11 |
Syntheses of chalcones and 2-aminopyrimidines and their evaluation as monoamine oxidase inhibitors and as adenosine receptor antagonists / Sarel Johannes RobinsonRobinson, Sarel Johannes January 2013 (has links)
Background and rationale -
Parkinson’s disease is a neurodegenerative disorder characterised by reduced levels of
dopamine in the brain. The cause of Parkinson's disease is still unknown; however several
theories pertaining to the etiology exist. Current treatment mainly aims at dopamine
replacement, with agents such as levodopa and dopamine agonists that provide patients
with symptomatic relief. This relief is unfortunately only temporary as the progression of the
disease is not halted. Furthermore, these therapies are associated with a range of side
effects and novel approaches to the treatment are thus urgently required. Adenosine A2A
receptor antagonists recently emerged as a promising non-dopaminergic alternative, not
only as symptomatic treatment, but also as potential neuroprotective therapy.
Adenosine A2A receptors are co-localised with dopamine D2 receptors in the striatum and
other nuclei of the basal ganglia. Adenosine A2A stimulation decreases the affinity of
dopamine for the D2 receptor, and increase cyclic AMP (cAMP) levels. The stimulation of
dopamine D2 receptors, in contrast, decreases cAMP levels and therefore these receptors
(A2A and D2), act in an opposing manner. Adenosine A2A antagonism will thus have similar
effects as dopamine D2 agonism and will reduce the postsynaptic effects of dopamine
depletion to give symptomatic relief. There are also several mechanisms where by
adenosine A2A antagonists may be neuroprotective, for example by preventing glutamate
excitotoxicity, that may cause damage to dopaminergic neurons. A number of adenosine A2A
antagonists have already reached clinical trials and promising results were obtained,
especially when combined with levodopa. Consequently, A2A antagonists are realistic
prospects that have therapeutic potential in diseases with dopaminergic hypofunction, like
Parkinson's disease. Many of the current A2A antagonists contain an amino-substituted
heterocyclic scaffold, such as an aminopyrimidine. The primary aim of this study was the
design, synthesis and evaluation of 2-aminopyrimidine derivatives as adenosine A2A receptor
antagonists.
Monoamine oxidase B (MAO-B) inhibitors are also promising candidates for the symptomatic
treatment of Parkinson's disease, since MAO-B is the enzyme primarily responsible for the catabolism of dopamine in the brain. Irreversible inhibitors of MAO-B, such as selegeline and
rasagiline, have been used clinically for the treatment of Parkinson's disease. This type of
inhibition comes with certain disadvantages as it may take up to several weeks after
termination of treatment for the enzyme activity to recover. Reversible inhibitors in contrast
will have much better safety profiles seeing that they will not inactivate the enzyme
permanently and allow for competition with the substrate.
When dopamine is oxidized by MAO, toxic metabolic by-products, such as hydrogen
peroxide (H2O2) forms, and this is believed to be a possible cause of Parkinson's disease.
MAO-B inhibitors will therefore not only provide symptomatic relief but may also alter the
progression of the disease by preventing the formation of these byproducts. Promising MAOB
inhibitory activities have been reported for chalcones, and since the intermediates
obtained in the synthesis of aminopyrimidines in this study are chalcones, a secondary aim
of this study was the screening of selected chalcone intermediates as inhibitors of MAO–B.
Results -
Design and synthesis: A series of 2-aminopyrimidines were designed using known active
structures and literature pharmacophores. A molecular modelling study (Discovery Studio
3.1, Accelrys) was further done to investigate the feasibility of these compounds as potential
adenosine A2A antagonists. All of the designed aminopyrimidines were successfully docked
in the binding site of the adenosine A2A receptor. Binding orientations and observed
interactions with important residues in the active site were similar to those observed for
known A2A antagonists. It was therefore concluded that these compounds may be potential
A2A antagonists and the designed compounds were thus synthesised. Structures were
primarily confirmed with nuclear magnetic resonance spectroscopy and mass spectrometry.
MAO-B inhibition studies: Selected chalcones were evaluated using a fluorometric assay
and kynuramine as substrate. The compounds were potent and selective inhibitors of the
MAO-B enzyme with IC50 values ranging between 0.49-7.67 μM. (2E)-3-(3-Chlorophenyl)-1-
(5-methyl-2-furyl)prop-2-en-1-one (1c) was the most potent compound with an IC50 value of
0.49 μM and was approximately 60 times more selective towards MAO-B than MAO-A.
Some preliminary structure activity relationships were derived, for example, phenyl
substitution with an electron withdrawing chlorine group generally resulted in better activity
than substitution with electron donating methoxy groups. Further investigation of structure
activity relationships are however required as a very small series of chalcones were
screened.
Reversibility studies and mode of inhibition: A dilution assay was used to determine whether
compound (1c) binds reversibly or irreversibly to the MAO-B enzyme. This was done by measuring the recovery of enzymatic activity after a large dilution of the enzyme-inhibitor
complex. The results from the reversibility studies showed that the inhibition of the most
potent compound (1c) is reversible as the catalytic activities are recovered to approximately
80% and 50% respectively, compared to the control measured in the absence of an inhibitor.
