• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 8
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 171
  • 171
  • 39
  • 27
  • 24
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • 15
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Design, Synthesis and Properties of Bipyridine-capped Oligothiophenes for Directed Energy and Electron Transfer in Molecular Electronic Applications

Nurkkala, Lasse January 2007 (has links)
The earliest landmark in computer technology was construction of the Electronic Numerial Integrator and Computer, ENIAC. Computational switching was performed with vacuum tubes and relays, rather large in size, making this computer rather unwieldy. The next milestone came with the integration of transistors into computers as the switching component. Since then, transistors have been miniaturised dramatically, resulting in the amount of components integrated on a computer chip increasing logarithmically with time. The components are nowadays so small and so densely packed that problems with leak currents and cross-talk can arise and the lower limit for transistor size will soon be reached. In order to meet increasing demands on the size and performance of electronics, a new paradigm is due – the molecular electronics approach. Oligothiophenes have been shown to possess the physical and chemical characteristics required for electron/energy transport in molecular systems. However oligothiophenes must be electronically coupled to other components within a molecular circuit for them to be functional. In this work, different modes of incorporation of [2,2’]-bipyridinyl functionalities onto the ends of prototypic oligothiophene wires have been examined. The bipyridine connectors allow complexation to metal centres which can then function as a source or sink of electrons in the circuit. Ruthenium tris-bipyridine complexes, in particular, possess interesting electrochemical and photophysical characteristics, making them suitable for use in molecular electronics. This thesis reports synthetic strategies to a range of novel ligands based on the [2,2’]-bipyridinyl system, together with a study of the redox and fluorescence properties of their ruthenium tris-bipyridine complexes. The mode of connection between the chelating bipyridine and the first member of the oligothiophene chain was found to have a profound effect upon the fluorescence lifetimes and intensities of the resulting complexes. The discovery of complexes exhibiting long and intense fluorescence (a requirement for directed electron/energy transfer within molecular networks) thus forms an important design element in future prototypes.
102

The Synthesis of Molecular Switches Based Upon Ru(II) Polypyridyl Architecture for Electronic Applications

Steen, Robert January 2007 (has links)
According to the famous axiom known as Moore’s Law the number of transistors that can be etched on a given piece of silicon, and therefore the computing power, will double every 18 to 24 months. For the last 40 years Moore’s prediction has held true as computers have grown more and more powerful. However, around 2020 hardware manufac-turers will have reached the physical limits of silicon. A proposed solution to this dilemma is molecular electronics. Within this field researchers are attempting to develop individual organic molecules and metal complexes that can act as molecular equivalents of electronic components such as diodes, transistors and capacitors. By utilizing molecular electronics to construct the next generation of computers processors with 100,000 times as many components on the same surface area could potentially be created. We have synthesized a range of new pyridyl thienopyridine ligands and compared the electrochemical and photophysical properties of their corresponding Ru(II) complexes with that with the Ru(II) complexes of a variety of ligands based on 6-thiophen-2-yl-2,2´-bipyridine and 4-thiophen-2-yl-2,2´-bipyridine. While the electrochemistry of the Ru(II) complexes were similar to that of unsubstituted [Ru(bpy)3]2+, substantial differences in luminescence lifetimes were found. Our findings show that, due to steric interactions with the auxiliary bipy-ridyl ligands, luminescence is quenched in Ru(II) complexes that in-corporate the 6-thiophen-2-yl-2,2´-bipyridine motif, while it is on par with the luminescence of [Ru(bpy)3]2+ in the Ru(II) complexes of the pyridyl thienopyridine ligands. The luminescence of the Ru(II) com-plexes based on the 4-thiophen-2-yl-2,2´-bipyridine motif was en-hanced compared to [Ru(bpy)3]2+ which indicates that complexes of this category are the most favourable for energy/electron-transfer sys-tems. At the core of molecular electronics are the search for molecular ON/OFF switches. We have synthesized a reversible double cyclome-tallated switch based on the Ru(tpy) complex of 3,8-bis-(6-thiophen-2-yl-pyridin-2-yl)-[4,7]phenanthroline. Upon treatment with acid/base the complex can be switched between the cyclometallated and the S-bonded form. This prototype has potentially three different states which opens the path to systems based on ternary computer logic.
103

Dispositifs hybrides à base de carbone : fonctionnalisation de nanotubes et de graphène avec des molécules actives / Hybrid carbon based devices : functionalization of nanotube and graphene devices with active molecules

