Spelling suggestions: "subject:"molecular bem""
221 |
Study of cation-dominated ionic-electronic materials and devicesGreenlee, Jordan Douglas 08 June 2015 (has links)
The memristor is a two-terminal semiconductor device that is able to mimic the conductance response of synapses and can be utilized in next-generation computing platforms that will compute similarly to the mammalian brain. The initial memristor implementation is operated by the digital formation and dissolution of a highly conductive filament. However, an analog memristor is necessary to mimic analog synapses in the mammalian brain. To understand the mechanisms of operation and impact of different device designs, analog memristors were fabricated, modeled, and characterized. To realize analog memristors, lithiated transition metal oxides were grown by molecular beam epitaxy, RF sputtering, and liquid phase electro-epitaxy. Analog memristors were modeled using a finite element model simulation and characterized with X-ray absorption spectroscopy, impedance spectroscopy, and other electrical methods. It was shown that lithium movement facilitates analog memristance and nanoscopic ionic-electronic memristors with ion-soluble electrodes can be key enabling devices for brain-inspired computing.
|
222 |
Molecular beam epitaxial growth of rare-earth compounds for semimetal/semiconductor heterostructure optical devicesCrook, Adam Michael 12 July 2012 (has links)
Heterostructures of materials with dramatically different properties are exciting for a variety of devices. In particular, the epitaxial integration of metals with semiconductors is promising for low-loss tunnel junctions, embedded Ohmic contacts, high-conductivity spreading layers, as well as optical devices based on the surface plasmons at metal/semiconductor interfaces. This thesis investigates the structural, electrical, and optical properties of compound (III-V) semiconductors employing rare-earth monopnictide (RE-V) nanostructures. Tunnel junctions employing RE-V nanoparticles are developed to enhance current optical devices, and the epitaxial incorporation of RE-V films is discussed for embedded electrical and plasmonic devices. Leveraging the favorable band alignments of RE-V materials in GaAs and GaSb semiconductors, nanoparticle-enhanced tunnel junctions are investigated for applications of wide-bandgap tunnel junctions and lightly-doped tunnel junctions in optical devices. Through optimization of the growth space, ErAs nanoparticle-enhanced GaAs tunnel junctions exhibit conductivity similar to the best reports on the material system. Additionally, GaSb-based tunnel junctions are developed with low p-type doping that could reduce optical loss in the cladding of a 4 μm laser by ~75%. These tunnel junctions have several advantages over competing approaches, including improved thermal stability, precise control over nanoparticle location, and incorporation of a manifold of states at the tunnel junction interface.
Investigating the integration of RE-V nanostructures into optical devices revealed important details of the RE-V growth, allowing for quantum wells to be grown within 15nm of an ErAs nanoparticle layer with minimal degradation (i.e. 95% of the peak photoluminescence intensity). This investigation into the MBE growth of ErAs provides the foundation for enhancing optical devices with RE-V nanostructures. Additionally, the improved understanding of ErAs growth leads to development of a method to grow full films of RE-V embedded in III-V materials. The growth method overcomes the mismatch in rotational symmetry of RE-V and III-V materials by seeding film growth with epitaxial nanoparticles, and growing the film through a thin III-V spacer. The growth of RE-V films is promising for both embedded electrical devices as well as a potential path towards realization of plasmonic devices with epitaxially integrated metallic films. / text
|
223 |
Rare-earth monopnictide alloys for tunable, epitaxial metalsKrivoy, Erica Michelle 26 September 2013 (has links)
A variety of benefits motivate the development of epitaxial metals, among which include the ability to design fully integrated layer structures where metallic films and nanostructures can be embedded into the cores of optoelectronic devices. Applications include high-performance tunnel-junctions, epitaxial transparent Ohmic contacts, photomixer material, and thermoelectrics. Additionally, the integration of metallic nanostructures and films into optoelectronic devices has shown potential for improving device performance and functionality through sub-wavelength confinement of plasmonic modes and enhancement of light/matter interactions. The rare-earth monopnictide (RE-V) material system can be integrated epitaxially with conventional zincblende III-V substrates under normal growth conditions, resulting in