For the mode of inhibition, sets of Lineweaver–Burk plots were constructed. The Lineweaver-
Burk plots intersected on the y-axis which indicates that compound 1c is a competitive inhibitor
of the MAO-B enzyme.
In vitro adenosine A2A assays: Radioligand binding assays were used to determine the
affinity of the synthesised 2-aminopyrimidines for the adenosine A2A receptor. This assay
was performed with the radioligand [3H]NECA in the presence of N6-cyclopentyladenosine
(CPA). Compounds 2a - 2h showed moderate to weak affinity in the assay, while promising
affinities were observed for compounds 2j - 2n, which all exhibited Ki values below 55 nM.
The compound with the highest affinity was 4-(5-methylfuran-2-yl)-6-[3-(piperidine-1-
carbonyl)phenyl]pyrimidin-2-amine (2m) with a Ki value of 5.76 nM, which is comparable to
the Ki value of 2.10 nM obtained for the known amino-substituted heterocyclic adenosine A2A
antagonist, ZM 241385. The higher affinities of compounds (2j – 2n) could, at least in part,
be explained by the molecular modellling studies. In the docking experiments an additional
hydrogen bond interaction was observed between the amide carbonyl and tyrosine 271
indicating that this structural feature is a major contributing factor to the improved affinity
observed for these derivatives.
In vivo adenosine A2A assays: The haloperidol induced catalepsy assay was used to
determine whether the two compounds with the highest affinity for the adenosine A2A
receptor (2m and 2k) are antagonists of the A2A receptor. These compounds caused a
statistically significant reduction in catalepsy, which clearly illustrate that they are adenosine
A2A antagonists.
The objectives of this study as set out were thus successfully realised and promising results
were obtained. During this study, several novel 2-aminopyrimidines and chalcones were
synthesised, and the respective adenosine A2A antagonistic and monoamine oxidase
inhibitory activities for all of the screened compounds were determined for the first time. / Thesis (MSc (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2013
|
12 |
Syntheses of 8-(phenoxymethyl)caffeine analogues and their evaluation as inhibitors of monoamine oxidase and as antagonists of the adenosine A2A receptor / Rozanne Harmse.Harmse, Rozanne January 2013 (has links)
Background and rationale: Parkinson’s disease (PD) is a progressive, degenerative disorder of the central nervous system and is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The loss of functional dopamine in the striatum is thought to be responsible for the typical symptoms of PD. Cardinal features of PD include bradykinesia, muscular rigidity, resting tremor and impairment of postural balance. This study focuses on the inhibition of monoamine oxidase B (MAO-B) and antagonism of A2A receptors as therapeutic strategies for PD.
Monoamine oxidase (MAO) is a flavin adenine dinucleotide (FAD)-containing mitochondrial bound isoenzyme which consists of two isoforms namely MAO-A and MAO-B. The primary function of MAO is to catalyze the oxidative deamination of dietary amines, monoamine neurotransmitters and hormones. MAO-A is responsible for the oxidative deamination of serotonin (5-HT) and norepinephrine (NE), while MAO-B is responsible for the oxidative deamination of dopamine (DA). The formation of DA takes place in the presynaptic neuron where it is stored in vesicles and released into the presynaptic cleft. The released DA then either binds to D1 and D2 receptors which results in an effector response. The excess DA in the presynaptic cleft is metabolized by MAO-B which may result in the formation of free radicals and a decrease in DA concentrations. Under normal physiological conditions free radicals are removed from the body via normal physiological processes, but in PD these normal physiological processes are thought to be unable to remove the radicals and this may lead to oxidative stress. Oxidative stress is believed to be one of the leading causes of neurodegeneration in PD. The rationale for the use of MAO-B inhibitors in PD would be to increase the natural DA levels in the brain and also diminish the likelihood of free radicals to be formed.
Adenosine is an endogenous purine nucleoside and yields a variety of physiological effects. Four adenosine receptor subtypes have been characterized: A1, A2A, A2B and A3. They are all part of the G-protein-coupled receptor family and have seven transmembrane domains. The A2A receptor is highly concentrated in the striatum. There are two important pathways in the basal ganglia (BG) through which striatal information reaches the globus pallidus, namely the direct pathway containing A1 and D1 receptors and the indirect pathway containing A2A and D2 receptors. The direct pathway facilitates willed movement and the indirect pathway inhibits willed movement. A balance of the two pathways is necessary for normal movement. In PD, there is a decrease in DA in the striatum, thus leading to unopposed A2A receptor signaling and ultimately resulting in overactivity of the indirect pathway. Overactivity of the indirect pathway results in the locomotor symptoms associated with PD. Treatment with an A2A antagonist will block the A2A receptor, resulting in the restoration of balance between the indirect and direct pathways, thus leading to a decrease in locomotor symptoms.
