• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 217
  • 42
  • 18
  • 16
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 349
  • 155
  • 62
  • 60
  • 36
  • 30
  • 30
  • 26
  • 26
  • 23
  • 22
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Studies On Intracrine Regulators Of Ovarian Function : Examination Of Progesterone Action On Structure And Function Of Corpus Luteum In The Monkey

Suresh, P S 11 1900 (has links) (PDF)
The control of reproductive cycles in higher primates is largely dependent on negative and positive feedback mechanisms by both steroidal and non-steroidal substances of the ovaries which regulate the function of hypothalamo-pituitary system. To gain insights into the role of INH A, the non steroidal ovarian hormone in the feedback control of pituitary FSH secretion, studies were conducted to examine the interrelationships of hormones throughout the menstrual cycle of the bonnet macaque. The findings of chapter II provide a detailed description of endocrine hormone profile during the menstrual cycle of the bonnet macaques with special attention to the feedback role of INH A on pituitary FSH secretion. To characterize the endocrine profile of different hormones, both ovarian (E2, P4, INH A) and pituitary (FSH, LH) hormones were measured daily for more than 40 days. To further examine the site of secretion of INH A and its relationship with pituitary FSH dynamics, surgical lutectomy and pharmacological induction of luteolysis employing the third generation GnRH R antagonist, Cetrorelix (CET) studies were carried out in the subsequent experiments. The results obtained from these studies suggest that INH A and P4 secreted from the CL during luteal phase regulate pituitary FSH secretion. The selective rise in FSH observed during the late menstrual cycle and during menstruation (referred to as luteo-follicular transition), as has been reported previously in higher primates, considered necessary for initiation of follicular growth and recruitment of follicles for ensuing menstrual cycle was characterized in the monkey. Surgical lutectomy and induction of luteolysis by CET experiments suggested that increased GnRH secretion is essential for this selective rise in FSH following withdrawal of inhibition by P4 and INH A. In clinical cases of reproductive ageing, the shortened follicular phase in human females has been identified to be the result of occurrence of early onset of FSH rise during the luteal-follicular transition period. The cause(s) of declining fertility with age in women who still have regular menstrual cycles are not clear, but issues of relationship between dysregulation of selective FSH rise in the late luteal phase and associated infertility could be examined using bonnet monkey as a model system. INH A is secreted in significant quantities by CL in higher primates and the feto placental unit suggesting its importance during fertility and pregnancy. Apart from the negative feedback regulation of pituitary FSH secretion, the complete repertoire of actions of this hormone during pregnancy is yet to be fully understood. The data presented in this thesis is the first comprehensive report showing the endocrine hormone profile of gonadotropins and ovarian hormones including INH A throughout the menstrual cycle of the bonnet macaque. The characterization of INH A profile in bonnet monkey will be of significant value for studies examining the role of INH A in higher primates. Dimeric inhibin has been suggested to be important for regulation of fertility and reproductive functions. Also, inhibin-α (one of the subunits of the dimeric protein) knock out mice model has provided convincing evidence that it acts as a tumour suppressor. A great deal of new information has been generated in recent years regarding the potential clinical usefulness of monitoring inhibin levels in blood and biological fluids in gynaecological diseases, pathological pregnancies and other disorders. Emerging clinical roles of inhibin have made INH A an important candidate molecule to study its molecular regulation. The results presented in chapter II suggested that LH regulates luteal INH A secretion (induction of luteolysis by CET administration experiment). As a first step towards understanding molecular regulation of inhibin-α expression in the macaque CL, in silico promoter analysis of macaque inhibin-α was performed and it revealed several transcriptional factor binding sites that were conserved across species. In rats FSH up regulates while preovulatory LH surge suppresses inhibin-α mRNA expression in the ovary and this suppression has been suggested to be necessary for occurrence of secondary FSH surge during metestrus. To address differential regulation of inhibin-α by LH and FSH in rat ovary during the periovulatory period, studies employing immature rats were carried out and the results are presented in chapter III. The results suggest that immature rat ovaries respond to exogenous gonadotropins in terms of LH signaling (cAMP production), luteinization (P4 production) and as well induction of ICER expression required for repression of inhibin-α subunit expression. PDE4 inhibitor (rolipram) treatment enhanced the ovarian cAMP concentrations suggesting that PDE4 play a major role in controlling intraovarian cAMP concentrations in rat ovaries. However increased cAMP concentrations did not appear to up regulate the ICER expression at the time point examined in this study. In higher primates time course of second FSH surge and continued synthesis and secretion of INH A in the CL are different from non primate species. In the