Chen, Yani 20 January 2016 (has links)
Dans le cadre de la recherche sur les dispositifs post-CMOS, l'électronique moléculaire bénéficie de la polyvalence de la chimie organique,qui offre de nouvelles fonctions alliant spécificités optiques et électroniques, tout en accédant au régime de confinement quantique intrinsèque aux petites molécules. Conducteurs 1D, les nanotubes de carbone font le lien entre l’électronique des petites molécules émergente et la technologie des semi-conducteurs, tout en tirant parti de la chimie organique. Au-delà de la miniaturisation, ils offrent la possibilité de concevoir de nouveaux dispositifs pour des capteurs, l’optoélectronique et l’électronique quantique. Cependant, la plupart des études se concentrent sur leurs applications aux capteurs ou pour le photovoltaïque qui impliquent un ensemble macroscopique de nanotubes. Dans ce cas, les transferts d'excitation sont moyennés sur un ensemble statistique, ce qui empêche l'accès à leurs mécanismes fondamentaux. Il est donc nécessaire de concevoir des dispositifs fonctionnels à base de nanotubes de carbone individuels. Pour cela, les nanotubes double paroi ont de nombreux avantages sur les monoparois. En général, ils présentent une stabilité plus élevée, qui peut être d’une aide substantielle dans des expériences à haute intensité et à fort champ. Ils réalisent un système cœur-coquille: leur structure concentrique suggère leur utilisation pour réaliser indépendamment un dopage ou une fonctionnalisation des tubes intérieur et extérieur.Dans ce projet de thèse, nous étudions des transistors à effet de champ basés sur des systèmes hybrides nanotubes individuels double paroi / chromophore.Nous présentons d'abord le procédé de fabrication de transistors à effet de champ de nanotubes de carbone à paroi individuels (DWFET), qui sont ensuite caractérisés à la fois par des techniques optiques et électriques. Nous avons notamment étudié le couplage électron-phonon par spectroscopie Raman sous dopage électrostatique. Le tube métallique interne apparaît également affecté par la grille électrostatique et montre des changements significatifs de la signature Raman.Nous avons ensuite fonctionnalisé les DWFETde façon non covalente avec deux types de molécules optiquement sensibles (terpyridine d'osmium et complexe de zinc (II) métalloporphyrine). Les hybrides sont caractérisés à la fois en optique et en transport électronique. Il apparaît un transfert de charge entre les molécules et le DWNT qui joue le rôle d’une grille chimique détectable par spectroscopie Raman et transport électrique, ce qui indique que les DWFET peuvent être utilisés pour la détection de molécules. L'excitation lumineuse des molécules conduit à un dopage des hybrides et permet de plus de révéler le couplage entre les parois des nanotubes.De plus, nous avons réalisé des expériences de grille optique à longueur d'onde variable sur les dispositifs hybrides, couplant à la fois la spectroscopie Raman et des mesures de transport électrique de la température ambiante jusqu’à la température de l'hélium. Le contrôle optique du comportement électronique des hybrides est expliqué en termes de transfert de charge photo-induit entre les molécules greffées et le DWNT. Par conséquent, nos FET hybrides peuvent être utilisés comme mémoire à commande optique jusqu’au régime de transfert d'électrons uniques. / In the frame of the intense research on electronics beyond CMOS, molecular electronics offers the versatility of organic chemistry in order to tailor new functions combining optical and electronic specifications, while accessing the quantum confined regime intrinsic to small molecules. As 1D conductors, carbon nanotubes bridge the gap between small molecules electronics and semiconductor technology with great promises while being a playground for organic chemistry. Beyond miniaturization, they offer the opportunity to design new devices from accurate sensors to optoelectronic and quantum devices. However most studies focus on sensor or photovoltaic applications and thus involve a macroscopic assembly of nanotubes. This averages the excitation transfers, which prevents access to their fundamental mechanisms. This requires the design of individual carbon nanotube based functional devices. For this issue double wall carbon nanotubes have many advantages over simple SWNTs. In general, they exhibit higher stability, which can be a substantial help in high-current and high-field experiments. They realize a core-shell system: their concentric structure suggests its use for independent doping or functionalization of inner and outer tubes.In this PhD project, we demonstrate field effect transistors based on hybrid systems of individual double wall carbon nanotubes and optically sensitive molecule.We first introduce the method for making individual double wall carbon nanotube field effect transistors (DWNT FETs), which are then characterized both optically and electrically. We also studied the electron phonon coupling in the DWNT system by Raman spectroscopy with electrostatic gating. The inner metallic tube is also affected by the electrostatic gate and shows dramatic changes of the overall Raman signature.We then functionalized non covalently two kinds of optically sensitive molecules to DWNT and graphene FETs (Terpyridine Osmium complex and Zinc(II) metalloporphyrin). The hybrids are characterized both optically and electrically. Charge transfer between DWNTs and molecules plays as a chemical gating which can be detected by Raman spectroscopy as well as electrical transport measurements, which indicates that the DWNT FETs can be utilized for molecular sensing. Light excitation of the molecules leads to doping of the hybrids and reveals the coupling between the nanotube walls.Moreover, we realized wavelength dependent optical gating on the hybrid device, detected by both Raman spectroscopy and electrical transport measurements at both room temperature and helium temperature. The optical control of the hybrids’ electronic behavior will be elucidated in terms of photo-induced charge transfer between the grafted molecules and the DWNT component. As a consequence, this hybrid FETs can be used as an optically controlled memory down to single electron transfers at low temperature.
104

