• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On AB initio solutions to the phase problem for macromolecular crystallography

Leggott, Richard James January 1996 (has links)
No description available.
2

Evaluation of search models for Molecular Replacement using MolRep

Pasalic, Zlatana January 2002 (has links)
<p>he aim of this study is to use several homology models of different completeness and accuracy and to evaluate them as search models for Molecular Replacement (MR).Three structural groups are evaluated: α-, β- and α/β- group. From every group one template structure and a couple of search models are selected. The search models are manipulated and evaluated. B-factor manipulation, side chain removal and homology modelling are the ways the search models are manipulated. This work shows that B-factor manipulation do not improve the search models. The work also shows that removing the side chains is not improving the search models. Finally the work shows that homology modelling did not model better search models.</p>
3

Evaluation of search models for Molecular Replacement using MolRep

Pasalic, Zlatana January 2002 (has links)
he aim of this study is to use several homology models of different completeness and accuracy and to evaluate them as search models for Molecular Replacement (MR).Three structural groups are evaluated: α-, β- and α/β- group. From every group one template structure and a couple of search models are selected. The search models are manipulated and evaluated. B-factor manipulation, side chain removal and homology modelling are the ways the search models are manipulated. This work shows that B-factor manipulation do not improve the search models. The work also shows that removing the side chains is not improving the search models. Finally the work shows that homology modelling did not model better search models.
4

Structural Studies On Winged Bean Agglutinins

Manoj, N 07 1900 (has links)
Lectins are multivalent carbohydrate binding proteins that specifically recognise diverse sugar structures and mediate a variety of biological processes, such as cell-cell and host-pathogen interactions, serum glycoprotein turnover and innate immune responses. Lectins have received considerable attention in recent years on account of their properties which have led to their wide use in research and biomedical applications. Seeds of leguminous plants are rich sources of lectins, but they are also found in all classes and families of organisms. Legume lectins have similar tertiary structures, but exhibit a large variety of quaternary structures. The carbohydrate binding site in them is made up of four loops, the first three of which are highly conserved in all legume lectins. The fourth loop, which is variable, is implicated in conferring specificity. Legume lectins which share the same monosaccharide specificity often exhibit markedly different oligosaccharide specificities. The introductory chapter gives a broad overview of lectins from a structural point of view. The rest of the thesis is primarily concerned with structural studies on lectins from seeds of the winged bean (Psophocarpus tetragonolobus). Winged bean seeds contain a basic lectin (WBAI) (pi > 9.5) and an acidic lectin (WBAII) (pi -5.5). Both these lectins are N-glycosylated homodimers with about 240 amino acid residues per monomer. They show a high affinity for methyl-a-D-galactose at the monosaccharide level but have entirely different affinities for oligosaccharides. WBAI agglutinates human type A and B erythrocytes but not O type, while WBAII binds specifically to the terminally monofucosylated H-antigenic (responsible for O blood group reactivity) determinants on the cell surface. In this context, the current study seeks to characterise the carbohydrate binding site of a saccharide-free form of WBAI and determine the structural basis of carbohydrate recognition in WBAII. The study also aims to identify the factors responsible for the differences in carbohydrate specificities between WBAI and WBAII. Diffraction data from a saccharide-free crystal form of WBAI and two crystal forms (Form I and II) of WBAII complexed with methyl-a-D-galactose were collected on a MAR imaging plate system mounted on a Rigaku RU200 rotating anode X-ray generator. The data were processed using the MAR-XDS and DENZO/SCALEPACK suites of programs. The structures were solved by the molecular replacement method using AMoRe. The model used in the case of WBAI and Form I of WBAII was the structure of WBAI in complex with methyl-a-D-galactose (PDB coderlWBL), while the structure of Form II of WBAH was solved using a partially refined model of Form I. The refinements and model building were performed using the programs X-PLOR/CNS and O respectively. A comparison of the structures of the saccharide-free and bound forms of WBAI revealed three water molecules occupying the carbohydrate binding site, which mimic the hydrogen bonded interactions made by the saccharide in the structure of the complex. Also a shift of -0.6 A in the variable loop, towards the saccharide in the structure of the complex was observed. Significant differences in the conformation of a loop involved in crystal packing interactions were also observed. An analysis of protein hydration demonstrates, among other things, the role of water molecules in stabilising the structure of the loops around the carbohydrate binding site. The crystal structures of the two forms of WBAH were solved at 3.0 A and 3.3. A resolution. The structure of the complex revealed the role of the length of the variable loop in generating the difference in oligosaccharide specificity between WBAI and WB All. The difference in the pi values between the two lectins is caused by substitutions occurring in loops and edges of sheets. A distinct structural difference between WBAH and all the other legume lectins of known structure is in the new disposition of the 34-45 loop with an r.m.s deviation of -6.0A in Coc positions compared to its position in other lectins. This change in conformation is caused by the formation of salt bridges by amino acid residues unique to WB All in the 34-45 loop and its neighbourhood. Thermodynamic studies on the binding of H-antigenic determinant to WBAII showed a predominance of entropic contribution suggesting a hydrophobically driven binding, not yet observed in lectin-sugar interactions. An analysis involving the docking of H-type II trisaccharide (Fuca(l-2)Galf}(l-4)GlcNAc) into the carbohydrate binding site and a comparison with the binding sites of other legume lectins revealed the role of a Tyr in the variable loop and an Asn in the second loop that are unique to WBAII in generating this unique binding property. Earlier work on peanut lectin and WBAI demonstrated that the modes of dimerisation of legume lectins are governed by features intrinsic to the protein. A phylogenetic analysis of the sequences of all legume lectins whose structures are available has been performed to examine the relationship among the various classes of oligomers and classes of sugar specificity. The information thus obtained showed that groups of legume lectins that share a common mode of dimerisation cluster together. A sequence alignment based on structures revealed amino acid residues unique to each of these clusters that may be important in determining the modes of observed dimerisation. While pursuing structural studies on WBAI and WBAII, the author has also been involved in an ongoing small molecule project in the laboratory, which involves preparation and X-ray structure determination of the complexes of carboxylic acids with amino acids and peptides. The work carried out in the project is described in the appendix.
5

