• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 25
  • 21
  • 16
  • 11
  • 9
  • 3
  • 3
  • 1
  • Tagged with
  • 393
  • 393
  • 349
  • 79
  • 75
  • 71
  • 64
  • 58
  • 53
  • 52
  • 51
  • 47
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Investigation and comparison of GaN nanowire nucleation and growth by the catalyst-assisted and self-induced approaches

Cheze, Caroline 24 February 2011 (has links)
Diese Arbeit befasst sich mit der Keimbildung und den Wachstumsmechanismen von GaN-Nanodrähten (NWs), die mittels Molekularstrahlepitaxie (MBE) hergestellt wurden. Die Hauptneuheiten dieser Studie sind der intensive Gebrauch von in-situ Messmethoden und der direkte Vergleich zwischen katalysatorfreien und katalysatorinduzierten NWs. In der MBE bilden sich GaN-NWs auf Silizium ohne Katalysator. Auf Saphir dagegen wachsen NWs unter den gleichen Bedingungen nur in der Anwesenheit von Ni-Partikeln. Die Nukleationsprozesse sind für beide Ansätze fundamental verschieden. In dem katalysatorinduzierten Ansatz reagiert Ga stark mit den Ni-Keimen, deren Kristallstruktur für das Nanodraht-Wachstum entscheidend sind, während in dem katalysatorfreien Ansatz bildet N eine Zwischenschicht mit Si vor der ausgeprägten GaN-Nukleation. Mittels beider Ansätze wachsen einkristalline wurtzite GaN-NWs in Ga-polarer Richtung. Allerdings sind unter denselben Wachstumsbedingungen die katalysatorinduzierten NWs länger als die katalysatorfrei gewachsenen und enthalten viele Stapelfehler. Im Vergleich sind die katalysatorfreien größtenteils defektfrei und ihre Photolumineszenz ist viel intensiver als jene der katalysatorinduzierten NWs. Alle diese Unterschiede können auf den Katalysator zurückgefürt werden. Die Ni-Partikel sammeln die an den Nanodraht-Spitzen ankommenden Ga-Atome ef?zienter ein als die unbedeckte oberste Facette im katalysatorfreien Fall. Außerdem können Stapelfehler sowohl aus der zusätzlichen Festkörperphase des Ni-Katalysators als auch aus der Verunreinigung der NWs mit Katalysatormaterial resultieren. Solch eine Kontaminierung würde schließlich nicht-strahlende Rekombinationszentren verursachen. Somit mag die Verwendung von Katalysatorkeimen zusätzliche Möglichkeiten bieten, das Wachstum von NWs zu kontrollieren. Jedoch sind sowohl die strukturellen als auch die optischen Materialeigenschaften der katalysatorfreien NWs überlegen. / This work focuses on the nucleation and growth mechanisms of GaN nanowires (NWs) by molecular beam epitaxy (MBE). The main novelties of this study are the intensive employment of in-situ techniques and the direct comparison of self-induced and catalyst-induced NWs. On silicon substrates, GaN NWs form in MBE without the use of any external catalyst seed. On sapphire, in contrast, NWs grow under identical conditions only in the presence of Ni seeds. The processes leading to NW nucleation are fundamentally different for both approaches. In the catalyst-assisted approach, Ga strongly reacts with the catalyst Ni particles whose crystal structure and phases are decisive for the NW growth, while in the catalyst-free approach, N forms an interfacial layer with Si before the intense nucleation of GaN starts. Both approaches yield monocrystalline wurtzite GaN NWs, which grow in the Ga-polar direction. However, the catalyst-assisted NWs are longer than the catalyst-free ones after growth under identical conditions, and they contain many stacking faults. By comparison the catalyst-free NWs are largely free of defects and their photoluminescence is much more intense than the one of the catalyst-assisted NWs. All of these differences can be explained as effects of the catalyst. The seed captures Ga atoms arriving at the NW tip more efficiently than the bare top facet in the catalyst-free approach. In addition, stacking faults could result from both the presence of the additional solid phase constituted by the catalyst-particles and the contamination of the NWs by the catalyst material. Finally, such contamination would generate non-radiative recombination centers. Thus, the use of catalyst seeds may offer an additional way to control the growth of NWs, but both the structural and the optical material quality of catalyst-free NWs are superior.
212