Kondo effect and detection of a spin-polarized current in a quantum point contact / Effet Kondo et détection d’un courant polarisé en spin dans un point de contact quantique

Choi, Deung jang 01 June 2012 (has links)
L'effet Kondo observé dans des objets individuels constitue un système modèle pour l’étude de corrélations électroniques. Ces dernières jouent un rôle moteur dans le domaine émergent de l'électronique de spin (ou spintronique) où l’utilisation d’atomes issus des terres rares et des métaux de transition est incontournable. Dans ce contexte, l’étude de l'interaction d’une impureté Kondo avec des électrodes ferromagnétiques ou avec d’autres impuretés magnétiques peut donc s’avérer fondamental pour la spintronique. L’effet Kondo est sensible à son environnement magnétique car en présence d’interactions magnétiques la résonance ASK se dédouble. Dans une certaine mesure, la résonance ASK agit comme un niveau atomique discret doublement dégénérée qui subit un dédoublement Zeeman en présence d'un champ magnétique ou plus généralement d’un champ magnétique effectif. Inversement, la détection d'un dédoublement Zeeman indique l'existence d'un champ magnétique. Dans une boîte quantique, le couplage de la boîte avec les deux électrodes est faible en général et la largeur de la résonance ASK est donc de l'ordre de quelques meV. Beaucoup d’études de l’effet Kondo en présence d’interactions magnétiques ont été menées sur les boîtes quantiques, grâce notamment au contrôle qui peut être exercé sur la résonance ASK, mais aussi grâce au faible élargissement de la résonance qui peut alors être dédoublée avec un champ magnétique de l’ordre de 10 Tesla ou moins. A ces études, s’ajoutent de nombreux travaux similaires menés avec des dispositifs tels des jonctions cassées comprenant une molécule individuelle jouant le rôle de l’impureté magnétique. En revanche, peu d’études de ce type ont été consacrées aux atomes individuels. Cela est dû à l’hybridation plus marquée entre l'impureté atomique et la surface comparée aux boîtes quantiques, qui entraine une largeur typique de 10 meV ou plus pour la résonance ASK. Un champ magnétique d'environ 100 T ou plus est alors nécessaire afin de dédoubler la résonance et donc en pratique difficile à mettre en oeuvre. Cette thèse est consacrée précisément à l’étude de l'interaction entre une impureté Kondo individuel et son environnement magnétique à l’aide d’un STM. Une nouvelle stratégie est adoptée ici par rapport aux études antérieures de ce genre. Tout d'abord, nous éliminons la barrière tunnel en établissons un contact pointe-atome. Nous formons ainsi un point de contact quantique comprenant une seule impureté Kondo. Deuxièmement, nous utilisons des pointes ferromagnétiques. Le contact pointe-atome permet de sonder l'influence du ferromagnétisme sur l'impureté Kondo vial’observation de la résonance ASK. La géométrie de contact permet tout particulièrement de produire une densité de courant polarisé en spin suffisamment élevée pour qu’elle entraîne un dédoublement de la résonance ASK. Ce dédoublement constitue la première observation à l’échelle atomique d’un phénomène connu sous le nom d’accumulation de spin, laquelle se trouve être une propriété fondamentale de la spintronique. / The Kondo effect of these single objects represents a model system to study electron correlations, which are nowadays of importance in relation to the emerging field of spin electronics, also known as spintronics, where chemical elements with partially filled d or f shells play a central role. Also of particular interest to spintronics is the interaction of single Kondo impurities with ferromagnetic leads or with other magnetic impurities. A Kondo impurity is in fact sensitive to its magnetic environment as the ASK resonance is usually split into two resonances in the presence of magnetic interactions. To some extent, the ASK resonance acts as a two-fold degenerate energy level of an atom which undergoes a Zeeman splitting in the presence of an effective magnetic field. Conversely, the detection of a Zeeman splitting indicates the existence of a magnetic field. In a QD, the coupling of the QD to the two leads is very weak in general, and the Kondo resonance is in the range of a few meV. Many studies focusing on magnetic interaction have been carried out on QDs, due to the high control that can be extended to the ASK resonance and its low energy range, allowing to split the resonance with a magnetic field of 10 T. Similar work has also been carried out in single-molecule or lithographically-defined devices. Although STM is an ideal tool to study the Kondo effect of single atoms, there is still a strong lack of experimental studies concerning atoms in the presence of magnetic interactions. This is partly due to the stronger impurity-metal hybridization compared to QDs, which places the ASK width in the range of 10 meV. An effective magnetic field of 100 T would be needed to split the resonance. The present Thesis is devoted precisely at studying the interaction between a single Kondo impurity with its magnetic environment through STM. A new strategy is adopted herecompared to former studies of this kind. Firstly, we contact a single-magnetic atom on a surface with a STM tip thereby eliminating the vacuum barrier. Secondly, we use ferromagnetic tips. The contact with a single atom allows probing the influence of ferromagnetism on the Kondo impurity i. e. its ASK resonance. But most importantly, the contact geometry produces sufficiently high current densities compared to the tunneling regime, so that the ASK resonance becomes sensitive to the presence of a spin-polarized current. This constitutes the first atomic scale detection of a spin-polarized current with a single Kondo impurity.
105

