• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum memory protocols in large cold atomic ensembles

Veissier, Lucile 05 December 2013 (has links) (PDF)
Les mémoires quantiques sont un élément essentiel dans le domaine de l'information quantique, en particulier pour la mise en oeuvre de communications quantiques sur de longues distances. Une mémoire quantique a pour but de stocker un état quantique de la lumière, comme par exemple un bit quantique (qubit), et de le réémettre après un délai donné. Les ensembles atomiques sont de bons candidats pour construire de telles mémoires quantiques, car il est possible d'obtenir de fort couplage lumière-matière dans le cas d'un grand nombre d'atomes. De plus, la notion d'effet collectif, qui est renforcé pour de large profondeur optique, permet en principe une efficacité de stockage proche de l'unité. Ainsi, dans cette thèse, un piège magnéto-optique de césium à forte densité optique est utilisé pour l'implémentation d'un protocole de mémoire quantique basé sur la transparence induite électromagnétiquement (EIT). Tout d'abord, le phénomène EIT est étudié à travers un critère de discrimination entre les modèles d'EIT et de séparation Autler-Townes. Nous rapportons ensuite la mise en oeuvre d'une mémoire basée sur l'EIT pour des qubits photoniques encodés en moment angulaire orbital (OAM) de la lumière. Une mémoire réversible pour des modes de Laguerre-Gauss est réalisée, et nous démontrons que la mémoire optique préserve le sens de la structure hélicoïdale au niveau du photon unique. Ensuite, une tomographie quantique complète des états réémis est effectuée, donnant des fidélités au-dessus de la limite classique. Cela montre que notre mémoire optique fonctionne dans le régime quantique. Enfin, nous présentons la mise en oeuvre du protocole dit DLCZ dans notre ensemble d'atomes froids, permettant la génération de photons uniques annoncés. Une détection homodyne nous permet de réaliser la tomographie quantique de l'état photonique ainsi créé.
2

Optical quantum memories with cold atomic ensembles : a free space implementation for multimode storage, or a nanofiber-based one for high collection efficiency / Mémoires quantiques pour la lumière avec des atomes froids : une implémentation en espace libre pour un stockage multimode ou une implémentation à base de nano-fibres pour une meilleure efficacité de collection.

Nicolas, Adrien 30 September 2014 (has links)
Nous étudions expérimentalement deux mémoires quantiques pour la lumière utilisant la transparence électromagnétiquement induite (EIT) dans des nuages froids de césium.Nous expliquons la pertinence des mémoires quantiques pour le développement de réseaux quantiques à longue distance, et décrivons la théorie de l’EIT en soulignant les paramètres essentiels pour l’implémentation de mémoires quantiques.Notre premier cas d’étude est un piège magnéto-optique en espace libre. Notre principal résultat est la démonstration du caractère multimode de ce système pour le stockage quantique de la lumière. Pour cela, nous utilisons des faisceaux de Laguerre-Gauss (LG), porteurs de moment angulaire orbital (OAM). Dans une première étape, nous avons montré que l’état de moment orbital d’impulsions lumineuses en régime de photons uniques est préservé lors du stockage dans la mémoire. Ensuite, nous avons implémenté un bit quantique comme une superposition de modes LG ayant des hélicités opposées. Nous avons développé un système original pour mesurer ces bits quantiques qui nous a permis de caractériser l’action de la mémoire. Nous avons ainsi pu montrer que le stockage quantique de ces bits quantiques.Le second système, également un nuage d’atomes froids, a la particularité que les atomes sont piégés optiquement autour d’un nano-guide d’onde. Ce design innovant permet une plus grande interaction entre lumière et matière, et facilite l’interfaçage des photons dans et hors de la mémoire. Nous décrivons la construction de ce dispositif et les premiers pas vers son utilisation en tant que mémoire quantique. / We present an experimental study of two optical quantum memory systems based on electromagnetically induced transparency (EIT) in cold cesium atoms.We explain the relevance of quantum memories for the development of large-scale quantum networks, we give a comprehensive theory of the EIT phenomenon and underline the role of relevant parameters regarding the implementation of quantum memories.The first system under study is prepared in a free-space magneto-optical trap. The main result of this thesis is the demonstration of the spatial multimode capability of this system at the quantum level. For this, we used Laguerre-Gaussian (LG) light beams, i.e. beams possessing a non-zero value of orbital angular momentum (OAM). In a first step, we showed that the orbital angular momentum of stored light pulses is preserved by the memory, deep in the single photon regime. In a second step, we encoded information in the orbital angular momentum state of a weak light pulse and defined a qubit using two LG beams of opposite helicities. We developed an original setup for the measurement of this OAM qubit and used it to characterize the action of the memory during the storage of such a light pulse. Our results show that the memory performs the quantum storage of such a qubit.The second system under study, also a cloud of cold atoms, has the specificity that the atoms are trapped optically in the vicinity of a nano-waveguide. This innovative design ensures a higher light-matter interaction and facilitates the interfacing of photons into and out of the memory. We describe the building of this setup and the first steps towards quantum memory implementations.

Page generated in 0.109 seconds