• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 6
  • 2
  • Tagged with
  • 40
  • 40
  • 40
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Quantitative analysis of cytochrome P450 isoforms in human liver microsomes by the combination of proteomics and chemical probe-based assay

Liu, X., Hu, L., Ge, G., Yang, B., Ning, J., Sun, S., Yang, L., Pors, Klaus, Gu, J. January 2014 (has links)
No / Cytochrome P450 (CYP) is one of the most important drug-metabolizing enzyme families, which participates in the biotransformation of many endogenous and exogenous compounds. Quantitative analysis of CYP expression levels is important when studying the efficacy of new drug molecules and assessing drug-drug interactions in drug development. At present, chemical probe-based assay is the most widely used approach for the evaluation of CYP activity although there are cross-reactions between the isoforms with high sequence homologies. Therefore, quantification of each isozyme is highly desired in regard to meeting the ever-increasing requirements for carrying out pharmacokinetics and personalized medicine in the academic, pharmaceutical, and clinical setting. Herein, an absolute quantification method was employed for the analysis of the seven isoforms CYP1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1 using a proteome-derived approach in combination with stable isotope dilution assay. The average absolute amount measured from twelve human liver microsomes samples were 39.3, 4.3, 54.0, 4.6, 10.3, 3.0, and 9.3 (pmol/mg protein) for 1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1, respectively. Importantly, the expression level of CYP3A4 showed high correlation (r = 0.943, p < 0.0001) with the functional activity, which was measured using bufalin-a highly selective chemical probe we have developed. The combination of MRM identification and analysis of the functional activity, as in the case of CYP3A4, provides a protocol which can be extended to other functional enzyme studies with wide application in pharmaceutical research.
32

Molecular epidemiology of coagulase-negative staphylococci in hospitals and in the community

Widerström, Micael January 2010 (has links)
Background Coagulase-negative staphylococci (CoNS) and in particular Staphylococcus epidermidis have emerged as major pathogens primarily causing nosocomial infections in patients with indwelling medical devices. These infections are often caused by multidrug-resistant strains of S. epidermidis (MDRSE). Other clinical entities due to CoNS are lower urinary tract infections (UTI) in women and native valve endocarditis. The purpose of this work was to investigate the frequency of antibiotic resistance and the molecular epidemiology of both hospital and community-associated isolates of S. epidermidis in order to examine if certain clones are related to MDRSE infections. Furthermore, we aimed to explore if specific clones of S. saprophyticus are associated with UTI in women. Methods A total of 359 hospital-associated methicillin-resistant isolates of CoNS obtained from 11 hospitals in northern Europe and 223 community-associated staphylococcal isolates were examined. Furthermore, 126 isolates of S. saprophyticus isolated from women with uncomplicated UTI from five different locations in northern Europe were analyzed. Pulsed-field gel electrophoresis (PFGE) was used for genotyping. Additionally, some of the S. epidermidis isolates were analyzed with multilocus sequence typing (MLST). Antibiotic susceptibility was determined for all isolates by the disc diffusion test. Results 293 of the 359 (82%) hospital-associated and 124 of the 223 (56%) community-associated isolates belonged to the species S. epidermidis. Among the hospital-associated S. epidermidis isolates, two dominating PFGE types (type A and B) were distinguished, comprising 78 (27%) and 51 (17%) isolates, respectively. Type A, which was detected in a Norwegian and eight Swedish hospitals, corresponded with a novel sequence type (ST215). Type B was discovered in a German, a Danish and seven Swedish hospitals and corresponded with ST2. In contrast, community-associated isolates of S. epidermidis were genetically extremely diverse with no predominating genotype, and showed a low rate of antibiotic resistance; only two (1.6%) methicillin-resistant strains were detected. Among 126 analyzed isolates of S. saprophyticus, 47 different PFGE profiles were identified. Several clusters of genetically highly related isolates were detected among isolates obtained from different locations and periods of time. Conclusion We have demonstrated the occurrence, persistence and potential dissemination of two multidrug-resistant S. epidermidis (MDRSE) genotypes, including a novel sequence type (ST215), within hospitals in northern Europe. Community-associated isolates of S. epidermidis showed a low rate of methicillin-resistance and were genetically heterogeneous. These results indicate that MDRSE by large are confined to the hospital setting in our region. Moreover, although the S. saprophyticus population was quite heterogeneous, indistinguishable isolates of S. saprophyticus causing lower UTI in women were identified in different countries 11 years apart, indicating the persistence and geographical spread of some clones of S. saprophyticus.
33