Measurements and Control of Charge Transport through Single DNA Molecules via STM Break Junction Technique

January 2016 (has links)
abstract: Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base. First, double-stranded DNA with alternating GC sequence and stacked GC sequence were measured with respect to length. The resistance of DNA sequences increases linearly with length, indicating a hopping transport mechanism. However, for DNA sequences with stacked GC, a periodic oscillation is superimposed on the linear length dependence, indicating a partial coherent transport. The result is supported by the finding of delocalization of the highest occupied molecular orbitals of Guanines from theoretical simulation and by fitting based on the Büttiker’s theory. Then, a DNA G4-duplex structures with a G-quadruplex as the core and DNA duplexes as the arms were studied. Similar conductance values were observed by varying the linker positions, thus a charge splitter is developed. The conductance of the DNA G-tetrads structures was found to be sensitive to the π-stacking at the interface between the G-quadruplex and DNA duplexes by observing a higher conductance value when one duplex was removed and a polyethylene glycol (PEG) linker was added into the interface. This was further supported by molecular dynamic simulations. Finally, a double-stranded DNA with one of the bases replaced by an anthraquinone group was studied via electrochemical STM break junction technique. Anthraquinone can be reversibly switched into the oxidized state or reduced state, to give a low conductance or high conductance respectively. Furthermore, the thermodynamics and kinetics properties of the switching were systematically studied. Theoretical simulation shows that the difference between the two states is due to a difference in the energy alignment with neighboring Guanine bases. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2016
106

Charge Transport in Single Molecules

January 2017 (has links)
abstract: Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics. First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in DNA was tuned to either a hopping- or tunneling-dominated regimes. In the hopping regime, the thermoelectric effect is small and insensitive to the molecular length. Meanwhile, in the tunneling regime, the thermoelectric effect is large and sensitive to the length. These findings indicate that by varying its sequence and length, the thermoelectric effect in DNA can be controlled. The experimental results are then described in terms of hopping and tunneling charge transport models. Then, I showed that the electron transfer reaction of a single ferrocene molecule can be controlled with a mechanical force. I monitor the redox state of the molecule from its characteristic conductance, detect the switching events of the molecule from reduced to oxidized states with the force, and determine a negative shift of ~34 mV in the redox potential under force. The theoretical modeling is in good agreement with the observations, and reveals the role of the coupling between the electronic states and structure of the molecule. Finally, conclusions and perspectives were discussed to point out the implications of the above works and future studies that can be performed based on the findings. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2017
107