Epitaxial Nonpolar III-Nitrides by Plasma-Assisted Molecular Beam Epitaxy

Mukundan, Shruti January 2015 (has links) (PDF)
The popularity of III-nitride materials has taken up the semiconductor industry to newer applications because of their remarkable properties. In addition to having a direct and wide band gap of 3.4 eV, a very fascinating property of GaN is the band gap tuning from 0.7 to 6.2 eV by alloying with Al or In. The most common orientation to grow optoelectronic devices out of these materials are the polar c-plane which are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields. Devices grown in no polar orientation such as (1 0 –1 0) m-plane or (1 1 –2 0) a-plane have no polarization in the growth direction and are receiving a lot of focus due to enhanced behaviour. The first part of this thesis deals with the development of non-polar epimGaN films of usable quality, on an m-plane sapphire by plasma assisted molecular beam epitaxy. Growth conditions such as growth temperature and Ga/N flux ratio were tuned to obtain a reasonably good crystalline quality film. MSM photodetectors were fabricated from (1 0 -1 0) m-GaN, (1 1 -2 0) a-GaN and semipolar (1 1 -2 2) GaN films and were compared with the polar (0 0 0 2) c-GaN epilayer. Later part of the thesis investigated (1 0 -1 0) InN/ (1 0 -1 0) GaN heterostructures. Further, we could successfully grow single composition nonpolar a-plane InxGa1-xN epilayers on (1 1 -2 0) GaN / (1 -1 0 2) sapphire substrate. This thesis focuses on the growth and characterisation of nonpolar GaN, InxGa1-xN and InN by plasma assisted molecular beam epitaxy and on their photodetection potential. Chapter 1 explains the motivation of this thesis work with an introduction to the III-nitride material and the choice of the substrate made. Polarization effect in the polar, nonpolar and semipolar oriented growth is discussed. Fabrication of semiconductor photodetectors and its principle is explained in details. Chapter 2 discusses the various experimental tools used for the growth and characterisation of the film. Molecular beam epitaxy technique is elaborately explained along with details of the calibration for the BEP of various effusion cells along with growth temperature at the substrate. Chapter 3 discusses the consequence of nitridation on bare m-sapphire substrate. Impact of nitridation step prior to the growth of GaN film over (1 0 -1 0) m-sapphire substrate was also studied. The films grown on the nitridated surface resulted in a nonpolar (1 0 -1 0) orientation while without nitridation caused a semipolar (1 1 -2 2) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. Chapter 4 focuses on the optimization and characterisation of nonpolar (1 0 -1 0) m-GaN on m-sapphire by molecular beam epitaxy. A brief introduction to the challenges in growing a pure single phase nonpolar (1 0 -1 0) GaN on (1 0 -1 0) sapphire without any other semipolar GaN growth is followed by our results achieving the same. Effect of the growth temperature and Ga/N ratio on the structural and optical properties of m-GaN epilayers was studied and the best condition was obtained for the growth temperature of 7600C and nitrogen flow of 1 sccm. Strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by RSM. Au/ nonpolar GaN schottky diode was fabricated and temperature dependent I-V characteristics showed rectifying nature. Chapter 5 demonstrates the growth of (1 0 -1 0) m-InN / (1 0 -1 0) m-GaN / (1 0 -1 0) m-sapphire substrate. Nonpolar InN layer was grown at growth temperature ranging from 3900C to 440C to obtain a good quality film at 4000C. An in-plane relationship was established for the hetrostructures using phi-scan and a perfect alignment was found for the epilayers. RSM images on the asymmetric plane revealed highly strained layers. InN band gap was found to be around 0.8 eV from absorption spectra. The valance band offset value is calculated to be 0.93 eV for nonpolar m-plane InN/GaN heterojunctions. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 1.82 eV. Chapter 6 focuses on the optimization of nonpolar (1 1 -2 0) a-GaN on (1 -1 0 2) r-sapphire by molecular beam epitaxy. Effect of the growth temperature and Ga/N ratio on the structural and optical properties of a-GaN epilayers was studied and the best condition was obtained for the growth temperature of 7600C and nitrogen flow of 1 sccm. An in-plane orientation relationship is found to be [0 0 0 1] GaN || [-1 1 0 1] sapphire and [-1 1 0 0] GaN || [1 1 -2 0] sapphire for nonpolar GaN on r-sapphire substrate. Strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by RSM. UV photo response of a-GaN film was measured after fabricating an MSM structure over the film with Au. EQE of the photodetectors fabricated in the (0 0 0 2) polar and (1 1 -2 0) nonpolar growth directions were compared in terms of responsively, nonpolar a-GaN showed the best sensitivity at the cost of comparatively slow response time. Chapter 7 demonstrates the growth of non-polar (1 1 -2 0) a-plane InGaN epilayers on a-plane (1 1 -2 0) GaN/ (1 -1 0 2) r-plane sapphire substrate using PAMBE. The high resolution X-ray diffraction (HRXRD) studies confirmed the orientation of the films and the compositions to be In0.19Ga0.81N, In0.21Ga0.79N and In0.23Ga0.77N. The compositions of the films were controlled by the growth parameters such as growth temperature and indium flux. Effect of variation of Indium composition on the strain of the epilayers was analyzed from the asymmetric RSM images. Further, we report the growth of self-assembled non-polar high indium clusters of In0.55Ga0.45N over non-polar (1 1 -2 0) a-plane In0.17Ga0.83N epilayer grown on a-plane (1 1 -2 0) GaN / (1 -1 0 2) r-plane sapphire substrate. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region. Chapter 8 concludes with the summary of present investigations and the scope for future work.
213