high-quality, thermodynamically stable interfaces. The RE-V semimetals span a range of optical, electrical, and structural properties, making them ideal for integration into III-V-based optoelectronic devices and applications. In this dissertation, high-quality epitaxial LuAs, LaAs and La(x)Lu(1-x)As films and nanostructures were grown and characterized for their structural, electrical, optical, and plasmonic properties. Through a sweep of alloy film compositions of the RE-V alloy material La(x)Lu(1-x)As, the ability to produce tunable epitaxial metals was demonstrated, with a range of peak transmission spectra from near- to mid-infrared wavelengths, plasmonic response in the mid-infrared, moderate resistivity, and lattice-matching potential to many relevant III-V substrates. Additionally, there is a great deal of interest in developing techniques to produce optoelectronic devices that are not restricted by substrate lattice constant. Many epitaxial approaches have been tried, with moderate success; however, growing low defect-density heteroepitaxial materials with differing crystal structures and highly-mismatched lattice parameters is extremely challenging, and such structures suffer from poor thermal properties and reliability issues. A general approach is needed for thin metamorphic buffer layers with minimal threading dislocations that simultaneously have low thermal resistance for effective heat-sinking and device reliability. An investigation was conducted into the use of RE-V nanostructure superlattices towards the reduction of dislocation density in highly-mismatched III-V systems. / text
|
224 |
From DNA bases to ultracold atoms : probing ensembles using supersonic beamsSmith, Valoris Reid 04 May 2015 (has links)
This thesis discusses two ensembles, the study of which was dependent upon the controllable production of cold gas-phase samples using supersonic beams. The experiments on DNA bases and base clusters were carried out in Germany at the Max Born Institute. The experiments anticipating the construction of a molecular beam slower were carried out in the United States at the University of Texas at Austin. Femtosecond pump-probe techniques were employed to study the dynamics and electronic character of DNA bases, pairs and clusters in the gas phase. Experiments on DNA base monomers confirmed the dominance of a particular relaxation pathway, the nπ* state. Competition between this state and another proposed relaxation pathway was demonstrated through observations of the DNA base pairs and base-water clusters, settling a recent controversy. Further, it was determined that the excited state dynamics in base pairs is due to intramolecular processes rather than intermolecular processes. Finally, results from base-water clusters confirm that microsolvation permits comparison with biologically relevant liquid phase experiments and with ab initio calculations, bridging a long-standing gap. A purely mechanical technique that does not rely upon quantum or electronic properties to produce very cold, very slow atoms and molecules would be more generally applicable than current approaches. The approach described here uses supersonic beam methods to produce a very cold beam of particles and a rotating paddle-wheel, or rotor, to slow the cold beam. Initial experiments testing the possibility of elastic scattering from a single crystal surface were conducted and the implications of these experiments are discussed. / text
|
225 |
Photochemistry of Phenyl HalidesKarlsson, Daniel January 2008 (has links)
We have studied fundamental aspects of photo-induced dissociation kinetics and dynamics in several phenyl halides. By combining femtosecond pump-probe measurements with ab initio calculations we are able to account for several observations. In mixed phenyl halides, the dissociation kinetics is found to be dependent on the nature, the number, and the position of the substituents, and also on the excitation wavelength. A surprisingly large reduction in the dissociation time constant, compared to that of bromobenzene (~30 ps), is observed when having two or more fluorine atoms. For example, in bromopentafluorobenzene a subpicosecond time constant is obtained. This can be explained by a significant lowering of the repulsive potential energy curves (PEC) along the C-Br bond. However, several of the experimental results cannot be accounted for by one-dimensional PECs. Therefore, we suggest a refined model for the dissociation, in which the excited states of the same spin multiplicity are coupled by employing multidimensional potential energy surfaces. This model has been explicitly evaluated by quantum dynamics simulations in the case of 3-BrFPh, and it seems to be capable of capturing the main features in the measured kinetics. Thereby we are also able to clarify the role of spin-orbit coupling in these molecules.