Estudo ab initio de fulerenos menores e C IND.60 e seus derivados para aplicações em eletrônica molecular / Ab initio study of small fullerenes and C6s and its derivatives for applications in molecular electronics

Lucas Viani 16 November 2006 (has links)
O objetivo desta dissertação é estudar os efeitos estruturais e eletrônicos em fulerenos menores e C60 causados pela dopagem substitucional com boro e nitrogênio para aplicações em eletrônica molecular. Estudamos as propriedades eletrônicas e estruturais de possíveis retificadores moleculares formados por pares de fulerenos menores dopados com boro e nitrogênio. A molécula C@C59N foi estudada e suas propriedades estruturais e eletrônicas comparadas com as do endofulereno N@C60. No estudo da dopagem dos fulerenos utilizamos o método semiempírico Parametric Method 3 (PM3). Foram calculadas as geometrias de equilíbrio e os calores de formação, que serviram para investigar a estabilidade relativa dessas moléculas. Para cada dopante identificamos os sítios de substituição que mais favorecem à estabilidade termodinâmica das moléculas. Dentre todos os fulerenos menores estudados os isômeros do C5o atingiram a maior estabilidade quando comparados com o C60. Com os pares de moléculas mais estáveis obtidas no trabalho anterior, montamos os retificadores em uma estrutura do tipo D-ponte-A, onde D e A representam doador e aceitador de elétrons. Para as moléculas isoladas, calculamos as estruturas eletrônicas através da Teoria do Funcional da Densidade (DFT) com o funcional BLYP e a base 6-31G*. No caso dos pares usamos o método DFT com o funcional BSLYP e a base 3-21G* para obter as geometrias de equilíbrio e as estruturas eletrônicas. Aplicando um campo elétrico sobre as moléculas, investigamos a facilidade de transferência de cargas entre fulerenos. Concluímos que fulerenos menores possuem um grande potencial para construção de um diodo molecular. As propriedades da molécula hipotética C@C59N foram comparadas com as bem Conhecidas C60, C59N e N@C60. A energia de ligação por átomo da molécula é comparável às energias de ligação dos outros fulerenos, em particular do seu isômero N@C60. Devido à tendência dos azafulerenos em formar dímeros, verificamos a estabilidade da molécula N@C60 quando comparada com o dímero N@C60 )2. . Tanto as geometrias quanto as estruturas eletrônicas foram calculados via DFT, BSLYP/6-31G*. Concluímos deste estudo que a molécula C@Ge¡/ é estável energeticamente, como também a interessante possibilidade do uso do dímero (C@C59N)2 como um bit quântico. / The present dissertation is devoted to the study of the effects on small fullerenes and 060 caused by the substitutional doping of boron and nitrogen for applications in molecular electronics. Electronic and structural properties of molecular rectifiers formed by small fullerenes doped with boron and nitrogen have been studied. The molecule C@C59 N has been investigated and its structural and electronic properties compared with those of the endofullerene N@C60 To study the doping of the fullerenes we used the semiempirical method Para­ metric Method 3 (PM3). Ground state conformations and heats of formation were obtained and used to investigate the relative molecular stability. We indentified the most favorable molecular substitution sites for the thermodynamic stability of each dopant. Among all small fullerenes investigated, the isomers of C50reached the largest stability when compared with 060 Molecular rectifiers with a structure of the type D-bridge-A, where D and A indicate electron donor and acceptor, respectively, were built with the most stable pairs found in the previous part of. The Density Functional Theory (DFT) with the functional BLYP and the base 6-31G* was used to calculate the electronic struc­ tures of the isolated molecules. Geometry optimizations and electronic structures of the pairs, were carried by DFT, B3LYP j3 21G*, method. The asymmetry of the charge transfer was assessed through the application of an externai electric field. We concluded that small fullerenes are promising candidates for the construction of molecular rectifiers. The properties of the hypothetical molecule C@C59 N were compared with those well known C60 , C59 N e N@C60 molecules. The binding energy of this molecule is comparable with that of the other fullerenes, in particular with that of its isomer N@C60 Due to the tendency of the azafullerene in forming dimers, the stability of the dimer (C@C59 N)2 was investigated. The molecular conformations and the electronic structures were obtained by the DFT, B3LYP/6-31G*, method. We con­ cluded that (C@C59 N) 2 molecule should be as stable as the azafullerene dimer. Our results point to the interesting possibility of using this system as a quantum bit.
108