Aim: In this study, caffeine served as a lead compound for the design of dual-targeted drugs that are selective, reversible MAO-B inhibitors as well as A2A antagonists. Caffeine is a very weak MAO-B inhibitor and a moderately potent A2A antagonist. Substitution on the C8 position of caffeine yields compounds with good MAO-B inhibition activities and A2A receptor affinities. An example of this behaviour is found with (E)-8-(3-chlorostyryl)caffeine (CSC), which is not only a potent A2A antagonist but also a potent MAO-B inhibitor. The goal of this study was to identify and synthesize dual-targeted xanthine compounds. Recently Swanepoel and co-workers (2012) found that 8-phenoxymethyl substituted caffeines are potent reversible inhibitors of MAO-B. Therefore, this study focused on expanding the 8-(phenoxymethyl)caffeine series and evaluating the resulting compounds as both MAO-A and -B inhibitors as well as A2A antagonists.
Synthesis: Two series were synthesized namely the 8-(phenoxymethyl)caffeines and 1,3-diethyl-7-methyl-8-(phenoxymethyl)xanthines. The analogues were synthesized according to the literature procedure. 1,3-Dimethyl-5,6-diaminouracil or 1,3-diethyl-5,6-diaminouracil were used as starting materials and were acylated with a suitable substituted phenoxyacetic acid in the presence of N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDAC) as an activating reagent. The intermediary amide was treated with sodium hydroxide, which resulted in ring closure to yield the corresponding 1,3-dimethyl-8-phenoxymethyl-7Hxanthinyl or 1,3-diethyl-8-phenoxymethyl-7H-xanthinyl analogues. These xanthines were 7-N-methylated in the presence of an excess of potassium carbonate and iodomethane to yield the target compounds.
In vitro evaluation: A radioligand binding assay was performed to determine the affinities of the synthesized compounds for the A2A receptor. The MAO-B inhibition studies were carried out via a fluorometric assay where the MAO-catalyzed formation of H2O2 was measured.
Results: Both series showed good to moderate MAO-B inhibition activities, while none of the compounds had activity towards MAO-A. Results were comparable to that of a known MAOB inhibitor lazabemide. For example, lazabemide (IC50 = 0.091 μM) was twice as potent as the most potent compound identified in this study, 8-(3-chlorophenoxymethyl)caffeine (compound 3; IC50 = 0.189 μM). Two additional compounds, 8-(4-iodophenoxymethyl)caffeine and 8-(3,4-dimethylphenoxymethyl) caffeine, also exhibited submicromolar IC50 values for the inhibition of MAO-B. The structure-activity relationships (SARs) indicated that 1,3-diethyl substitution resulted in decreased inhibition potency towards MAO-B and that 1,3-dimethyl substitution was a more suitable substitution pattern, leading to better inhibition potencies towards MAO-B.
The compounds were also evaluated for A2A binding affinity, and relatively weak affinities were recorded with the most potent compound, 1,3-diethyl-7-methyl-8-[4-chlorophenoxymethyl]xanthine (compound 16), exhibiting a Ki value of 0.923 μM. Compared to KW-6002 (Ki = 7.94 nM), a potent reference A2A antagonist, compound 16 was 35-fold less potent. Comparing compound 16 to CSC [Ki(A2A) = 22.6 nM; IC50(MAO-B) = 0.146 nM], it was found that compound 16 is 31-fold less potent as an A2A antagonist and 21-fold less potent as a MAO-B inhibitor. Loss of MAO-B inhibition potency may be attributed to 1,3-diethyl substitution which correlates with similar conclusions reached in earlier studies. In addition, the replacement of the styryl functional group (as found with CSC and KW-6002) with the phenoxymethyl functional group (as found with the present series) may explain the general reduction in affinity for the A2A receptor. This suggests that the styryl side chain is more appropriate for A2A antagonism than the phenoxymethyl functional group.
Conclusion: In this study two series of xanthine derivatives were successfully synthesized, namely the 8-(phenoxymethyl)caffeines and 1,3-diethyl-7-methyl-8-(phenoxymethyl)xanthines (11 compounds in total). Three of the newly synthesized compounds were found to act as potent inhibitors of MAO-B, with IC50 values in the submicromolar range. None of the compounds were however noteworthy MAO-A inhibitors. The most potent A2A antagonist among the examined compounds, compound 16, proved to be moderately potent compared to the reference antagonists, CSC and KW-6002. It may be concluded that the styryl functional group (as found with CSC and KW-6002) is more optimal than the phenoxymethyl functional group (as found with the present series) for A2A antagonism. 1,3-Diethyl substitution of the xanthine ring was found to be less optimal for MAO-B inhibition compared to 1,3-dimethyl substitution. These results together with known SARs provide valuable insight into the design of 8-(phenoxymethyl)caffeines as selective and potent MAO-B inhibitors. Such drugs may find application in the therapy of PD. / Thesis (MSc (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2013.
