |
Multi-Layer Connectivity-Based Atom Contribution Method for Charge Assignments in Metal-Organic Frameworks (MOFs)Penley, Drace Robert 27 August 2019 (has links)
No description available.
|
87 |
A Gas Flow-Through System for Hydrogen Isotopic Separation with Metal-Organic FrameworksRigdon, Katharine Harp January 2019 (has links)
No description available.
|
88 |
Metal-organic Frameworks as Drug Delivery System for Cancer TherapyLima de Meneses Precker, Rafaella 31 August 2022 (has links)
Die Forschung an porösen Hybridmaterialien hat sich rasch entwickelt, und in letzter Zeit ist die Anzahl neuer Strukturen und Zusammensetzungen aufgrund ihrer vielfältigen Anwendungsmöglichkeiten im Bereich des Kristall-Engineering von großem Interesse. Metall-organische Gerüste (metal-organic frameworks, MOFs) sind eine aufstrebende Klasse von Nanomaterialien, deren Eigenschaften durch Variation der Bausteine, die aus Metallionen und organischen Liganden bestehen und sich koordinativ zu einer dreidimensionale Struktur verbinden lassen, leicht angepasst werden können. Eigenschaften wie eine große Oberfläche und eine hohe Porosität verleihen diesen Materialien vielversprechende Eigenschaften, um als Wirtsmaterial verwendet zu werden.
Die vorliegende Arbeit konzentriert sich auf die Synthese der Verbindung [Fe3O(H2O)2(OH)(bdc)3]n (bcd = 1,4-Benzoldicarboxylat; MIL-101(Fe), MIL = Materials of Institut Lavoisier), die aus einem carboxylato-verbrückten, oxido-zentriertem, dreikernigen Fe3+-Komplex besteht. Die Struktur besitzt große Poren (Ø: 29 und 34 Å) und eine große Oberfläche mit der Fähigkeit, zahlreiche Moleküle einzuschließen. In der vorliegenden Arbeit wird MIL-101(Fe) als Arzneimittelabgabesystem verwendet.
Curcumin, Capecitabin und 5-Fluorouracil (5-FU) wurden als Modellarzneimittel für die Verkapselung in der MIL-101(Fe)-Struktur ausgewählt. Es wurden verschiedene Freisetzungsregime in unterschiedlichen biologischen Medien untersucht.
Nach vielversprechenden ersten Ergebnissen bei der Freisetzung dieser Medikamente aus der MIL-101(Fe)-Struktur wurde anschließend die selektive Lasersintertechnik (SLS) verwendet. Die SLS ist ein additives Schichtbauverfahren, das sich in dieser Arbeit als ressourcenschonende Technologie für die schnelle Herstellung erwiesen hat. Die Möglichkeit, die Größe, Form und Geometrie der hergestellten Proben individuell anzupassen, bot die Gelegenheit, die Wirkstofffreisetzung zu modulieren und den Freisetzungszeitraum zu verlängern. / The field of porous hybrid materials has grown rapidly; recently the number of new structures and compositions are of great interest in the crystal-engineering field, due to their various possible applications. Metal-organic frameworks (MOFs) are an emerging class of nanomaterials, whose properties can be easily adjusted by varying the molecular building blocks, obtained from metal ions and organic ligands that can be combined to three-dimensional structures. Properties such as high surface area and high porosity give these materials promising characteristics to be used as host materials.
The present work focuses on the synthesis of [Fe3O(H2O)2(OH)(bdc)3]n (bcd = 1,4-benzenedicarboxylate; MIL-101(Fe), MIL = Materials of Institut Lavoisier), composed of carboxylate-bridged, oxido-centered, trinuclear Fe3+ complexes. The iron-based structure features large pore sizes (Ø: 29 and 34 Å) and high surface area with the ability to encapsulate numerous molecules, for use as a drug delivery system in the present work.
The curcumin, capecitabine, and 5-fluorouracil (5-FU) were chosen as model drugs for the encapsulation into the MIL-101(Fe) structure. Different delivery regimes were studied in different biological media.
After promising initial results with the release of these drugs from the MIL-101(Fe) structure, the selective laser sintering technique (SLS) was introduced subsequently. The SLS is an additive layer manufacturing technique that has emerged in this work as a resourceful technology for rapid manufacturing, the possibility to customize the size, shape, and geometry of the manufactured samples, thus providing the opportunity to modulate the drug release extending it for even longer periods of time.
|
89 |
Proposed Biomedical Applications of Zirconium-Based Metal-Organic Frameworks as Drug Delivery SystemsPerry-Mills, Ariel Margaret 01 January 2019 (has links)
Metal-organic frameworks (MOFs) are a class of highly crystalline nanoporous materials that self-assemble from inorganic metal oxide clusters and multitopic organic linkers. MOFs can be altered in terms of the types of metals and structures of organic linkers used, allowing for a high degree of customization and manipulation of the synergistic chemical or physical properties that arise from the precise coordination of their molecular components, including exceptionally large surface area and pore size. Zirconium-based MOFs, called UiOs in honor of their conception at the University of Oslo, also show remarkable chemical stability in both acidic and basic environments, making them excellent candidates for biomedical applications as drug delivery systems, where they can either function as molecular cargo ships, with drugs packed into their pores, or as controlled release systems, in which drug molecules are directly attached to their ligands for precise delivery. The objective of this work is to prepare water-stable MOFs whose linkers are decorated with functional groups that have potential compatibility in drug delivery systems and to explore the efficacy of certain synthesis conditions in terms of the crystallinity of the MOF product. Thus, we hope to establish a basis for the ligation of anticancer drugs and fluorescent tags to MOFs for their controlled release at a specified location within the body. These targeted release mechanisms represent new therapeutic possibilities in terms of cancer treatment as their specificity would mitigate damage to healthy tissues, thereby addressing one of the greatest weakness of present treatment options.
|
90 |
A supramolecular approach for engineering functional solid-state chromophore arrays within metal-organic materialsLifshits, Liubov Mikhaylovna 20 April 2016 (has links)
No description available.
|
Page generated in 0.0326 seconds