Fabricação e caracterização de dispositivos poliméricos emissores de luz com camada ativa de poli(2-metóxi, 5-(2\'-etil-hexilóxi)-1,4-fenileno vinileno) (MEH-PPV) / Fabrication and characterization of polymer light-emitting diodes with active layer composed by poly(2-methoxy, 5-(2\'-etil-hexilhoxy)-1,4-phenilene vinilene) (MEH-PPV).

Giovani Gozzi 20 February 2008 (has links)
Dispositivos poliméricos emissores de luz (Polymer Light Emitting Diodes - PLEDs) têm sido amplamente investigados devido à sua possibilidade de aplicação na fabricação de telas de projeção e displays. As principais vantagens dos materiais poliméricos, nesses casos, são o baixo custo e a possibilidade de processamento em superfícies de grande área, ao contrário do que ocorre para dispositivos contendo cristais líquidos (Liquid Crystal Display - LCD\'s). Apesar de amplamente investigados nos últimos anos, alguns aspectos fundamentais acerca dos mecanismos de injeção de carga nos PLEDs ainda não estão completamente elucidados. Nesta dissertação estudamos as propriedades ópticas, morfológicas e elétricas de dispositivos poliméricos emissores de luz contendo poli(2-metóxi, 5-(2\'-etil-hexilóxi)-1,4-fenileno vinileno) (MEH-PPV) como camada ativa. Inicialmente foi investigada a influência de camadas transportadoras de lacunas (Hole Transport Layer - HTL) e/ou elétrons (Electron Transport Layer - ETL) na eficiência dos dispositivos. As camadas HTL e ETL foram compostas de poli(3,4-etilenodioxithiofeno):poliestireno sulfonado (PEDOT:PSS), e poli(estireno-co-p-estireno sulfonado-co-metaacrilato de metila) (PS-co-SS-co-MMA), respectivamente. Os filmes de PEDOT:PSS foram depositados por centrifugação. Devido ao seu caráter isolante (condutividade elétrica 10-5 S/cm), e por ter nível energético HOMO (Highest Occupied Molecular Orbital) próximo ao nível de Fermi do ITO (Indium Thin Oxide), a utilização do PEDOT:PSS como camada reguladora da injeção de lacunas resultou num aumento do tempo de meia vida do dispositivo em cerca de 10 vezes. No caso de dispositivos contendo a camada de ETL, foi identificada a formação de estados localizados gerados pela sulfonação do poliestireno. Estes estados auxiliam no processo de tunelamento através da camada polimérica. Na segunda parte do trabalho, apresentada no capítulo 4, desenvolvemos um modelo teórico para descrever as regiões das curvas da densidade de corrente elétrica (J) vs. campo elétrico aplicado (F) (dependentes e independentes da temperatura). Este modelo é uma extensão do modelo de Arkhipov, onde inserimos um termo de injeção de carga via tunelamento Fowler-Nordhein através de uma distribuição gaussiana de barreiras de potencial de interface, além do termo de injeção via hopping, já tratado por Arkhipov. O modelo proposto ajustou satisfatoriamente as curvas de J vs. F tanto nos modo de polarização direta, quanto reversa. / Polymer light emitting diodes (PLEDs) have been widely investigated as candidate materials for display fabrication. The main advantages exhibited by PLEDs are the low-cost processing and possibility of large-area display fabrication, in comparison to the conventional liquid crystal displays (LCD\'s). Although the engineering aspects concerning device fabrication and characterization are well understood, some specific points regarding the electrical transport in the bulk and at the interfaces of the devices are not fully explained. In this study, we present a morphological, optical and electrical characterization of PLEDs containing poly(2-methoxi, 5-(2\'-etyl-hexiloxy)-1,4-phenilene vinilene) (MEH-PPV) as the emissive layer. We investigated the influence of hole transport layers (HTL) and/or electron transport layers (ETL) on the efficiency of the devices. The HTL and ETL comprised thin polymeric films of poly(3,4-etylenedioxythiphene):sulfonated polystyrene (PEDOT:PSS) and poly(estyrene-co-p-sulfonated styrene-co-metyl metacrylate) (PS-co-SS-co-MMA), respectively. Devices containing the PEDOT:PSS exhibited a life-time 10 times higher than the devices not containing the HTL material, which is probably due to the controlled hole injection that may be achieved in former devices. In the second set of devices, in which an ETL was incorporated, we observed the formation of localized states in the polymeric ETL layer, which was responsible for improving the tunneling process of charges injected from cathode. A theoretical model concerning the charge injection mechanisms in the PLEDs containing MEH-PPV is presented in chapter 4. The final device architecture was ITO/MEH-PPV/Al, and the J vs. F measurements were taken at temperatures between 120 K and 270 K. The model proposed here is a combination of the Arkhipov´s and Fowler-Nordhein tunneling models, considering a Gaussian distribution of triangular potential barriers. The model takes into account the charge carrier/image charge recombination probability at the interface of the electrode, being very appropriate to explain the dependence of the electric current on the temperature and applied electric field.
109