|
13 |
Neuroprotective effects of amantadine–flavonoid conjugates / Fourie P.M.Fourie, Petrus Michiel January 2011 (has links)
Neurodegenerative disorders like Parkinson’s and Alzheimer’s disease affect millions of
people around the world. Oxidative stress has been implicated in the pathogenesis of a
number of neurodegenerative disorders, cancer and ischemia. The brain is particularly
vulnerable to oxidative damage because of its high utilisation of oxygen, high levels of
polyunsaturated fatty acids, relatively high levels of redox transition metal ions and low levels
of antioxidants. Oxidative stress occurs due to an imbalance in the pro–oxidant and
antioxidant levels. Reactive oxygen/nitrogen species (ROS/RNS) is a collective term used
for free radicals and related molecules, promoting oxidative stress within cells and ultimately
leading to neurodegeneration. Antioxidants counteract the excess in ROS/RNS, and is
therefore of interest in the treatment and prevention of neurodegenerative disorders.
Monoamine oxidases, especially monoamine oxidase B (MAO–B), also play an important role
in neurodegenerative disorders. MAO–B is the main enzyme responsible for the oxidative
deamination of dopamine in the substantia nigra of the brain. By inhibiting MAO–B,
dopamine is increased in the brain providing symptomatic relief in Parkinson’s disease.
The focus of the current study was to synthesise multifunctional compounds that could be
used in the treatment and/or prevention of neurodegenerative diseases. In this study
flavonoids were selected because of their wide spectrum of biological activities, including
antioxidant activity and its monoamine oxidase inhibition. Flavones and chalcones are both
classified under flavonoids and both structures were included. The amantadine moiety was
included because of its known ability to inhibit calcium flux through the N–methyl–D–aspartate
(NMDA) receptor channel. Six amantadine–flavonoid derivatives were synthesised using
standard laboratory procedures and structures were determined with standard methods such
as NMR, IR and mass spectrometry. The synthesised compounds were tested in a selection
of biological assays, to establish the relative antioxidant properties and MAO inhibitory
activity.
The biological assays employed to test antioxidant properties were the thiobarbituric acid
(TBA) and nitro–blue tetrazolium (NBT) assays. The TBA assay relies on the assessment of
lipid peroxidation, induced via hydroxyl anions (OH), generating a pink colour with the
complex formation between malondialdehyde (MDA) and TBA, which is measured
spectrophotometrically at 532 nm. The principal of the NBT assay is the reduction of NBT to
nitro–blue diformazan (NBD), producing a purple colour in the presence of superoxide anions
(O2
–).
The synthesised compounds were also evaluated for their MAO inhibitory activity toward
recombinant human MAO–A and -B and inhibition values were expressed as IC50 values.
The experimental data obtained in the NBT and TBA assay indicated a weak but a significant
ability to scavenge O2
– and OH. In the NBT assay N–(adamantan–1–yl)–2–{3–hydroxy–4–[(2E)–
3–(3–methoxyphenyl)pro–2–enoyl]phenoxy}acetamide (6) had the best results with a 50.47 ±
1.31 uM/mg protein reduction in NBD formation, indicating that the hydroxyl group
contributed to activity. The synthesised compounds were compared to the toxin (KCN) with
a reduction in NDB formation of 69.88 ± 1.59 uM/mg protein. Results obtained from the TBA
assay indicated that the flavone moiety had better OH scavenging ability than that of the
chalcone moiety with N–(adamantan–1–yl)–2–[(5–hydroxy–4–oxo–2–phenyl–4H–chromen–7–
yl)oxy]acetamide (3) showing the best activity at 0.967 ± 0.063 nmol MDA/mg tissue. The
synthesised compounds were compared to the toxin (H2O2) 1.316 ± 0.028 nmol MDA/mg
tissue. None of the test compounds could be compared to the results obtained with Trolox®.
The IC50 values obtained for inhibition of recombinant human MAO indicated that the
chalcone moiety (N–(adamantan–1–yl)–4–[(1E)–3–oxo–3–phenylpro–1–en–1–yl]benzamide (5))
showed the best inhibition of MAO–B with an IC50 of 0.717 ± 0.009 M and of MAO–A with an
IC50 of 24.987 ± 5.988 M. It was further confirmed that N–(adamantan–1–yl)–4–[(1E)–3–oxo–3–
phenylpro–1–en–1–yl]benzamide (5) binds reversible to MAO–B and that the mode of inhibition
is competitive. Docking studies revealed that N–(adamantan–1–yl)–4–[(1E)–3–oxo–3–phenylpro–
1–en–1–yl]benzamide (5) traverses both cavities of MAO–B with the chalcone moiety
orientated towards the FAD co–factor while the amantadine moiety protrudes into the
entrance cavity. / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
14 |
Neuroprotective effects of amantadine–flavonoid conjugates / Fourie P.M.Fourie, Petrus Michiel January 2011 (has links)
Neurodegenerative disorders like Parkinson’s and Alzheimer’s disease affect millions of
people around the world. Oxidative stress has been implicated in the pathogenesis of a
number of neurodegenerative disorders, cancer and ischemia. The brain is particularly
vulnerable to oxidative damage because of its high utilisation of oxygen, high levels of
polyunsaturated fatty acids, relatively high levels of redox transition metal ions and low levels
of antioxidants. Oxidative stress occurs due to an imbalance in the pro–oxidant and
antioxidant levels. Reactive oxygen/nitrogen species (ROS/RNS) is a collective term used
for free radicals and related molecules, promoting oxidative stress within cells and ultimately
leading to neurodegeneration. Antioxidants counteract the excess in ROS/RNS, and is
therefore of interest in the treatment and prevention of neurodegenerative disorders.