Melanopsin polymorphisms in seasonal affective disorder /

Roecklein, Kathryn Ariel. January 2005 (has links) (PDF)
Thesis (M.S.)--Uniformed Services University of the Health Sciences, 2005. / Running title: Seasonal affective disorder and melanopsin. Typescript (photocopy).
34

Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain

Soutar, M.P., Kim, W.Y., Williamson, Ritchie, Peggie, M., Hastie, C.J., McLauchlan, H., Snider, W.D., Gordon-Weeks, P.R., Sutherland, C. January 2010 (has links)
Mammalian glycogen synthase kinase-3 (GSK3) is generated from two genes, GSK3alpha and GSK3beta, while a splice variant of GSK3beta (GSK3beta2), containing a 13 amino acid insert, is enriched in neurons. GSK3alpha and GSK3beta deletions generate distinct phenotypes. Here, we show that phosphorylation of CRMP2, CRMP4, beta-catenin, c-Myc, c-Jun and some residues on tau associated with Alzheimer's disease, is altered in cortical tissue lacking both isoforms of GSK3. This confirms that they are physiological targets for GSK3. However, deletion of each GSK3 isoform produces distinct substrate phosphorylation, indicating that each has a different spectrum of substrates (e.g. phosphorylation of Thr509, Thr514 and Ser518 of CRMP is not detectable in cortex lacking GSK3beta, yet normal in cortex lacking GSK3alpha). Furthermore, the neuron-enriched GSK3beta2 variant phosphorylates phospho-glycogen synthase 2 peptide, CRMP2 (Thr509/514), CRMP4 (Thr509), Inhibitor-2 (Thr72) and tau (Ser396), at a lower rate than GSK3beta1. In contrast phosphorylation of c-Myc and c-Jun is equivalent for each GSK3beta isoform, providing evidence that differential substrate phosphorylation is achieved through alterations in expression and splicing of the GSK3 gene. Finally, each GSK3beta splice variant is phosphorylated to a similar extent at the regulatory sites, Ser9 and Tyr216, and exhibit identical sensitivities to the ATP competitive inhibitor CT99021, suggesting upstream regulation and ATP binding properties of GSK3beta1 and GSK3beta2 are similar.
35

Biallelic Mutations in the Autophagy Regulator DRAM2 Cause Retinal Dystrophy with Early Macular Involvement

El-Asrag, M.E., Sergouniotis, P.I., McKibbin, M., Plagnol, V., Sheridan, E., Waseem, N., Abdelhamed, Z., McKeefry, Declan J., Van Schil, K., Poulter, J.A., UK Inherited Retinal Disease Consortium, Johnson, C.A., Carr, I.M., Leroy, B.P., Baere, E. de, Inglehearn, C.F., Webster, A.R., Toomes, C.l., Ali, M. 14 May 2015 (has links)
no / Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs∗3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165∗] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function.
36

Mapeamento dos subsítios de &#945;-amilase de Xanthomonas axonopodis pv citri envolvidos na interação com o substrato / Subsite mapping of Xanthomonas axonopodis pv citri &#945;-amylase involved in substrate binding