Coherency strain and a new yield criterion. : 'the Frogley conjecture'

Jayaweera, Nicholas Benjamin January 2000 (has links)
No description available.
214

Magnetic properties of rare earth superlattices

Wilkins, Caroline Jane Theresa January 2001 (has links)
No description available.
215

Electrical properties of Si/Si←1←-←xGe←x/Si inverted modulation doped structures

Sadeghzadeh, Mohammad Ali January 1998 (has links)
No description available.
216

Advanced electron microscopy of wide band-gap semiconductor materials

Fay, Michael W. January 2000 (has links)
No description available.
217

Growth and Characterization of Wide Bandgap Quaternary BeMgZnO Thin Films and BeMgZnO/ZnO Heterostructures

Toporkov, Mykyta 01 January 2016 (has links)
This thesis reports a comprehensive study of quaternary BeMgZnO alloy and BeMgZnO/ZnO heterostructures for UV-optoelectronics electronic applications. It was shown that by tuning Be and Mg contents in the heterostructures, high carrier densities of two-dimensional electron gas (2DEG) are achievable and makes its use possible for high power RF applications. Additionally, optical bandgaps as high as 5.1 eV were achieved for single crystal wurtzite material which allows the use of the alloy for solar blind optoelectronics (Eg>4.5eV) or intersubband devices. A systematic experimental and theoretical study of lattice parameters and bandgaps of quaternary BeMgZnO alloy was performed for the whole range of compositions. Composition independent bowing parameters were determined which allows accurate predictions of experimentally measured values. The BeMgZnO thin films were grown by plasma assisted molecular beam epitaxy (P-MBE) in a wide range of compositions. The optimization of the growth conditions and its effects on the material properties were explored. The surface morphology and electrical characteristics of the films grown on (0001) sapphire were found to critically depend on the metal-to-oxygen ratio. Samples grown under slightly oxygen-rich conditions exhibited the lowest RMS surface roughness (as low as 0.5 nm). Additionally, the films grown under oxygen-rich conditions were semi-insulating (>105 Ω∙cm), while the films grown under metal-rich conditions were semiconducting (~102 Ω∙cm). Additionally, with increasing bandgap Stokes shift increases, reaching ~0.5 eV for the films with 4.6 eV absorption edge suggests the presence of band tail states introduced by potential fluctuations and alloying. From spectrally resolved PL transients, BeMgZnO films grown on a GaN/sapphire template having higher Mg/Be content ratio exhibit smaller localization depth and brighter photoluminescence at low temperatures. The optimum content ratio for better room temperature optical performance was found to be ~2.5. The BeMgZnO material system and heterostructures are promising candidates for the device fabrication. 2DEG densities of MgZnO/ZnO heterostructures were shown to improve significantly (above 1013 cm-2) by adding even a small amount of Be (1-5%). As an essential step toward device fabrication, reliable ohmic contacts to ZnO were established with remarkably low specific contact resistivities below 10-6 Ohm-cm2 for films with 1018 cm-3 carrier density.
218

Stress evolution during growth on InAs on GaAs measured by an in-situ cantilever beam setup