Monoamine oxidases, especially monoamine oxidase B (MAO–B), also play an important role
in neurodegenerative disorders. MAO–B is the main enzyme responsible for the oxidative
deamination of dopamine in the substantia nigra of the brain. By inhibiting MAO–B,
dopamine is increased in the brain providing symptomatic relief in Parkinson’s disease.
The focus of the current study was to synthesise multifunctional compounds that could be
used in the treatment and/or prevention of neurodegenerative diseases. In this study
flavonoids were selected because of their wide spectrum of biological activities, including
antioxidant activity and its monoamine oxidase inhibition. Flavones and chalcones are both
classified under flavonoids and both structures were included. The amantadine moiety was
included because of its known ability to inhibit calcium flux through the N–methyl–D–aspartate
(NMDA) receptor channel. Six amantadine–flavonoid derivatives were synthesised using
standard laboratory procedures and structures were determined with standard methods such
as NMR, IR and mass spectrometry. The synthesised compounds were tested in a selection
of biological assays, to establish the relative antioxidant properties and MAO inhibitory
activity.
The biological assays employed to test antioxidant properties were the thiobarbituric acid
(TBA) and nitro–blue tetrazolium (NBT) assays. The TBA assay relies on the assessment of
lipid peroxidation, induced via hydroxyl anions (OH), generating a pink colour with the
complex formation between malondialdehyde (MDA) and TBA, which is measured
spectrophotometrically at 532 nm. The principal of the NBT assay is the reduction of NBT to
nitro–blue diformazan (NBD), producing a purple colour in the presence of superoxide anions
(O2
–).
The synthesised compounds were also evaluated for their MAO inhibitory activity toward
recombinant human MAO–A and -B and inhibition values were expressed as IC50 values.
The experimental data obtained in the NBT and TBA assay indicated a weak but a significant
ability to scavenge O2
– and OH. In the NBT assay N–(adamantan–1–yl)–2–{3–hydroxy–4–[(2E)–
3–(3–methoxyphenyl)pro–2–enoyl]phenoxy}acetamide (6) had the best results with a 50.47 ±
1.31 uM/mg protein reduction in NBD formation, indicating that the hydroxyl group
contributed to activity. The synthesised compounds were compared to the toxin (KCN) with
a reduction in NDB formation of 69.88 ± 1.59 uM/mg protein. Results obtained from the TBA
assay indicated that the flavone moiety had better OH scavenging ability than that of the
chalcone moiety with N–(adamantan–1–yl)–2–[(5–hydroxy–4–oxo–2–phenyl–4H–chromen–7–
yl)oxy]acetamide (3) showing the best activity at 0.967 ± 0.063 nmol MDA/mg tissue. The
synthesised compounds were compared to the toxin (H2O2) 1.316 ± 0.028 nmol MDA/mg
tissue. None of the test compounds could be compared to the results obtained with Trolox®.