monkey, the second FSH rise occurs during the late luteal phase and experiments have been carried out to examine the regulation of inhibin-α subunit expression by ICER. Expressions of ICER (mRNA/protein) and INH A were examined during different stages of CL and the results indicated no clear inverse relationship between the ICER and inhibin-α mRNAs. With no conclusive role for the ICER in regulating luteal inhibin-α observed in the study, the role of transcriptional activators in the regulation of inhibin-α like GATA4, SF-1, β-catenin were further examined. Since luteal INH A secretion was dependent on pituitary LH as determined earlier in chapter II, expressions of transcriptional activators were examined in CL of different stages and also during induced luteolysis and the results are described in chapter IV. In conclusion, our results indicate cross talk between WNT, cAMP and P38 MAP kinase signaling pathways in the regulation of luteal INH A secretion. The pituitary gonadotropin, LH, is the primary luteotropin in primate species acting to maintain the structure and function of the CL during the menstrual cycle. However whether the actions of LH are direct or mediated by local factors such as P4 remain unknown. Moreover, P4 secretion which is dominant during luteal phase has any role in regulating CL structure and function is not clearly defined. To address these and issues concerning P4 actions, initially, experiments were performed in the rat model to study the importance of P4 in the regulation of ovarian functions. An antiprogestin, RU486, was employed as a tool to uncover the PR regulated pathways during ovulation in rats and the findings are presented in the chapter V. The results indicated that blockade of PR action by RU486 during gonadotropin-induced superovulation resulted in inhibition of follicular rupture and ovulation in immature rats. Further to understand the downstream effectors of PR action, and to identify the candidate target genes of PR activation, semi-quantitative RT-PCR and western blot analyses were performed. The results obtained indicated that betacellulin, a member of EGF family and MMP-9 a proteolytic enzyme, were markedly repressed in response to RU486 treatment in rat ovaries. Also, the down stream pathway of EGF signaling leading to activation of ERK was markedly repressed in RU486 treated ovaries. It was next examined what role the P4/PR system has in the regulation of CL structure and function. Surprisingly, PR expression is absent in CL of rats, while it is present in higher primates. Experiments were carried out to examine intracrine actions of P4 in the regulation of CL structure and function in monkeys. The recently reported model system of induced luteolysis yet capable of responsive to trophic support from the laboratory provided an ideal opportunity to examine direct effects of P4 on structure and function of CL in the monkey. A series of pilot experiments were carried out in monkeys experiencing summer amenorrhea, to determine dose and mode of administration of exogeneous P4 to simulate mid luteal phase circulating P4 concentrations in monkeys subjected to induced luteolysis. Based on the results of pilot experiments, implantation of Alzet pumps containing 97.5mg of P4 was selected for maintaining mid luteal phase P4 concentrations. The microarray data of induced luteolysis previously deposited by the laboratory in NGBI’s gene expression omnibus were mined for identification and validation of differentially expressed genes of PR and its target genes following LH depletion and LH replacement experiments. Expressions of PR, PR cofactors and expressions of PR downstream target genes through out the luteal phase and in CL from day1 of menses were also examined. Analysis of expressions of genes revealed that of the 45 genes identified to be regulated by LH treatment, 4 genes were found to be responsive to P4, and 14 were identified to be responsive to both P4 and LH. Morphology of CL tissue sections revealed that P4 treatment appeared to have reversed the induced-luteolysis changes. In another experiment, implantation of P4 during late luteal phase (i.e., the period of declining P4 concentrations) for 24h caused changes in expressions of genes associated with tissue remodeling and morphology of luteal cells. Taken together, the results suggest that induced luteolysis plus P4 replacement model is suitable for assessing the effects of P4 on CL function. The results also suggest that CL could serve as target tissue for examining the genomic and non genomic actions of P4. In summary, studies carried out in the present thesis provides a comprehensive endocrine hormone profile throughout the menstrual cycle of the bonnet monkey with special emphasis on time course of INH A and FSH secretion which is very useful for future investigations. Studies have been carried out in rats and monkeys with different experimental model systems to address molecular mechanisms underlying inhibin-α regulation in the ovary in general and CL in particular. Experimental findings in monkeys could help elucidate the underlying molecular nature of CL functionality and extrapolate to understand luteal insufficiency and infertility producing conditions in humans. Also different model systems have been validated to examine the actions of P4/PR system in rats and monkeys and more importantly to address the direct effects of P4 upon monkey CL structure and function were established. Future investigations based on findings of these studies should help clarify relative roles for LH and P4 during maintenance of CL function and luteolysis.
192