Pinho, Jean Marcel Rodrigues 20 December 2004 (has links)
Mapeamento dos subsítios de &#945;-amilase de Xanthomonas axonopodis pv. Citri envolvidos na interação com o substrato A família das enzimas &#945;-amilases é um modelo experimental interessante para o estudo das interações entre os aminoácidos e seus ligantes, já que estas enzimas apresentam especificidade variável, são frequentemente alvos de estudos por mutagênese e há estruturas cristalinas disponíveis para alguns membros da família. A proposta deste trabalho foi o mapear subsítios da &#945;-amilase de Xanthomonas axonopodis pv. citri (AXA) envolvidos na interação com substratos, através de comparações estruturais, mutagêneses sítio-dirigidas, análises de parâmetros cinéticos sobre amido e do padrão de clivagem sobre p-nitrofenil malto-oligossacarideos (PNPG7, PNPG5, PNPG4). Foi criado um modelo estrutural para AXA a partir da estrutura tridimensional da &#945;-amilase de Alteromonas haloplanctis (Aghajari et al., 1998). O modelo de AXA foi sobreposto na estrutura da &#945;-amilase pancreática de porco (Qian et al., 1994) e 11 resíduos foram selecionados e mutados para alanina. As &#945;-amilases recombinantes mutantes e selvagem foram secretadas pela levedura Pichia pastoris GS115, apresentando uma massa molecular aparente de 45 kDa. Todos os mutantes analisados reduziram em maior ou menor grau a atividade catalítica da enzima sobre amido e p-nitrofenil maltooligossacarideos. Mutações dos resíduos H88, F136, D196, E223, D295 e N299, deletaram a atividade enzimática, indicando que suas cadeias laterais são essenciais para o desempenho catalítico da enzima. As análises cinéticas e estruturais sugerem fortemente que D196, E223 e D295 são os resíduos catalíticos. Substituições das cadeias laterais de C157, H200, G227, T230 e H294 reduziram a eficiência catalítica (kcat/Km) da &#945;-amilase sobre o substrato amido para, respectivamente, 28%, 41%, 84%, 81% e 51%. As mutações em G227 e T230 foram menos importantes para a atividade da enzima e afinidade pelo amido, entretanto, estes resíduos mostraram-se importantes para a estabilização de complexos com substratos curtos (pNPG4). Os resultados indicam que o sítio ativo de AXA é formado por, no mínimo, seis subsítios. As interações dos anéis de glicose com os subsítios +2 e -2 são favorecidas em relação às interações nos subsítios -3 e +3, respectivamente, e a interação do anel de glicose no subsítio -3 é favorecida em relação à interação no subsítio +3. A enzima selvagem diva preferencialmente a terceira ligação glicosídica de p-nitrofenil maltooligossacarideos. Como produtos de hidrólise a enzima libera maltopentaose, maltotetraose, maltotriose, maltose e glicose. / The &#945;-amylase family is an interesting group for structure/function relationship investigation, as this family exhibits a variable deavage patterm, several crystal structures are available, and its members were studied by mutagenesis. The aim of this study was the mapping of Xanthomonas axonopodis pv. Citri &#945;-amylase (AXA) subsites involved in substrate binding, using structural comparison, site-directed mutagenesis and lcinetics analyses. A structural model for AXA was created from the three-dimensional structure of the &#945;-amylase from Alteromonas haloplanctis (Aghajari et al., 1998). This model was superimposed on the structure ofthe pig pancreatic &#945;-amylase, PPA (Qian et. al., 1994), and 11 residues were selected and changed to alanine. Wild type and mutant AXA were secreted by Pichia pastoris strain GS115 cells and showed apparent molecular mass of 45 kDa. All mutants have reduced &#945;-amylase activity on starch and 4-nitrophenyl maltooligosaccharides (pNPG7, PNPG5 and PNPG4) at different levels. Mutation of residues H88, F136, D196, E223, D295 and N299 indicate their essential role by complete loss of activity. Kinetic and structural analyses strongly suggested that D196, E223 and D295 are the catalytic residues. The substitution of the side chain of C157, H200, G227, T230 and H294 reduced the catalytic efficiency (kcat/Km) of &#945;-amylase on starch to respectively 28%, 41%, 84%, 81% and 51%. Although G227 and T230 were not much important for activity and binding on starch, these residues were important for stabilization of complexes with short substrates (PNPG4). The results indicate that AXA\'s active site is composed of at least six sugar binding subsites. The binding of the glucoses at subsites +2 and -2 are favored against binding at subsites -3 and +3, respectively. The binding of glucose at subsite -3 is favored against binding at subsite +3. The wild type enzyme primarily hydrolyzes the third glucosidic bond in PNPG7, PNPG5 and PNPG4 and the products of hydrolysis were maltopentaose, maltotetraose, maltotriose, maltose and glucose.
37

