• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 25
  • 21
  • 16
  • 11
  • 9
  • 3
  • 3
  • 1
  • Tagged with
  • 393
  • 393
  • 349
  • 79
  • 75
  • 71
  • 64
  • 58
  • 53
  • 52
  • 51
  • 47
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Energy Transfer Dynamics in Collisions of Polar and Non-polar Gases with Functionalized Self-Assembled Monolayers

Bennett, Megan 12 June 2007 (has links)
Molecular beam scattering experiments are used to investigate the extent of thermal accommodation of Ne, CD4, ND3, and D2O in collisions with long chain CH3, NH2, and OH terminated self-assembled monolayers (SAMs) on gold. Surface rigidity, internal degrees of freedom of the impinging gas, and potential energy surface well depths have been explored as a way to predict the outcome of a gas-surface collision. Ne is used to assess the mechanical rigidity of the SAMs. The order of rigidity is CH3 < NH2 ~ OH. The NH2 and OH terminated SAMs are more rigid due to the intermolecular hydrogen bonding structure at the gas-surface interface. Despite the hydrogen bonding nature of the NH2 and OH terminated SAMs CD4, ND3, and D2O are extensively thermally accommodated on the surfaces, therefore surface rigidity is no solely responsible for energy transfer dynamics. It was found that the number of degrees of freedom do not predict how extensively a gas will thermally accommodate on a surface capable of hydrogen bonding. A qualitative correlation between increasing potential energy well depths and the extent of thermal accommodation has been established as a result of these scattering experiments. / Master of Science
72

Process modeling of InAs/AISb materials for high electron mobility transisitors grown by molecular beam epitaxy

Triplett, Gregory Edward, Jr. 01 1900 (has links)
No description available.
73

Study of the Static and Dynamic Magnetization across the First Order Phase Transition in FeRh Thin Films

Heidarian, Alireza 02 March 2016 (has links) (PDF)
The equiatomic FeRh alloy undergoes a first-order phase transition from an antiferromagnetic (AFM) to a ferromagnetic (FM) state at about 370 K with a small thermal hysteresis of about 10 K around the phase transition. The transition is accompanied by a unit cell volume expansion about 1% in the c lattice parameter. During the transition the new phase nucleates in the matrix of the original phase by reaching the critical temperature followed by a growth in size upon increasing temperature further. Therefore, to understand the transition process with more details, it is desirable to investigate the nucleation and growth of both phases within the first order phase transition. In the present thesis the main focus is on the growth of FeRh thin films by means of Molecular Beam Epitaxy (MBE) technique and characterization of the magnetic and structural properties. To develop an understanding of the phase transformation in FeRh thin films the ways in which one can tune it were investigated. The following aspects concerning the FeRh system have been examined here: 1) influence of annealing temperature on the magnetic and structural response, 2) effect of film thickness on the first-order phase transition temperature as well as the saturation magnetization, 3) influence of chemical composition on the magnetic properties and 4) magnetic field-induced phase transition. To get insight to details of the transition process the magnetization dynamic has been addressed by performing Ferromagnetic resonance (FMR) experiment across the phase transition. FMR measurements determined the existence of two areas with different magnetic properties inside the film. A huge temperature difference for the beginning of the phase transition in comparison with the static magnetization measurement was observed for the equiatomic FeRh thin film prepared by MBE. Tuning of the AFM to FM phase transition in the FeRh thin film by means of low-energy/low fluence Ne+ ion irradiation was studied. Ion irradiation technique offers a quantitative control of the degree of chemical disorder by adjusting the ion fluence applied, while the penetration depth of the disordered phase can be adjusted by the ion-energy. The main results of ion irradiation are the shifting of the phase transition temperature to lower temperature and irradiation with 3×1014 ion/cm2 leads to the disappearance the AFM phase completely.
74