Hu, Dongzhi 23 February 2007 (has links)
Der Einfluss der Verspannung während des Wachstums von InAs auf GaAs(001) mittels Molekularstrahlepitaxie wird in dieser Arbeit untersucht. Eine Biegebalkenapparatur wurde benutzt, um den Verlauf der Filmkraft während des Wachstums und dem nachfolgenden Anlassen bei Wachstumstemperaturen zu messen. Die Steigung in einer Darstellung von Filmkraft gegen Filmdicke ist gleich der Verspannung, die sich während des heteroepitaktischen Wachstums bildet. Während des Wachstums von InAs auf GaAs(001) unter As-reichen Bedingungen zeigt die Filmkraft zuerst eine lineare Steigung. Dieser lineare Verlauf entspricht dem Aufdampfen der Benetzungsschicht (WL). Nach Erreichen der kritischen Schichtdicke verläuft die Filmkraft mit geringerer Steigung, was auf einen Abbau der Verspannung durch das Auftreten von Quantenpunkten (QP) hindeutet. Werden die QP nachfolgend angelassen, nimmt die Filmkraft wieder ab was durch Reifung der QDs und durch Desorption von InAs hervorgerufen wird. Modelle wurden entwickelt um die Filmkraft-Kurven, die während des Anlassens gemessen wurden, anzupassen. Die QP reifen unter Standard-Ostwald-Bedingungen für Temperaturen unterhalb 470°C. Verschiedene Mechanismen bestimmen den Reifungsprozess. Beim Anlassen bei höheren Temperaturen zeigt sich ein anderes Verhalten. Die Verspannung der QP baut sich auf Werte unterhalb der Verspannung ab, die durch das Aufbringen der Benetzungsschicht entstanden ist. Rasterkraftmikroskop-Aufnahmen zeigen, dass die QP zuerst reifen und sich dann nach ca. 450s bis 600s wieder auflösen. Im Unterschied zum Wachstum unter As-reichen Bedingungen führt das Wachstum unter In-reichen Bedingungen nicht zur Ausbildung von QP sondern verläuft im Lagenwachstumsmodus. Filmkraft-Kurven wurden ebenfalls unter diesen Bedingungen gemessen und zeigen, wie erwartet, eine deutliche Abweichungen von Kurven, die während des Stranski-Krastanov-Wachstums gemessen wurden. Eine erste vorläufige Analyse dieser Filmkraftkurven wird beschrieben. / The influence of stress on the growth of InAs on GaAs(001) by molecular beam epitaxy (MBE) is investigated in this thesis. An in-situ cantilever beam measurement (CBM) setup was used to measure the evolution of the film force during deposition and subsequent annealing at the growth temperature. The slope in a plot of film force versus film thickness is equal to the stress that builds up during heteroepitaxial growth. During the growth of InAs on GaAs(001) under As-rich conditions, the film force shows a linear slope up to a value of 2.3 N/m. This linear increase in film force corresponds to the deposition of the wetting layer. Beyond the critical thickness of 1.5-1.6 monolayers, the film force proceeds with a decreasing slope, indicating a strain release by the formation of quantum dots. When the samples are subsequently annealed, the film force decreases again due to the ripening of the quantum dots and the desorption of InAs. Models were developed to fit and explain the relaxation of the film force measured during the annealing of InAs quantum dots. At temperatures lower than 470°C, quantum dots undergo standard Ostwald ripening. Different mechanisms determine the ripening process. Fits of the models based on these mechanisms were made to the film force relaxation curves. Annealing of quantum dots at temperatures higher than 500°C shows a very different behavior. The film force accumulated during the quantum dot formation relaxes below the value which was built-up by the wetting layer growth. Atomic force microscopy images reveal that the quantum dots ripen first and then dissolve after 450s to 600s annealing. In contrast to the growth under As-rich conditions, the growth under In-rich conditions does not lead to the formation of quantum dots but proceeds rather in a layer-by-layer growth mode. The film force curves were also measured during this deposition mode. A preliminary analysis of the film force curves is presented.
219

Fotodetectores de radiação infravermelha baseados em pontos quânticos de submonocamada / Infrared photodetectors based on submonolayer quantum dots.