Molecular epidemiology of epidemic severe malaria caused by Plasmodium vivax in the state of Amazonas, Brazil /

Santos-Ciminera, Patricia Dantas. Ciminera, Patricia Dantas Santos. Santos, Patricia. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).
38

Mapeamento dos subsítios de &#945;-amilase de Xanthomonas axonopodis pv citri envolvidos na interação com o substrato / Subsite mapping of Xanthomonas axonopodis pv citri &#945;-amylase involved in substrate binding

Jean Marcel Rodrigues Pinho 20 December 2004 (has links)
Mapeamento dos subsítios de &#945;-amilase de Xanthomonas axonopodis pv. Citri envolvidos na interação com o substrato A família das enzimas &#945;-amilases é um modelo experimental interessante para o estudo das interações entre os aminoácidos e seus ligantes, já que estas enzimas apresentam especificidade variável, são frequentemente alvos de estudos por mutagênese e há estruturas cristalinas disponíveis para alguns membros da família. A proposta deste trabalho foi o mapear subsítios da &#945;-amilase de Xanthomonas axonopodis pv. citri (AXA) envolvidos na interação com substratos, através de comparações estruturais, mutagêneses sítio-dirigidas, análises de parâmetros cinéticos sobre amido e do padrão de clivagem sobre p-nitrofenil malto-oligossacarideos (PNPG7, PNPG5, PNPG4). Foi criado um modelo estrutural para AXA a partir da estrutura tridimensional da &#945;-amilase de Alteromonas haloplanctis (Aghajari et al., 1998). O modelo de AXA foi sobreposto na estrutura da &#945;-amilase pancreática de porco (Qian et al., 1994) e 11 resíduos foram selecionados e mutados para alanina. As &#945;-amilases recombinantes mutantes e selvagem foram secretadas pela levedura Pichia pastoris GS115, apresentando uma massa molecular aparente de 45 kDa. Todos os mutantes analisados reduziram em maior ou menor grau a atividade catalítica da enzima sobre amido e p-nitrofenil maltooligossacarideos. Mutações dos resíduos H88, F136, D196, E223, D295 e N299, deletaram a atividade enzimática, indicando que suas cadeias laterais são essenciais para o desempenho catalítico da enzima. As análises cinéticas e estruturais sugerem fortemente que D196, E223 e D295 são os resíduos catalíticos. Substituições das cadeias laterais de C157, H200, G227, T230 e H294 reduziram a eficiência catalítica (kcat/Km) da &#945;-amilase sobre o substrato amido para, respectivamente, 28%, 41%, 84%, 81% e 51%. As mutações em G227 e T230 foram menos importantes para a atividade da enzima e afinidade pelo amido, entretanto, estes resíduos mostraram-se importantes para a estabilização de complexos com substratos curtos (pNPG4). Os resultados indicam que o sítio ativo de AXA é formado por, no mínimo, seis subsítios. As interações dos anéis de glicose com os subsítios +2 e -2 são favorecidas em relação às interações nos subsítios -3 e +3, respectivamente, e a interação do anel de glicose no subsítio -3 é favorecida em relação à interação no subsítio +3. A enzima selvagem diva preferencialmente a terceira ligação glicosídica de p-nitrofenil maltooligossacarideos. Como produtos de hidrólise a enzima libera maltopentaose, maltotetraose, maltotriose, maltose e glicose. / The &#945;-amylase family is an interesting group for structure/function relationship investigation, as this family exhibits a variable deavage patterm, several crystal structures are available, and its members were studied by mutagenesis. The aim of this study was the mapping of Xanthomonas axonopodis pv. Citri &#945;-amylase (AXA) subsites involved in substrate binding, using structural comparison, site-directed mutagenesis and lcinetics analyses. A structural model for AXA was created from the three-dimensional structure of the &#945;-amylase from Alteromonas haloplanctis (Aghajari et al., 1998). This model was superimposed on the structure ofthe pig pancreatic &#945;-amylase, PPA (Qian et. al., 1994), and 11 residues were selected and changed to alanine. Wild type and mutant AXA were secreted by Pichia pastoris strain GS115 cells and showed apparent molecular mass of 45 kDa. All mutants have reduced &#945;-amylase activity on starch and 4-nitrophenyl maltooligosaccharides (pNPG7, PNPG5 and PNPG4) at different levels. Mutation of residues H88, F136, D196, E223, D295 and N299 indicate their essential role by complete loss of activity. Kinetic and structural analyses strongly suggested that D196, E223 and D295 are the catalytic residues. The substitution of the side chain of C157, H200, G227, T230 and H294 reduced the catalytic efficiency (kcat/Km) of &#945;-amylase on starch to respectively 28%, 41%, 84%, 81% and 51%. Although G227 and T230 were not much important for activity and binding on starch, these residues were important for stabilization of complexes with short substrates (PNPG4). The results indicate that AXA\'s active site is composed of at least six sugar binding subsites. The binding of the glucoses at subsites +2 and -2 are favored against binding at subsites -3 and +3, respectively. The binding of glucose at subsite -3 is favored against binding at subsite +3. The wild type enzyme primarily hydrolyzes the third glucosidic bond in PNPG7, PNPG5 and PNPG4 and the products of hydrolysis were maltopentaose, maltotetraose, maltotriose, maltose and glucose.
39

Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry

Seibert, C., Davidson, B.R., Fuller, B.J., Patterson, Laurence H., Griffiths, W.J., Wang, Y. January 2009 (has links)
Here we report the identification and approximate quantification of cytochrome P450 (CYP) proteins in human liver microsomes as determined by nano-LC-MS/MS with application of the exponentially modified protein abundance index (emPAI) algorithm during database searching. Protocols based on 1D-gel protein separation and 2D-LC peptide separation gave comparable results. In total, 18 CYP isoforms were unambiguously identified based on unique peptide matches. Further, we have determined the absolute quantity of two CYP enzymes (2E1 and 1A2) in human liver microsomes using stable-isotope dilution mass spectrometry, where microsomal proteins were separated by 1D-gel electrophoresis, digested with trypsin in the presence of either a CYP2E1- or 1A2-specific stable-isotope labeled tryptic peptide and analyzed by LC-MS/MS. Using multiple reaction monitoring (MRM) for the isotope-labeled tryptic peptides and their natural unlabeled analogues quantification could be performed over the range of 0.1-1.5 pmol on column. Liver microsomes from four individuals were analyzed for CYP2E1 giving values of 88-200 pmol/mg microsomal protein. The CYP1A2 content of microsomes from a further three individuals ranged from 165 to 263 pmol/mg microsomal protein. Although, in this proof-of-concept study for CYP quantification, the two CYP isoforms were quantified from different samples, there are no practical reasons to prevent multiplexing the method to allow the quantification of multiple CYP isoforms in a single sample.
40

Examination of Neisseria gonorrhoeae opacity protein expression during experimental murine genital tract infection /

Simms, Amy Nicole. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).

Page generated in 0.1055 seconds