The IC50 values obtained for inhibition of recombinant human MAO indicated that the
chalcone moiety (N–(adamantan–1–yl)–4–[(1E)–3–oxo–3–phenylpro–1–en–1–yl]benzamide (5))
showed the best inhibition of MAO–B with an IC50 of 0.717 ± 0.009 M and of MAO–A with an
IC50 of 24.987 ± 5.988 M. It was further confirmed that N–(adamantan–1–yl)–4–[(1E)–3–oxo–3–
phenylpro–1–en–1–yl]benzamide (5) binds reversible to MAO–B and that the mode of inhibition
is competitive. Docking studies revealed that N–(adamantan–1–yl)–4–[(1E)–3–oxo–3–phenylpro–
1–en–1–yl]benzamide (5) traverses both cavities of MAO–B with the chalcone moiety
orientated towards the FAD co–factor while the amantadine moiety protrudes into the
entrance cavity. / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
15 |
Potencial inibitório in vitro de biflavonoides de Garcinia gardneriana : um estudo sobre monoamina oxidades e CYP19 (aromatase)Recalde Gil, Maria Angélica January 2015 (has links)
The plant Garcinia gardneriana (Planch. & Triana) Zappi, popularly known in Brazil as "bacupari" has traditionally been used for various types of inflammatory diseases and the evaluation of their chemical composition, mainly of leaves, has resulted in biflavonoids as major compounds. These phenolic compounds have shown anti-inflammatory activity validating the popular use of the plant. In this work was isolated from dried branches of Garcinia gardneriana the biflavonoids: morelloflavone, that is an naringenin covalently linked to luteolin, Gb-2a which is an naringenin linked to eriodictyol and Gb-2a- 7-O-glucose. These compounds have been previously evaluated in various activities such as anti-inflammatory and anti-antioxidants but there is no report of its activity as enzymatic inhibitors. However, the monomers that form it, have been evaluated in the inhibition of aromatase and antidepressant activity with positive outcome, which commonly are used MAO-A inhibitors. In the isolation process were also founded terpenoid compounds as lupeol and friedelin The isolated and purified biflavonoids were used to evaluate enzyme inhibition "in vitro" in monoamine oxidases (MAO-A MAO-B) and aromatase. The compounds showed a positive response even of IC50 5,47 μM and 1,35 μM for MAO-A inhibition of and aromatase enzyme respectively; discovering a way for a new proposal to link both enzymes for treatment of hormone-dependent cancers and anxiety and depression disorders. / La planta Garcinia gardneriana (Planch. & Triana) Zappi, popularmente conocida en Brasil como "bacupari" ha sido tradicionalmente usada para varios tipos de enfermedades inflamatorias y la evaluación de su composición química, principalmente de las hojas, ha resultado en biflavonoides como compuestos mayoritarios. Estos compuestos fenólicos han demostrado actividad anti-inflamatória validando el uso popular de la planta. En este trabajo se asilaron a partir de tallos secos de la Garcinia gardneriana los biflavonoides: moreloflavona, que consiste en una naringenina unida covalentemente a luteolina, Gb-2a que es un compuesto que consiste en una naringenina unida a un eriodictyol y Gb-2a-7-O-glucose. Estos compuestos ya han sido previamente evaluados en diversas actividades como anti inflamatorios y anti antioxidantes pero no se tiene reporte de su actividad como inhibidores enzimáticos. Sin embargo, los monomeros que los conforman han sido evaluados en la inhibición de la aromatasa y con resultados positivos como en la actividad antidepresiva, para la cual comúnmente son usados los inibidores de MAO-A. En el proceso de aislamiento también fueron encontrados compuestos terpenoides como lupeol y friedelina. Los biflavonoides aislados y purificados se usaron para evaluar la inhibición enzimática “in vitro” en monoaminooxidasas (MAO-A, MAO-B) y aromatasa. Los compuestos presentaron una respuesta positiva calculada con IC50 de hasta 5,47 μM y 1,35 μM para la inhibición de las enzimas MAO-A y aromatasa respectivamente, abriendo el camino a una nueva propuesta de relacionar estas dos enzimas para tratamiento de cánceres hormonodependientes y transtornos de ansiedad y depresión.
|
16 |
Potencial inibitório in vitro de biflavonoides de Garcinia gardneriana : um estudo sobre monoamina oxidades e CYP19 (aromatase)Recalde Gil, Maria Angélica January 2015 (has links)
The plant Garcinia gardneriana (Planch. & Triana) Zappi, popularly known in Brazil as "bacupari" has traditionally been used for various types of inflammatory diseases and the evaluation of their chemical composition, mainly of leaves, has resulted in biflavonoids as major compounds. These phenolic compounds have shown anti-inflammatory activity validating the popular use of the plant. In this work was isolated from dried branches of Garcinia gardneriana the biflavonoids: morelloflavone, that is an naringenin covalently linked to luteolin, Gb-2a which is an naringenin linked to eriodictyol and Gb-2a- 7-O-glucose. These compounds have been previously evaluated in various activities such as anti-inflammatory and anti-antioxidants but there is no report of its activity as enzymatic inhibitors. However, the monomers that form it, have been evaluated in the inhibition of aromatase and antidepressant activity with positive outcome, which commonly are used MAO-A inhibitors. In the isolation process were also founded terpenoid compounds as lupeol and friedelin The isolated and purified biflavonoids were used to evaluate enzyme inhibition "in vitro" in monoamine oxidases (MAO-A MAO-B) and aromatase. The compounds showed a positive response even of IC50 5,47 μM and 1,35 μM for MAO-A inhibition of and aromatase enzyme respectively; discovering a way for a new proposal to link both enzymes for treatment of hormone-dependent cancers and anxiety and depression disorders. / La planta Garcinia gardneriana (Planch. & Triana) Zappi, popularmente conocida en Brasil como "bacupari" ha sido tradicionalmente usada para varios tipos de enfermedades inflamatorias y la evaluación de su composición química, principalmente de las hojas, ha resultado en biflavonoides como compuestos mayoritarios. Estos compuestos fenólicos han demostrado actividad anti-inflamatória validando el uso popular de la planta. En este trabajo se asilaron a partir de tallos secos de la Garcinia gardneriana los biflavonoides: moreloflavona, que consiste en una naringenina unida covalentemente a luteolina, Gb-2a que es un compuesto que consiste en una naringenina unida a un eriodictyol y Gb-2a-7-O-glucose. Estos compuestos ya han sido previamente evaluados en diversas actividades como anti inflamatorios y anti antioxidantes pero no se tiene reporte de su actividad como inhibidores enzimáticos. Sin embargo, los monomeros que los conforman han sido evaluados en la inhibición de la aromatasa y con resultados positivos como en la actividad antidepresiva, para la cual comúnmente son usados los inibidores de MAO-A. En el proceso de aislamiento también fueron encontrados compuestos terpenoides como lupeol y friedelina. Los biflavonoides aislados y purificados se usaron para evaluar la inhibición enzimática “in vitro” en monoaminooxidasas (MAO-A, MAO-B) y aromatasa. Los compuestos presentaron una respuesta positiva calculada con IC50 de hasta 5,47 μM y 1,35 μM para la inhibición de las enzimas MAO-A y aromatasa respectivamente, abriendo el camino a una nueva propuesta de relacionar estas dos enzimas para tratamiento de cánceres hormonodependientes y transtornos de ansiedad y depresión.