Structural Studies On Enzymes From Salmonella Typhimurium Involved In Propionate Metabolism: Biodegradative Threonine Deaminase, Propionate Kinase And 2-Methylisocitrate Lyase

Simanshu, Dhirendra Kumar 09 1900 (has links)
I formally joined Prof. M. R. N. Murthy’s laboratory at the Molecular Biophysics Unit, Indian institute of Science, on 1st August 2001. During that time, the interest in the laboratory was mainly focused on structural studies on a number of capsid mutants of two plant viruses, sesbania mosaic virus and physalis mottle virus, to gain an insight into the virus structure and its assembly. Besides these two projects, there were a few other collaborative projects running in the lab at that time such as NIa protease from pepper vein banding virus and diaminopropionate ammonia lyase from Escherichia coli with Prof. H. S. Savithri, triosephosphate isomerase from Plasmodium falciparum with Prof. P. Balaram and Prof. H. Balaram and a DNA binding protein (TP2) with Prof. M. R. S. Rao. During my first semester, along with my course work, I was assigned to make an attempt to purify and crystallize recombinant NIa protease and TP2 protein. I started with NIa protease which could be purified using one step Ni-NTA affinity column chromatography. Although the expression and protein yield were reasonably good, protein precipitated with in a couple of hours after purification. Attempts were made to prevent the precipitation of the purified enzyme and towards this end we were successful to some extent. However, during crystallization trials most of the crystallization drops precipitated completely even at low protein oncentration. TP2 protein was purified using three-step chromatographic techniques by one of the project assistant in Prof. M. R. S. Rao’s laboratory. Because of low expression level and three step purification protocol, protein yield was not good enough for complete crystallization screening. Hits obtained from our initial screening could not be confirmed because of low protein yield as well as batch to batch variation. My attempts to crystallize these two proteins remained unsuccessful but in due course I had learnt a great deal about the tips and tricks of expression, purification and mainly crystallization. To overcome the problems faced with these two proteins, we decided to make some changes in the gene construct and try different expression systems. By this time (beginning of 2002), I had finished my first semester and a major part of the course work, so we decided to start a new project focusing on some of the unknown enzymes from a metabolic pathway. Dr. Parthasarathy, who had finished his Ph. D. from the lab, helped me in literature work and in finding targets for structural studies. Finally, we decided to target enzymes involved in the propionate etabolism. The pathways for propionate metabolism in Escherichia coli as well as Salmonella typhimurium were just established and there were no structural information available for most of the enzymes involved in these pathways. Since, propionate metabolic pathways were well described in the case of Salmonella typhimurium, we decided to use this as the model organism. We first started with the enzymes present in the propionate catabolic pathway “2-methylcitrate pathway”, which converts propionate into pyruvate and succinate. 2-methylcitrate pathway resembles the well-studied glyoxylate and TCA cycle. Most of the enzymes involved in 2-methylcitrate pathway were not characterized biochemically as well as structurally. First, we cloned all the four enzymes PrpB, PrpC, PrpD and PrpE present in the prpBCDE operon along with PrpR, a transcription factor, with the help of Dr. P.S. Satheshkumar from Prof. H. S. Savithri’s laboratory. Since these five proteins were cloned with either N- or C-terminal hexa-histidine tag, they could be purified easily using one-step Ni-NTA affinity column chromatography. PrpB, PrpC and PrpD had good expression levels but with PrpE and PrpR, more than 50% of the expressed protein went into insoluble fraction, probably due to the presence of membrane spanning domains in these two enzymes. Around this time, crystallization report for the PrpD from Salmonella was published by Ivan Rayment’s group, so after that we focused only on the remaining four proteins leaving out PrpD. Our initial attempts to crystallize these proteins became successful in case of PrpB, 2-methylisocitrate lyase. We collected a complete diffraction data to a resolution of 2.5 Å which was later on extended to a resolution of 2.1 Å using another crystal. Repeated crystallization trials with PrpC also gave small protein crystals but they were not easy to reproduce and size and diffraction quality always remained a problem. Using one good crystal obtained for PrpC, data to a resolution of 3.5 Å could be collected. Unfortunately, during data collection due to failure of the cryo-system, a complete dataset could not be collected. Further attempts to crystallize this protein made by Nandashree, one of my colleagues in the lab at that time, was also without much success. Attempts to purify and crystallize PrpE and PrpR were made by