Dynamics of Invariant Object Representations in the Monkey Inferotemporal Cortex

Ratan Murty, Naredle Apurva January 2016 (has links) (PDF)
Vision is computationally challenging because objects in the real world can change in size, position, viewpoint etc., and therefore cast a myriad images on the retina. Viewpoint changes are particularly challenging because new features can appear or disappear and existing features can be stretched or compressed. Even though humans are adept at recognizing objects across changes in viewpoint, the underlying neural representations are poorly understood. The goal of this thesis is to investigate viewpoint invariant object representations in the brain using recordings of single neurons in monkey visual cortex, and using behavioural experiments in humans. This thesis summarizes the results from a series of six experiments in which we recorded the responses of single neurons in the monkey inferior temporal cortex, an area critical for object recognition. In Experiment 1, we recorded neural responses to objects across two views and elucidated the dynamics of viewpoint invariance and the factors that modulate it. We observed a dramatic transition from view dependence in the early part of the neural response to view invariance in the later part. In Experiment 2, we investigated the effect of silhouetting and inversion on view invariance. In Experiment 3, we generalized our findings to multiple viewpoints and characterized view invariance for impoverished non-generic viewpoints and mirror views. In Experiment 4, we compared the magnitude and dynamics of viewpoint invariance with other known identity-preserving transformations such as size, position and rotation. In Experiment 5, we demonstrate that IT neurons potentially encode object features even after they rotate out of view. In Experiment 5, we demonstrate a generalization of view invariance, whereby neurons can decouple patterns across non-rigid surface changes. Taken together, our results reveal a dynamic picture of how view invariant representations are constructed in the brain to enable complex perceptual inferences.
193

Reaching High Availability in Connected Car Backend Applications

Yadav, Arpit 23 May 2017 (has links)
The connected car segment has high demands on the exchange of data between the car on the road, and a variety of services in the backend. By the end of 2020, connected services will be mainstream automotive offerings, according to Telefónica - Connected Car Industry Report 2014 the overall number of vehicles with built-in internet connectivity will increase from 10% of the overall market today to 90% by the end of the decade [1]. Connected car solutions will soon become one of the major business drivers for the industry; they already have a significant impact on existing solutions development and aftersales market. It has been more than three decades since the introduction of the first software component in cars, and since then a vast amount of different services has been introduced, creating an ecosystem of complex applications, architectures, and platforms. The complexity of the connected car ecosystem results into a range of new challenges. The backend applications must be scalable and flexible enough to accommodate loads created by the random user and device behavior. To deliver superior uptime, back-end systems must be highly integrated and automated to guarantee lowest possible failure rate, high availability, and fastest time-to-market. Connected car services increasingly rely on cloud-based service delivery models for improving user experiences and enhancing features for millions of vehicles and their users on a daily basis. Nowadays, the software applications become more complex, and the number of components that are involved and interact with each other is extremely large. In such systems, if a fault occurs, it can easily propagate and can affect other components resulting in a complex problem which is difficult to detect and debugg, therefore a robust and resilient architecture is needed which ensures the continuous availability of system in the wake of component failures, making the overall system highly available. The goal of the thesis is to gain insight into the development of highly available applications and to explore the area of fault tolerance. This thesis outlines different design patterns and describes the capabilities of fault tolerance libraries for Java platform, and design the most appropriate solution for developing a highly available application and evaluate the behavior with stress and load testing using Chaos Monkey methodologies.
194