|
226 |
Streuexperimente mit Wasserstoff- und Heliumstrahlen zur Untersuchung der Wechselwirkung von H2, N2 und C2H2 mit den (001)-Oberflächen von LiF, NaCl, KCl und MgO / Scattering experiments with molecular hydrogen and helium beams investigating the interactions of H2, N2 and C2H2 with the (001) surfaces of LiF, NaCl, KCl and MgOTraeger, Franziska 01 February 2001 (has links)
No description available.
|
227 |
Fundamental study of growth of (Zn,Cd)Se on GaAs (211)B from hetero-interface to nanostructuresTelfer, Samantha Anne January 2000 (has links)
No description available.
|
228 |
MBE growth and characterisation of ZnSe-based II-VI semiconductorsO'Donnell, Cormac Brendan January 2000 (has links)
No description available.
|
229 |
Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular / GaN nanostructures grown by magnetron sputtering epitaxy and molecular beam epitaxy techniquesSchiaber, Ziani de Souza 19 April 2016 (has links)
Submitted by Ziani DE SOUZA SCHIABER (zianisouza@yahoo.com.br) on 2016-05-02T20:43:07Z
No. of bitstreams: 1
Tese_Final_Ziani_Schiaber.pdf: 4224142 bytes, checksum: 63114f480403729da0d811c82872c3cc (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-04T19:24:06Z (GMT) No. of bitstreams: 1
schiaber_zs_dr_bauru.pdf: 4224142 bytes, checksum: 63114f480403729da0d811c82872c3cc (MD5) / Made available in DSpace on 2016-05-04T19:24:06Z (GMT). No. of bitstreams: 1
schiaber_zs_dr_bauru.pdf: 4224142 bytes, checksum: 63114f480403729da0d811c82872c3cc (MD5)
Previous issue date: 2016-04-19 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nanosestruturas de GaN destacam-se devido à baixa densidade de defeitos e consequentemente alta qualidade estrutural e óptica quando comparadas ao material em forma de filme. O entendimento dos mecanismos de formação de nanofios e nanocolunas de GaN por diferentes técnicas é fundamental do ponto de vista da ciência básica e também para o aprimoramento da fabricação de dispositivos eletrônicos e optoeletrônicos baseados nesse material.
Neste trabalho discorre-se sobre a preparação e caracterização de nanofios e nanoestruturas de GaN pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular em diferentes tipos de substratos. Pela técnica de epitaxia por magnetron sputtering foram obtidos nanocristais e nanocolunas de GaN, além de uma região com camada compacta. Visando criar uma atmosfera propícia para o crescimento de nanoestruturas de GaN não coalescida, atmosfera de N2 puro e um anteparo, situado entre o alvo e o porta-substratos, foram utilizados. O anteparo causou diferença no fluxo incidente de gálio no substrato, ocasionando a formação de diferentes tipos de estruturas. A caracterização das amostras se deu principalmente através de medidas de microscopia eletrônica de varredura, difração de raios X e espectroscopia de fotoluminescência. As nanocolunas, de 220 nm de altura, foram formadas na região distante 2 mm do centro da sombra geométrica do orifício do anteparo e apresentaram orientação [001] perpendicular ao substrato, comumente encontrada em nanofios de GaN depositados por MBE.
Em relação aos nanofios obtidos pela técnica de MBE, investigou-se a possibilidade de controlar a densidade de nanofios através de uma camada de Si sobre o GaN–Ga polar visando inibir a coalescência. Diferentes quantidades de Si foram depositadas e a densidade dos nanofios foi diferenciada significativamente. Os nanofios apresentaram densidade média de 108 nanofios/cm2 com 0,60 nm de espessura da camada de Si. Espessuras menores não resultaram no crescimento de nanofios, porém espessuras superiores causaram uma alta densidade de nanofios de 1010 nanofios/cm2 que permaneceu constante, independentemente do tempo de deposição. Medidas de polo por difração de raios X evidenciaram que os nanofios nuclearam-se orientados e em uma camada cristalina de Si ou SixNy. Experimentos de ataque químico com KOH indicaram a polaridade N para o nanofio e as medidas de difração por feixe convergente confirmaram a polaridade de N para o nanofio e Ga para a buffer layer.