me as well as one of my colleagues, Anupama. In this case, besides crystallization, low expression and precipitation of the protein after purification were major problems. Our attempt to phase the PrpB data using the closest search model (phosphoenolpyruvate mutase) by molecular replacement technique was unsuccessful,probably because of low sequence identity between them (24%). Further attempts were made to obtain heavy atom derivatives of PrpB crystal. We could obtain a mercury derivative using PCMBS. However, an electron density map based on this single derivative was not nterpretable. Around this time, the structure of 2-methylisocitrate lyase (PrpB) from E. coli was published by Grimm et. al. The structure of Salmonella PrpB could easily be determined using the E. coli PrpB enzyme as the starting model. We also solved the structure of PrpB in complex with pyruvate and Mg2+. Our attempts to crystallize PrpB with other ligands were not successful. Using the structures of PrpB and its complex with pyruvate and Mg2+, we carried out comparative studies with the well-studied structural and functional homologue, isocitrate lyase. These studies provided the plausible rationale for different substrate specificities of these two enzymes. Due to unavailability of PrpB substrate commercially and the extensive biochemical and mutational studies carried out by two different groups made us turn our attention to other enzymes in this metabolic pathway. Since our repeated attempts to obtain good diffraction quality crystals of PrpC, PrpE and PrpR continued to be unsuccessful, we decided to target other enzymes involved in propionate metabolism. We looked into the literature for the metabolic pathways by which propionate is synthesized in the Salmonella typhimurium and finally decided to target enzymes present in the metabolic pathway which converts L-threonine to propionate. Formation of propionate from L-threonine is the most direct route in many organisms. During February 2003, we initiated these studies with the last enzyme of this pathway, propionate kinase (TdcD), and within a couple of months we could obtain a well-diffracting crystal in complex with ADP and with a non-hydrolysable ATP analog, AMPPNP. TdcD structure was solved by molecular replacement using acetate kinase as a search model. Propionate kinase, like acetate kinase, contains a fold with the topology βββαβαβα, identical with that of glycerol kinase, hexokinase, heat shock cognate 70 (Hsc70) and actin, the superfamily of phosphotransferases. Examination of the active site pocket in propionate kinase revealed a plausible structural rationale for the greater specificity of the enzyme towards propionate than acetate. One of the datasets of TdcD obtained in the presence of ATP showed extra continuous density beyond the γ-phosphate. Careful examination of this extra electron density finally allowed us to build diadenosine tetraphosphate (Ap4A) into the active site pocket, which fitted the density very well. Since the data was collected at a synchrotron source to a resolution of 1.98 Å, we could identify the ligand in the active site pocket solely on the basis of difference Fourier map. Later on, co-crystallization trials of TdcD with commercially available Ap4A confirmed its binding to the enzyme. These studies suggested the presence of a novel Ap4A synthetic activity in TdcD, which is further being examined by biochemical experiments using mass-spectrometry as well as thin-layer chromatography experiments. By the end of 2004, we shifted our focus to the first enzyme involved in the anaerobic degradation of L-threonine to propionate, a biodegradative threonine deaminase (TdcB). Sagar Chittori, who had joined the lab as an integrated Ph. D student, helped me in cloning this enzyme. My attempt to crystallize this protein became finally successful and datasets in three different crystal forms were collected. Dataset for TdcB in complex with CMP was collected during a synchrotron trip to SPring8, Japan by my colleague P. Gayathri and Prof. Murthy. TdcB structure was solved by molecular replacement using the N-terminal domain of biosynthetic threonine deaminase as a search model. Structure of TdcB in the native form and in complex with CMP helped us to understand several unanswered questions related to ligand mediated oligomerization and enzyme activation observed in this enzyme. The structural studies carried out on these three enzymes have provided structural as well as functional insights into the catalytic process and revealed many unique features of these metabolic enzymes. All these have been possible mainly due to proper guidance and encouragement from Prof. Murthy and Prof. Savithri. Prof. Murthy’s teaching as well as discussions during the course of investigation has helped me in a great deal to learn and understand crystallography. Collaboration with Prof. Savithri kept me close to biochemistry and molecular biology, the background with which I entered the world of structural biology. The freedom to choose the project and carry forward some of my own ideas has given me enough confidence to enjoy doing research in future.
6