Zeidan, Ahmad Al 03 October 2017 (has links)
Nesse trabalho, foi investigado um novo tipo de fotodetector de radiação infravermelha baseado em pontos quânticos de submonocamada de InAs obtidos pela técnica de epitaxia por feixe molecular (MBE, Molecular Beam Epitaxy). Suas propriedades foram comparadas com as de fotodetectores de pontos quânticos de InAs convencionais obtidos pela mesma técnica de deposição, mas no modo de crescimento Stranski-Krastanov. Medidas de corrente de escuro, de ruído, de responsividade e de absorção mostraram que, dependendo da estrutura das amostras, os dispositivos com pontos quânticos de submonocamada podem ter um excelente desempenho. / In this work, we investigated a new type of infrared photodetector based on InAs sub-monolayer quantum dots grown by molecular beam epitaxy (MBE). Their properties were compared with those of photodetectors containing conventional InAs quantum dots obtained by the same deposition technique, but in the Stranski-Krastanov growth mode. Dark current, noise, responsivity and absorption measurements have shown that, depending on the structure of the samples, the devices with sub-monolayer quantum dots can perform very well.
220

Epitaxial Rhenium, un supraconducteur en limite propre pour des Qbits supraconducteurs / Epitaxial Rhenium, a clean limit superconductor for superconducting Qbits

Ratter, Kitti 20 October 2017 (has links)
L'auteur n'a pas fourni de résumé en français / The epitaxial growth condition and the superconducting properties of nanostructured devices made of rhenium (superconducting below T=1.7 K) on sapphire were explored. Epitaxial growth of rhenium thin films onto a single crystal α-Al2O3(001) substrate was realised using molecular beam epitaxy. The cleanness of the substrate was verified using XPS, and the growth of rhenium was monitored using RHEED. The orientations of the two crystals are (0001)Al2O3//(0001)Re and <2110>Al2O3//<0110>Re, which was confirmed using X-ray diffraction. The in-plane misfit between the lattices is -0.43% at room temperature, which allows us to estimate the critical thickness of rhenium to be between 10 nm and 15 nm.For deposition, rhenium was heated using an electron beam. Substrates were heated during growth using either a Joule-heated W filament located behind the sample or electron bombardment. Generally deposition temperatures of 800◦C and 900◦C gave reproducible results.The effect of deposition temperature was studied on samples that had the same thickness but were deposited at different temperatures. Three thickness groups were selected: 25 nm, 50 nm and 100 nm. Every sample was dominated by the (001) epitaxial orientation. Orientations (110), (100), (101) were present, but their intensities were small and decreased with increasing deposition temperature. AFM imaging was used to observe the morphology of the films. The 25 nm thick films were decorated with grains. The diameter of the grains (∼ 50 nm) did not vary significantly on the 25 nm thick sample, however, they became more uniform with increasing deposition temperature, and the surface became smoother. On the 50 nm and 100 nm thick films spirals and holes can be observed. Diameter of spirals on the 50 nm thick film increased from 100 nm to 500 nm when the temperature of the deposition was increased from 800◦C to 900◦C. XRD rocking curves measured on all samples got narrower with increasing deposition temperatures, indicating lower mosaicity of the (001) crystals. High-resolution θ-2θ scans evidenced a disorder in the 50 nm thick film, corresponding to strain values in the range of 0.01. Deposition temperature of 1000◦C lead to the dewetting of a 50 nm thick sample, islands with atomically flat surfaces were formed.The frequently observed spirals are most likely the result of screw dislocations. The origin of the holes that accompany the spirals is a dewetting process that starts when the thickness of the film reaches ~10 nm. We quantified the temperature evolution of the film during growth taking into account emission, reflection and transmission between all surfaces. This thermal model confirmed that the temperature of the film increases as the thickness of the rhenium film grows. The dewetting was studied using Mullins’ theory of thermal grooving. A surface diffusion coefficient of 4E−12 cm2/s was obtained, which is consistent with the observed dimensions of the surface topography.Wires with widths ranging from 100 nm to 3 μm and SQUIDs were fabricated from the rhenium films. Transport measurements confirmed that the lithography process does not affect the superconducting properties of rhenium. Critical temperatures between 1.43 K and 1.96 K were measured. We could correlate the superconducting transition temperature with the topography and the crystallinity of the films. Mean free path of electrons, and the superconducting coherence length were obtained, for two of the films both mean free path and effective coherence length were over 100 nm. These two films were in the clean limit, but the fabricated wires were in the dirty limit.On one film SQUIDs of 1 um diameter with 50 nm and 20 nm wide nanobridges acting as Josephson junctions were fabricated. The SQUIDs were cooled down using a dilution refrigerator. Critical current oscillations were measured. The flux noise values obtained were as low as 2.6E−5 Φ0/Hz1/2.

Page generated in 0.0736 seconds