|
17 |
Novel sulfanyl- and sulfinylcaffeine analogues as inhibitors of monoamine oxidase / Wayne MentzMentz, Wayne January 2013 (has links)
Parkinson’s disease (PD) is a neurodegenerative disorder, which is progressive in nature and
usually associated with the elderly. It is the second most common age-related
neurodegenerative disorder after Alzheimer’s disease (AD). PD occurs when there is a dramatic
loss of dopamine (DA) in the striatum, a substructure of the basal ganglia, of the brain due to
the degeneration of the nigrostriatal pathway that contains the dopaminergic neurons. Motor
symptoms of PD include bradykinesia, muscular rigidity and resting tremors. Non-motor
symptoms include speech and sleep problems, hallucinations and depression. Diverse
treatment options are available to treat the symptoms of PD, including levodopa (L-Dopa), DA
agonists and monoamine oxidase B (MAO-B) inhibitors.
The MAOs are flavoproteins that are bound to the outer membrane of the mitochondria and
catalyze the oxidative deamination of neurotransmitters such as serotonin (5-HT), noradrenaline
(NA) and DA. Two isoforms occur, namely MAO-A and –B, which share a 70% sequence
identity. MAO-A catalyzes the oxidation of 5-HT and MAO-B has a substrate specificity towards
benzylamine and 2-phenylethylamine. DA, NA, adrenaline and tryptamine are oxidized by both
forms. MAO-A plays an important role in depression while MAO-B plays an important role in PD.
The two isoforms are not evenly distributed in the brain. Of particular relevance to PD is the
observation that, in the basal ganglia, MAO-B is the predominant form and the oxidation of DA
in this region is largely due to MAO-B activity. Also, with an increase in age, there is an up to
fourfold increase in MAO-B activity in the brain. In the aged parkinsonian brain, MAO-B is
therefore a major DA metabolizing enzyme and MAO-B inhibitors have an important role in the
therapy of PD. MAO-B inhibitors may potentially reduce the metabolic destruction of DA and
thereby provide relief from the symptoms of PD. MAO-B inhibitors may also exert a
neuroprotective effect in PD. In the catalytic cycle of MAO-B, one mole each of an aldehyde,
hydrogen peroxide and ammonia are formed for each mole of primary amine substrate oxidized.
Ferrous iron, which is abundant in the basal ganglia, may react with the hydrogen peroxide to
form hydroxyl radicals in the Fenton reaction. The hydroxyl radical damages virtually all types of
biomolecules including proteins, DNA, lipids, carbohydrates and amino acids. The aldehyde, in turn, may react with amino groups of proteins, and thus lead to cell injury. Inhibitors of MAO-B
may reduce the MAO-catalyzed formation of hydrogen peroxide and aldehydes in the basal
ganglia, and thus act as neuroprotective agents.
MAO-B inhibitors that are currently being used in the treatment of PD are selegiline and
rasagiline. Both are irreversible inhibitors of MAO-B. While irreversible inhibitors of MAO have
been used extensively as drugs, irreversible inhibition has a number of disadvantages. These
include the loss of selectivity as a result of repeated drug administration and a slow and variable
rate of enzyme recovery following termination of drug treatment. The turnover rate for the
biosynthesis of MAO-B in the human brain may require as much as 40 days while with
reversible inhibition, enzyme activity is recovered when the inhibitor is eliminated from the
tissues. For these reasons the discovery of novel MAO-B inhibitors, which interact reversibly
with the enzymes are of value in the therapy of PD.