Crystal Structures of a Bacterial Isocitrate Dehydrogenase and the Human Sulfamidase / Pushing the Limits of Molecular Replacement

Sidhu, Navdeep Singh 09 January 2014 (has links)
No description available.
7

Structure Determination of Proteins of Unknown Origin by a Marathon MR Protocol and Investigations on Parameters Important for Molecular Replacement Structure Solution

Hatti, Kaushik S January 2016 (has links) (PDF)
Occasionally, crystallisation of proteins works in mysterious ways! One might obtain crystals of a protein of unknown identity in place of the protein for which crystallisation experiments were performed. If the investigator is not aware of such possibilities, valuable time and resources might be lost in attempting to determine the structure of such proteins. Instances of non-target protein getting crystallised may not come to light at all or may be realised only when attempts to determine the structure completely fail by conventional procedures after collecting and processing the diffraction data. Usually, it is not possible to reproduce the crystals of the same protein as their occurrence is serendipitous. Such rare instances of crystallisation are probably caused by fluctuating environmental or crystallisation conditions and are not reproducible. It could also be due to contaminating microbes, which is more likely when the experimentalist is not well experienced. Therefore, experimental phasing of the data collected on serendipitously obtained crystals could be a challenging task. With the rapid increase in the number of structures deposited in the protein data bank (PDB), molecular replacement has become the method of choice for structure determination in macromolecular X-ray crystallography. This is due to the fact that it is possible to select a suitable phasing model for most target proteins based on their sequence information. However, if the identity of the target protein itself is uncertain, all attempts of structure determination using phasing models selected on the basis of target protein sequence-dependent search would fail. Sequence-independent ab initio phasing techniques such as ARCIMBOLDO (Meindl et al., 2012), which has recently become available, could provide leads only if the non-target protein is an all-α-protein and the associated diffraction data extends to a resolution better than 2 Å. Even then, the success rate with this technique is low. Hence, it becomes important to employ a sequence-independent method of structure determination for such mysteriously obtained crystals. This thesis reports crystal structures of proteins which are serendipitously crystallised using a large-scale application of Molecular Replacement (MR) technique (referred in this thesis as MarathonMR). This thesis also presents an evaluation of molecular replacement strategies for structure determination. The thesis begins with an overview of crystallographic methods of structure determination with an emphasis on the method of molecular replacement (Chapter 1). The most prominent of the results obtained in the course of these investigations pertains to a crystal obtained during routine crystallisation of a viral protein mutant in the year 2011. The cell parameters were different from cell constants of crystals obtained with other known viral protein mutants crystallised earlier in the same laboratory. Unfortunately, this crystal could not be reproduced in the same form in subsequent crystallisation trials. All attempts to determine the structure through conventional molecular replacement techniques using a combination of domains from a nearly identical virus coat protein protomer as the phasing model had failed. The data was shelved as “not-solvable” in late 2011. However, the crystal had diffracted to 1.9 Å and had excellent merging statistics. Therefore, the data was retrieved recently and additional attempts were made to determine the structure through phasing techniques that have become available recently. Techniques such as AMPLE (Bibby et al., 2013) and Rosetta (DiMaio, 2013), which use large-scale homology models coupled with molecular replacement, did not lead to meaningful solutions. A couple of helices identified by ARCIMBOLDO (Meindl et al., 2012) were neither correct (retrospectively) nor sufficient to determine the entire structure. Given the excellent merging statistics of the crystal data, there was significant motivation to determine the structure, though it meant developing a fresh protocol. It was at this time that we came across the work of Stokes-Rees and Sliz (2010) in which they had demonstrated that it is possible to