Modeling neuropathogenesis of B virus infection in the macaque ganglia

LeCher, Julia 09 May 2016 (has links)
B virus is an alphaherpesvirus, endemic to macaque monkeys, capable of deadly human zoonosis with an 80% mortality rate in untreated cases. The macaque monkey is widely used in biomedical research and the threat of B virus poses an occupational hazard to researchers, veterinarians, and animal handlers. B virus establishes a life-long latent infection in sensory neurons of the peripheral nervous system (PNS) in the natural host. In human infections, B virus readily transits to the central nervous system (CNS) and destroys brain tissues. Identifying immune correlates of B virus infection in the PNS of the natural host is critical in understanding viral lethality in the human host. The lack of an accurate animal model and restrictions on handling potentially infected nervous tissue previously limited studies of B virus infection in macaque ganglia. To address this barrier, a long-lived mixed neuron/glia cell culture model was established from macaque DRG explants using a novel methodology that relied on cellular migration from whole tissues. Utilizing this model, the hypothesis tested was that acute B virus infection of macaque ganglia triggers cellular defense networks to promote leukocyte recruitment and impact leukocyte activation. Chemokines were upregulated in B virus-infected cultures and infected cell media induced leukocyte chemotaxis. Leukocytes were less effectively activated by media from infected cells when compared to media from mock-infected cells. To identify factors responsible for this, focused microarrays were performed and cytokine profiles were quantified from B virus and mock-infected culture supernatants. IL-6 protein levels were significantly reduced in B virus infected cultures. This observation led to the hypothesis that IL-6 downregulation impairs leukocyte activation and, indeed, when IL-6 was added to B virus-infected culture supernatants to control levels, these cultures were far more effective at eliciting leukocyte activation when compared with mock-infected cultures. Collectively, these data support the hypothesis that acute B virus infection of macaque ganglia triggers cellular defense networks to promote leukocyte recruitment and impact leukocyte activation and identifies a potential viral mechanism to impair leukocyte functionality. Additionally, this work presents a novel methodology for establishing long-lived mixed neuron/glia cultures from postnatal/adult macaque DRGs.
195

When and where will a target go? A behavioural and electrophysiological study of expectation in primates

de Hemptinne, Coralie 26 August 2008 (has links)
In a rapidly changing visual environment, the delay between perception and action might impair the probability of survival of a prey or the efficiency of a predator. In order to compensate for delays associated with sensory-motor processing, primates often make predictions about future events and initiate anticipatory movements. To prepare an anticipatory movement, an estimation of when and where to a target is likely to move is necessary. Such an internal representation is often termed 'expectation'. The aim of this thesis was to investigate the gradual changes of a subject's expectation at the behavioral and electrophysiological levels. Anticipatory smooth pursuit was used in order to study temporal and directional changes in expectation. We found that temporal uncertainty strongly modulated the latency and the velocity of anticipatory movements suggesting that monkeys could estimate the hazard rate of target motion onset in order to decide when to initiate an anticipatory movement. In addition, we have shown that monkeys could use prior directional information in order to voluntarily initiate anticipatory responses in the direction of expected target motion. This prior directional information significantly affected the latency and velocity of these movements. Finally, we have shown that the majority of recorded supplementary eye field (SEF) neurons encoded expected target motion direction. The presence of a directional cue induced an increase of activity in the preferred direction of the neuron. Moreover, a large sub-population of neurons encoded the direction of future anticipatory movement. These results suggest that the SEF could be involved in the cognitive control of anticipatory pursuit eye movements when prior temporal and directional information is provided.
196