Os resultados obtidos neste trabalho permitiram um melhor entendimento da nucleação e dos mecanismos de formação de nanoestruturas de GaN, viabilizando maior controle das características dessas nanoestruturas produzidas. / GaN nanowires and nanocolumns stand out due to the low defect density and high structural and optical quality compared to the corresponding thin films. The understanding of the formation mechanism of the different GaN structures using different techniques is critical to improving the manufacture of the electronic and optoelectronic devices based on this material. This thesis focuses on the preparation and characterization of GaN nanowires and nanostructures. The molecular bem epitaxy (MBE) and magnetron sputtering epitaxy (MSE) were used and different substrates were tested. Concerning GaN nanocrystals and nanocolumns obtained by MSE, optimization of the deposition conditions was necessary in order to produce non-coalesced GaN nanostructures. The best conditions were: pure N2 atmosphere, silicon substrate, and a perforated screen placed between the target and the substrate holder. The later produced differences on the Ga flow to the substrate, inducing the formation of different structures, depending on the position of growth spot. Samples were characterized using scanning electron microscopy, X-ray diffraction and photoluminescence spectroscopy. Nanocolumns were observed, mainly in sites corresponding to a disc of radius 2 mm from the geometric centre of the hole. The columns were oriented with the GaN [001] axis perpendicular to the Si (111) substrate surface, situation which is commonly found in GaN nanowires deposited by MBE. Regarding the nanowires prepared by MBE technique, in order to inhibit coalescence and to investigate the possibility of controlling the numerical density of nanowires, we have used Si cap layers on top of the Ga-polar GaN buffer layer. Different amounts of Si have been deposited, and the density of the nanowires was significantly modified. With Si layer thickness of 0.60 nm, the nanowires had an average density of 108 nanowires/cm2 . Lower thickness did not result in the growth of nanowires, but higher thickness caused a high density of nanowires of 1010 nanowires/cm2 which remained constant regardless of the deposition time. X-ray diffraction pole figures showed that the different nanowires grown up in oriented fashion in a crystalline layer of Si or SixNy. Etching with KOH indicated N polarity for the grown nanowires, in spite of the fact that they were grown using Ga polar GaN buffer layers. Measurements by convergent beam electron diffraction confirmed the N polarity to the nanowire and Ga polarity for the buffer layer. Aspects obtained in this study allowed a better understanding of nucleation and nanostructures formation mechanisms of GaN, enabling greater control of the characteristics of these nanostructures produced. / FAPESP: 2011/22664-2 / FAPESP: 2013/25625-3
|
230 |
Engineering III-N Alloys and Devices for Photovoltaic ProgressJanuary 2016 (has links)
abstract: The state of the solar industry has reached a point where significant advancements in efficiency will require new materials and device concepts. The material class broadly known as the III-N's have a rich history as a commercially successful semiconductor. Since discovery in 2003 these materials have shown promise for the field of photovoltaic solar technologies. However, inherent material issues in crystal growth and the subsequent effects on device performance have hindered their development. This thesis explores new growth techniques for III-N materials in tandem with new device concepts that will either work around the previous hindrances or open pathways to device technologies with higher theoretical limits than much of current photovoltaics. These include a novel crystal growth reactor, efforts in production of better quality material at faster rates, and development of advanced photovoltaic devices: an inversion junction solar cell, material work for hot carrier solar cell, ground work for a selective carrier contact, and finally a refractory solar cell for operation at several hundred degrees Celsius. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2016
|
Page generated in 0.0772 seconds