determine structure of proteins of unknown identity by employing almost every known protein structure as a potential phasing model. The work reported in the thesis is a result of an earlier project to examine the relationship between properties of phasing models and the quality of target protein model generated through MR by employing large scale molecular replacement runs. This project was initiated because of the realisation that the recent explosion in crystallographic structural studies has resulted in near complete exploration of the “fold-space” of proteins and PDB now has a representative structure for most plausible folds of proteins. Some folds are highly represented in the PDB. Hence, it is likely that there would be at least one homologue in the PDB which could be used as a phasing model to successfully determine the structure of a protein of unknown identity if the diffraction dataset is of excellent quality. Hence, the single dataset which had diffracted to 1.9 Å resolution was used to develop a MarathonMR procedure for structure determination. MarathonMR procedure takes sequence-independent approach to structure determination and employs large-scale molecular replacement calculations to identify the closest homologue (in structural terms initially). This protocol is described in Chapter 2 (Materials and methods) of the thesis. Through MarathonMR, structure of the dataset which had remained unsolved for 5 years was finally determined. Nearly complete sequence of the polypeptide could be deduced by inspecting the electron density map due to the high resolution and quality of the map. The protein was found to be a phosphate binding protein from a soil bacterium Stenotrophomonas maltophilia (SmPBP). The way in which the structure was determined and possible explanations for the mysterious source of this protein which had crystallised instead of the target protein is discussed in Chapter 3. Though MarathonMR procedure was developed to solve a single dataset, it was soon realised that the same procedure could be applied to other similar datasets, all of which had diffracted to reasonable resolutions with good merging statistics but had remained unsolved for unknown reasons. Among such datasets, one of the datasets which was collected in 2007 and had diffracted to 2.3 Å resolution had cell parameters very close to that of SmPBP. Hence, a poly-alanine model of the structure of SmPBP, which was determined by then, was used as the phasing model to run molecular replacement and the structure was readily solved. It was surprising to note that SmPBP had crystallised serendipitously not once but twice, once in 2011 resulting in crystals that diffracted to 1.9 Å resolution and earlier in 2007 in crystals that diffracted to 2.3 Å resolution independently by two different investigators in the same laboratory. Both the structures are nearly identical and a comparison of these structures is presented in Chapter 4. Structure of SmPBP determined at 2.3 Å resolution by MarathonMR also corresponds to the dataset that had remained unsolved for the longest period of time (9 years). This success of structure determination after the lapse of such a long period emphasises the importance of carefully preserving X-ray diffraction data irrespective of its immediate outcome. In Chapter 5 of the thesis, another instance of non-target protein crystallisation, the structure of which was determined using the MarathonMR procedure is described. The crystal was obtained while carrying out crystallisation of mutants of a survival protein (SurE) expressed in Salmonella typhimurium when the bacterium is subjected to environmental or internal stresses. The original investigator had used the structure of SurE as the phasing model to determine structure of the mutant crystals and obtained a model with R and Rfree of 35% and 40%, respectively. However, the model did not refine further to lower R-factors suggesting that the solution obtained may not be correct. MarathonMR indicated that the fold of the crystallised protein could be similar to that of glycerol dehydrogenase. As SurE shares some fold similarity with one of the domains of GlyDH, the original investigator might have been able to achieve a limited success with R/Rfree factors of 35% and 40%, respectively. As the merging statistics for this diffraction data set was poor, the diffraction images were reprocessed in XDS program on Xia2 automated spot processing pipeline. The data statistics indicated merohedral twinning (14%). However, using appropriate parameters, it was possible to refine the structure obtained by MarathonMR