Integrating Contorted Aromatic Molecules into Molecular Electronics and Optoelectronic Devices

Zhang, Boyuan January 2019 (has links)
This thesis has focused on the optical and electronic properties of organic semiconductors and their application in molecular electronic and optoelectronic devices. The studies have featured new and useful properties from a series of perylene diimide (PDI) nanoribbons and conjugated macrocycles. These novel strained carbon-based materials are highly promising as n-type semiconductors in organic gas sensor, organic solar cells and organic photodetectors. In Chapter 2, I describe a new molecular design that enables high performance organic photodetectors. We use a rigid, conjugated macrocycle as the electron acceptor in devices to obtain high photocurrent and low dark current. We make a direct comparison between the devices made with the macrocyclic acceptor and an acyclic control molecule; we find that the superior performance of the macrocycle originates from its rigid, conjugated, and cyclic structure. The macrocycle’s rigid structure reduces the number of charged defects originating from deformed sp2 carbons and covalent defects from photo/thermo-activation. With this molecular design we are able to suppress dark current density while retaining high responsivity in an ultra-sensitive non-fullerene OPD. Importantly, we achieve a detectivity of ~1014 Jones at near zero bias voltage. This is without the need for extra carrier blocking layers commonly employed in fullerene-based devices. Our devices are comparable to the best fullerene-based photodetectors, and the sensitivity at low working voltages (< 0.1 V) is a record for non-fullerene OPDs. In Chapter 3, I describe a capsule-shaped molecule that assembles itself into a cellular semiconducting material. The interior space of the capsule with a volume of ~415 Å3 is a nanoenvironment that can accommodate a guest. To self-assemble these capsules into electronic materials, we functionalize the thiophene rings with bromines, which encode self-assembly into two-dimensional layers held together through halogen bonding interactions. In the solid state and in films, these two-dimensional layers assemble into the three-dimensional crystalline structure. This hollow material is able to form the active layer in field effect transistor devices. We find that the current of these devices has strong response to the guest’s interaction within the hollow spaces in the film. These devices are remarkable in their ability to distinguish, through their electrical response, between small differences in the guest. In Chapter 4, I describe a new molecular design for the efficient synthesis of donor-acceptor, cove-edge graphene nanoribbons and their properties in solar cells. These nanoribbons are long (~5 nm), atomically precise, and soluble. The design is based on the fusion of electron deficient perylene diimide oligomers with an electron rich alkoxy pyrene subunit. This strategy of alternating electron rich and electron poor units facilitates a visible light fusion reaction in >95% yield, while the cove-edge nature of these nanoribbons results in a high degree of twisting along the long axis. The rigidity of the backbone yields a sharp longest wavelength absorption edge. These nanoribbons are exceptional electron acceptors, and organic photovoltaics fabricated with the ribbons show efficiencies of ~8% without optimization. In Chapter 5, I describe a new molecular design that yields ultra-narrowband organic photodetectors. The design is based on a series of helically-twisted molecular ribbons as the optoelectronic material. We fabricate charge collection narrowing photodetectors based on four different helical ribbons that differ in the wavelength of their response. The photodetectors made from these materials have narrow spectral response with full-width at half maxima of < 20 nm. The devices reported here are superior by approximately a factor of 5 to those from traditional organic materials due to the narrowness of their response. Moreover, the active layers for the helical ribbon-based photodetectors are solution cast but have performance that is comparable to the state-of-the-art narrowband photodetectors made from methylammonium lead trihalide perovskite single crystals. The ultra-narrow bandwidth for detection results from the helical ribbons’ high absorption coefficient, good electron mobility, and sharp absorption edges that are defined by the twisted molecular conformation. In Chapter 6, I describe the direct connection between the molecular conformation of a conjugated macrocycle and its macroscopic charge transport properties. The macrocycles studied here are new examples of a growing class of electronically active, conjugated macrocycles that have been utilized in materials applications. Here, we incorporate chiral, helical perylene diimide ribbons into the two separate macrocycles as the n-type, electron transporting material. As the macrocycles’ films and electronic structures are analogous, the important finding is that the macrocycles’ molecular structures and their associated dynamics determine device performance in organic field effect transistors. We show the more flexible macrocycle has a four-fold increase in electron mobility in field effect transistor devices. Using a combination of 1H-NMR, spectroscopy, and density functional theory calculations, we find that the origin of the difference in device performance is the ability of more flexible isomer to make intermolecular contacts relative to the more rigid counterpart. In Chapter 7, I discuss that intramolecular conductivity can play a role in controlling device characteristics of organic field effect transistors made with macrocycle building blocks. We use two isomeric macrocyclic semiconductors that consist of perylene diimides linked with bithiophenes and find that the trans-linked macrocycle has a higher mobility than the cis-based device. Through a combination of single molecule junction conductance measurements of the components of the macrocycles, control experiments with acyclic counterparts to the macrocycles, and analyses of each of the materials using spectroscopy, electrochemistry, and density functional theory, we attribute the difference in electron mobility of the OFETs created with the two isomers to the difference in intramolecular conductivity of the two macrocycles.
110