Molecular characterisation of glycine-N-acyltransferase from two primates : the vervet monkey and the chacma baboon / Cornelius Mthiuzimele Mahlanza

Mahlanza, Mthiuzimele Cornelius January 2011 (has links)
Glycine-N-acyltransferase (GLYAT, EC 2.3.1.13) has been characterised in a number of species including: humans, chimpanzees, rhesus monkeys and bovines. The characterisation of GLYAT from various species contributes to a better understanding of the diversity of the enzyme which in turn might help improve the current understanding of detoxification in mammals. The GLYAT enzyme of both the chacma baboon and vervet monkey has not been characterised. In this project, tissue samples were obtained from a chacma baboon (Papio ursinus) and a vervet monkey (Chlorocebus pygerythrus) to determine the nucleic acid sequence that encodes GLYAT in these two species to broaden our current understanding on the diversity of GLYAT in primates. A liver of a chacma baboon was used to extract total RNA. Complementary DNA (cDNA) was synthesised using an oligo (dT) primer. An open reading frame (ORF) encoding GLYAT of the chacma baboon was amplified with a PCR (polymerase chain reaction) using primers designed from a human GLYAT transcript. The PCR product containing an ORF encoding GLYAT of the chacma baboon was cloned, sequenced and expressed. The recombinant GLYAT of the chacma baboon expressed well in bacteria, but was insoluble and did not have enzyme activity. A crude cytoplasmic extract was prepared from the liver of a chacma baboon. The objective was to compare enzyme activity between the native and recombinant GLYAT. The prepared liver extract from the chacma baboon was assayed for enzyme activity and compared to the activity in a liver extract from bovine, previously prepared by Ms M Snyders. Both the chacma baboon and bovine liver extracts had GLYAT enzyme activity. To obtain sequence information on vervet monkey GLYAT, leukocytes were isolated from blood obtained from a living vervet monkey. A human GLYAT gene sequence was used as a reference DNA sequence in the design of PCR primers that were used to amplify the exons of GLYAT of the vervet monkey. All six GLYAT exons were individually amplified and PCR products were sequenced. The sequences were combined to reconstruct an ORF encoding GLYAT of the vervet monkey. The ORFs coding the GLYAT of both chacma baboon and vervet monkey were found to be 888 bp long (excluding stop codon) and encoded a protein of 296 amino acids. A fragment of 1256 bp of the chacma baboon GLYAT transcript was sequenced. The two GLYAT ORF sequences were translated to amino acid sequences and aligned to that of GLYAT of primates obtained from the Ensembl sequence database. The GLYAT amino acid sequences of the chacma baboon, vervet monkey and rhesus monkey formed a related group, distinct from other primates. The chacma baboon and vervet monkey sequences were 99 % identical to the rhesus monkey sequence and 92.6 % identical to the human sequence. There were 4 new variations introduced by GLYAT amino acid sequences from the chacma baboon and the vervet monkey. The vervet monkey introduced an isoleucine in place of a valine at position 32 and an arginine in place of a histidine or glutamine at position 224. The chacma baboon introduced a tyrosine in place of isoleucine at position 201 and an arginine in place of histidine or glutamine at position 240. The knowledge generated in this project will broaden the understanding of GLYAT diversity relating to GLYAT in primates. / Thesis (M.Sc. (Biochemistry))--North-West University, Potchefstroom Campus, 2011
197

Attention shift and remapping across saccades

Yao, Tao 19 December 2016 (has links)
No description available.
198

The Behavioural Ecology of a Potentially Undescribed Morph of Saki Monkey (genus Pithecia) in a Highly Diverse Primate Community