to acceptable R/Rfree using the Refmac program. Four protomers were present in the crystal asymmetric unit (ASU). Non-crytsallographic symmetry averaging of electron density over these four molecules further improved the electron density. As the data was limited to 2.7 Å resolution, it was not possible to deduce the identity of every residue of the protein unambiguously based solely on the resulting electron density map. With the identity of the amino acids that could be deduced with certainty, it was clear that the protein belongs to glycerol dehydrogenase from a species of Enterobacteriacea family. Though a similar structure of glycerol dehydrogenase has been reported from Serratia, there are clear differences in many unambiguously determined residues which suggest that the protein is not from Serriatia. The protein has been named EnteroGlyDH as the source of the protein is likely to be from a species of Enterobacteriacea family. The structure of the protein, its biochemical implications and possible reasons for the serendipitous crystallisation of a non-target are discussed. Chapter 6 discusses the structure determination of an inorganic pyrophosphatase and catalytic domain of Succinyl transferase, the crystals of which had diffracted to 2.3 Å and 3.1 Å, respectively, but had remained unsolved. Neither of the datasets corresponds to the intended target proteins. The dataset corresponding to the protein whose structure was determined as that of an inorganic pyrophosphatase was provided by a colleague from a different laboratory in the Indian Institute of Science. It is interesting to note that the investigator had carried this dataset to one of the CCP4 workshops and had tried to determine the structure with the help of experts in the workshop. The attempts to determine its structure had however failed for reasons that are obvious now. The original investigator was unfortunately making efforts with an erroneous assumption on the identity of the target protein. As these enzymes are well studied, their structures and functions are briefly discussed. It is already well established that molecular replacement is being used with increasing frequency as the phasing technique when compared to other experimental phasing techniques. With the ever growing number of structures in the PDB, high population of certain folds and a near-plateau attained in the identification and growth of new folds, it is reasonable to expect that molecular replacement will be used even more frequently in the years to come. Therefore, for carrying out molecular replacement for a given diffraction dataset of a target protein, it is very likely that several homologous structures would be available in the PDB that could be used as potential phasing models. Hence, it becomes important to understand the influence of phasing model on the quality and accuracy of model generated through MR to achieve the best structure solution. To understand this relationship between phasing model and model obtained by MR protocol, re-determination of already known structures deposited in the PDB starting with their respective structure factors and various phasing models was initiated. Structures belonging to TIM beta/alpha-barrel (SCOPe ID: c.1) and Lysozyme-like (SCOPe ID: d.2) folds were chosen as targets. The structure of each target was re-determined serially starting with poly-alanine models of all available unique homologues as phasing models. Due to the multi-dimensional nature of this study, the results obtained were represented in a graphical form with nodes and edges. Detailed methodology of the work carried out and the data representation model are discussed in the Chapter 2 (Materials and methods). It was found that after a certain sequence identity cut-off, sequence identity between phasing model and target seems to have little influence on the quality and accuracy of the model generated through MR. Instead, other qualities of the phasing model such as Rfree and RSCC influence the quality of MR models. These results are discussed in Chapter 7. Learning from the work reported in this thesis are discussed in concluding chapter. The possible logical and programmatic upgrades to MarathonMR protocol and future path in which the relationship between phasing models and models generated through MR can be studied are discussed in Chapter 8 (Conclusion and future prospects).
8

解糖系酵素の構造と機能

山根, 隆, 飯島, 信司, 佐藤, 能雅, 田中, 勲, 畑, 安雄, 濱田, 賢作, 原田, 繁春, 樋口, 芳樹, 福山, 恵一, 松浦, 良樹, 松本, 治, 森本, 幸生, 森山, 英明 03 1900 (has links)
科学研究費補助金 研究種目:総合研究(A) 課題番号:03303014 研究代表者:山根 隆 研究期間:1991-1992年度

Page generated in 0.0717 seconds