Reactivity in the Single Molecule Junction

Starr, Rachel January 2021 (has links)
In the last two decades, significant strides have been made towards utilizing the scanning tunneling microscope (STM) as a reaction chemistry tool, in addition to its primary use as an imaging instrument. Built off the STM, the STM-break junction (STM-BJ) technique was developed specifically for the reliable and reproducible measurement of properties of a single molecule suspended between two electrodes. These advances are crucial to the fields of molecular electronics and single-molecule reactivity, the latter also relating back to traditional bulk chemistry. By intelligently designing experiments and systems to probe with the STM and STM-BJ, we can begin to understand chemical processes on a deeper level than ever before. Chapter 1 provides an overview of the recent work using the STM and STM-BJ to effect chemical transformations which involve the making and breaking of bonds. We contextualize this progress in terms of single-molecule manipulation and synthetic chemistry, to understand the implications and outlook of this field of study. Seminal surface-based reactions are discussed, in addition to reactions that occur in both solution and within the single molecule junction. Differences between STM and STM-BJ capabilities and limitations are detailed, and the challenges of translating these fundamental experiments into functional reactions are addressed. Chapter 2 describes using the STM-BJ to study the binding of aryl iodides between gold electrodes. Important details regarding these binding modes, which were previously incompletely understood, are revealed via concrete experimental evidence. Our data suggests that this system, which is synthetically accessible, holds promise for forming the sought-after and highly conducting covalent gold-carbon bonds in situ and can be modulated with applied bias. Chapter 3 builds upon the knowledge gained in Chapter 2, and focuses on the reactivity of aryl iodides in the junction. We demonstrate a new in situ reaction of an Ullmann coupling, or dimerization, of various biphenyl iodides. By strategically designing the molecules studied, we are also able to gain mechanistic insight into this process, which in the bulk still remains debated, as well as demonstrate a cross-coupling reaction. This project is ongoing as of the submission of this dissertation, so other findings and continuing experiments are included. Chapter 4 transitions towards a different type of binder to gold, the cyclopropenylidene-based carbene. These amino-functionalized carbenes prove to be stronger linkers than N-heterocyclic carbenes, which are known binders to gold. Using a variety of surface analysis, imaging, and computational techniques, we explore the binding geometries and energies of cyclopropenylidenes, expanding the scope of carbene surface modifiers. Chapter 5 summarizes this body of PhD research, suggests directions for future work, and concludes the dissertation. These works explore the binding and reactivity of molecules on gold surfaces and within the single molecule junction, improving upon the understanding of this newly burgeoning field. This thesis seeks to encourage future work on these and related systems, to continue refining our comprehension of both junction and bulk reaction chemistry processes.

Page generated in 0.1778 seconds