Lehtonen, Emily January 2017 (has links)
The importance of tropical forests for global diversity and ecosystem function is well established in scientific literature, but is undermined by gaps in our knowledge of tropical ecosystems and species. Primates play important functional roles in these ecosystems, and despite constituting one of the most well-recognised taxa in the world, many species remain poorly studied. The Area de Conservación Regional Communal Tamshiyacu-Tahuayo (ACRCTT), located in the northeastern Peruvian Amazon, harbours one of the most diverse primate assemblages in the world and presents an ideal opportunity for the study of primate communities and mechanisms of their coexistence. Previous research has recorded the presence of an atypically coloured morph of monk saki monkeys (Pithecia monachus, sensu Marsh 2014) living in sympatry with a population of burnished sakis (Pithecia inusta, sensu Marsh 2014) in the reserve. In this study, the behavioural ecology of this potentially undescribed morph of saki monkey is described, using continuous focal data collected during the early wet season in the ACRCTT. The sakis were most often encountered in multi-adult groups and in the upper forest strata. The observed feeding strategies suggest that fruits and/or seeds constitute the sakis' primary food source in the wet season, although arthropods were also ingested during a large proportion of feeding records. Sex differences in behavioural patterns provide support for a difference in male and female investment in group defence. As only the monk saki morph was encountered during the study, the potential for seasonal habitat differentiation between the saki populations at the ACRCTT is discussed. A survey of primates in flooded and non-flooded forest areas at the ACRCTT was also conducted, in which nine of the 14 primate species recorded at the ACRCTT were encountered. Significant differences in the vertical distribution of primate groups provide evidence for vertical stratification in the ACRCTT primate community. This study contributes to previous research on the poorly-studied Pithecia genus, and provides insights into the mechanisms of niche differentiation between Pithecia and other primates.
199

Rôle du striatum sensorimoteur dans le contrôle des séquences motrices automatisées chez le primate

Deffains, Marc 19 October 2011 (has links)
Le striatum, tout particulièrement sa région sensorimotrice, est connu pour jouer un rôle crucial dans l’expression de routines motrices qui nécessitent la réalisation d’une suite de mouvements. Dans ce travail, nous avons étudié la contribution respective des neurones efférents et des interneurones cholinergiques du striatum dans les processus qui sous - tendent l’expression de séquences motrices automatisées, en enregistrant l’activité unitaire de ces deux populations neuronales chez des singes entraînés à effectuer des mouvements d’atteinte manuelle de cibles. Par cette approche, nous avons examiné les modifications d’activité de ces neurones lors d’un changement des conditions de performance durant la réalisation de la séquence de mouvements. Ainsi en manipulant l’ordre habituel ou la structure temporelle de la séquence, nous avons montré, au sein du striatum sensorimoteur, que les neurones efférents et les interneurones cholinergiques participent au traitement des informations spatiales et temporelles qui caractérisent une séquence motrice automatisée. Par ailleurs, nous avons montré que ces deux populations neuronales sont différentiellement activées lorsque l’ordre de la séquence est visuellement spécifié ou déterminé sur la base d’informations mémorisées. Ces résultats apportent des informations essentielles pour mieux comprendre les mécanismes neuronaux impliqués, au niveau du striatum sensorimoteur, dans le contrôle des séquences motrices automatisées. / It is well known that the striatum, especially its sensorimotor part, is involved in the expression of motor skills which require the production of a sequence of movements. In this study, we addressed the respective contribution of efferent neurons and cholinergic interneurons of the striatum in the processes underlying the expression of motor sequences, by recording single unit activity of these two neuronal populations in monkeys performing sequential arm reaching movements. By this experimental approach, we examined activity modulations of these neurons during a change in the conditions of performance of the motor sequence. Thus, by changing the habitual order or the temporal structure of the sequence, we underlined that within sensorimotor striatum, efferent neurons and cholinergic interneurons are involved in the processing of spatial and temporal information which characterize an automatic motor sequence. In addition, we reported differential activations of these two neuronal populations depending on whether the serial order of the sequence of movements is visually cued or based on internally stored information. Taken together, these results provide essential information in order to better understand the neuronal mechanisms involved, within the sensorimotor part of striatum, in the control of the automatic motor sequences.
200

Last Known Tomorrow

Wormington, Larry J 20 December 2013 (has links)
N/A

Page generated in 0.0523 seconds