Plasmonic and Superconducting Self-Assembled MBE Grown Indium Islands

Gibson, Ricky Dean, Jr. January 2016 (has links)
Molecular beam epitaxy (MBE) grown metal has been a renewed area of interest recently in order to achieve high quality metal films or nanostructures for plasmonics. Recently MBE grown silver films have been shown to possess optical constants closer to that of intrinsic silver leading to lower losses and thus allowing for higher quality plasmonics. MBE has also been used to grow silver nanocrystals and indium droplets, or islands, for plasmonics. These self-assembled nanostructures can be grown in close proximity to quantum confined structures such as InAs/GaAs quantum dots or InGaAs/GaAs quantum wells in a single process, without post-processing and fabrication, allowing for increased plasmonic enhancement due to the improved interface between the semiconductor and plasmonic structures.In this dissertation, widely tunable plasmonic resonances of indium islands will be discussed and plasmonic enhancement results will be presented and compared to those of nanoantennas constructed from standard fabrication processes. The coupling between near-surface quantum confined structures, both fabricated and self-assembled, will be compared to the coupling in typical dielectric cavities, such as photonic crystal nanobeams. Beyond the plasmonic possibilities of indium islands, indium becomes superconducting at 3.4 K. With the proximity effect allowing for electrons in materials in contact with a superconductor to occupy a superconducting like state, allowing for the possibility for a hybrid superconductor/semiconductor optical source. The observation of superconductivity in indium islands will be presented and considerations for a superconductor/semiconductor source will be discussed.
75

Growth kinetics of GaN during molecular beam epitaxy

鄭聯喜, Zheng, Lianxi. January 2001 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
76

Heteroepitaxial growth of InN and InGaN alloys on GaN(0001) by molecular beam epitaxy

Liu, Ying, 劉穎 January 2005 (has links)
published_or_final_version / abstract / Physics / Doctoral / Doctor of Philosophy
77

A study of surface growth mechanism by kinetic Monte-Carlo simulation

Gong, Min, 鞏旻 January 2006 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy
78

Growth of AlInN and zinc blende GaN by molecular beam epitaxy

Shi, Min, 施敏 January 2007 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy
79

Kinetic studies of GaAs growth and doping by molecular beam epitaxy

Tok, Eng Soon January 1998 (has links)
No description available.
80

Fast Operator Splitting Methods For Nonlinear Pdes

January 2016 (has links)
Operator splitting methods have been applied to nonlinear partial differential equations that involve operators of different nature. The main idea of these methods is to decompose a complex equation into simpler sub-equations, which can be solved separately. The main advantage of the operator splitting methods is that they provide a great flexibility in choosing different numerical methods, depending on the feature of each sub-problem. In this dissertation, we have developed highly accurate and efficient numerical methods for several nonlinear partial differential equations, which involve both linear and nonlinear operators. We first propose a fast explicit operator splitting method for the modified Buckley-Leverett equations which include a third-order mixed derivatives term resulting from the dynamic effects in the pressure difference between the two phases. The method splits the original equation into two equations, one with a nonlinear convective term and the other one with high-order linear terms so that appropriate numerical methods can be applied to each of the split equations: The high-order linear equation is numerically solved using a pseudo-spectral method, while the nonlinear convective equation is integrated using the Godunov-type central-upwind scheme. The spatial order of the central-upwind scheme depends on the order of the piecewise polynomial reconstruction: We test both the second-order minmod-based reconstruction and fifth-order WENO5 one to demonstrate that using higher-order spatial reconstruction leads to more accurate approximation of solutions. We then propose fast and stable explicit operator splitting methods for two phase-field models (the molecular beam epitaxy equation with slope selection and the Cahn-Hilliard equation), numerical simulations of which require long time computations. The equations are split into nonlinear and linear parts. The nonlinear part is solved using a method of lines combined with an efficient large stability domain explicit ODE solver. The linear part is solved by a pseudo-spectral method, which is based on the exact solution and thus has no stability restriction on the time step size. We have verified the numerical accuracy of the proposed methods and demonstrated their performance on extensive one- and two-dimensional numerical examples, where different solution profiles can be clearly observed and are consistent with previous analytical studies. / Zhuolin Qu

Page generated in 0.0941 seconds