The goal of this study was to design novel and reversible inhibitors of MAO-B, which may find
application in the therapy of PD. In the current study, caffeine was used as scaffold for the
design of new MAO inhibitors. Caffeine is reported to be a weak inhibitor of MAO-B, with an IC50
value of 5084 μM. Substitution at C-8 of the caffeine moiety, however, yields compounds with
potent MAO-B inhibitory properties. Of particular importance to this study is a recent report that
a series of 8-sulfanylcaffeine analogues acts as selective inhibitors of human MAO-B. Among
the compounds examined, 8-[(phenylethyl)sulfanyl]caffeine was found to be a particularly potent
MAO-B inhibitor with an IC50 value of 0.223 μM. In an attempt to further enhance the MAO-B
inhibition potency of 8-[(phenylethyl)sulfanyl]caffeine, and possibly to discover highly potent
MAO-B inhibitors, a series of five 8-[(phenylethyl)sulfanyl]caffeine analogues was synthesized
and evaluated as inhibitors of human MAO-A and –B. For the purpose of this study 8-
[(phenylethyl)sulfanyl]caffeine homologues containing C-3 alkyl (CF3, CH3 and OCH3) and
halogen (Cl and Br) substituents on the phenyl ring were considered. Furthermore, a series of
two 8-sulfinylcaffeine analogues and one 8-sulfonylcaffeine were synthesized and their MAO
inhibitory potencies were measured. The purpose with these compounds was to compare the
MAO inhibitory properties of the 8-sulfinylcaffeine analogues and 8-sulfonylcaffeine with those
of the 8-sulfanylcaffeine analogues. This study also investigates the MAO inhibition properties of
three selected 8-[(phenylpropyl)sulfanyl]caffeine and two 8-(benzylsulfanyl)caffeine analogues.
Chemistry: The target 8-sulfanylcaffeine analogues were synthesized according to the literature
procedure. 8-Chlorocaffeine was reacted with an appropriate mercaptan in the presence of NaOH, to yield the target 8-sulfanylcaffeine analogues in yields of 6.4–50.7%. 8-Chlorocaffeine,
in turn, was conveniently synthesized in high yield by reacting chlorine with caffeine in
chloroform. In certain instances, the mercaptan starting materials were not commercially
available and were thus synthesized according to the literature procedure by reacting an
appropriate alkylbromide with thiourea. The resulting thiouronium salt was hydrolyzed in the
presence of NaOH to yield the target mercaptan. The 8-sulfinylcaffeine analogues and 8-
sulfonylcaffeine were synthesized by reacting the 8-sulfanylcaffeines with H2O2 in the presence
of glacial acetic acid and acetic anhydride. The structures and the purities of the inhibitors were
verified by NMR, MS and HPLC analyses.
MAO inhibition studies: The MAO inhibitory properties of the test compounds were examined
using the recombinant human enzymes. The mixed MAO-A/B substrate, kynuramine, was
employed as substrate for both enzymes and the inhibition potencies were expressed as the
IC50 values.
The 8-[(phenylethyl)sulfanyl]caffeine analogues were found to be highly potent inhibitors of
MAO-B. The IC50 values recorded for these homologues ranged from 0.017–0.125 μM, making
them twofold to 13-fold more potent MAO-B inhibitors than the lead compound, 8-
[(phenylethyl)sulfanyl]caffeine (IC50 = 0.223 μM). For comparison, the reversible MAO-B
selective inhibitor, lazabemide, exhibits an IC50 value of 0.091 μM under the same conditions
(unpublished data from our laboratory). Interestingly, both alkyl (CF3, CH3 and OCH3) and
halogen (Cl and Br) substitution lead to highly potent MAO-B inhibition. It may therefore be
concluded that substitution on C-3 is a general strategy to enhance the MAO-B inhibition
potency of 8-[(phenylethyl)sulfanyl]caffeine. The results of the MAO inhibitory studies with the 8-
[(phenylpropyl)sulfanyl]caffeine analogues showed that these compounds are also inhibitors of
MAO-B with IC50 values of 0.061–0.500 μM. Those homologues substituted with chlorine on the
para and meta positions of the phenyl ring were found to be exceptionally potent inhibitors with
IC50 values of 0.061 μM and 0.062 μM, respectively. For the series of 8-
(benzylsulfanyl)caffeines, meta substitution with chlorine (IC50 = 0.227 μM) and bromine
(IC50 = 0.199 μM) was also found to enhance the MAO-B inhibition potency of 8-
(benzylsulfanyl)caffeine (IC50 = 1.86 μM). The results document that the 8-sulfinylcaffeines are
also inhibitors of MAO-B with IC50 values of 11.8–131 μM. The 8-sulfonylcaffeine was also found
to be a MAO-B inhibitor. Compared to the 8-sulfanylcaffeines, these homologues are, however,
weaker inhibitors. It may, therefore, be concluded that 8-sulfinylcaffeines and 8-sulfonylcaffeines are comparatively weak MAO-B inhibitors and less suited for the design of high potency MAO-B
inhibitors.
The results also document that the 8-[(phenylethyl)sulfanyl]caffeines are relatively weak MAO-A
inhibitors with IC50 values of 5.66–141 μM, with one homologue exhibiting no inhibition under
the experimental conditions. As evident from the selectivity indices (SI values), the 8-
[(phenylethyl)sulfanyl]caffeines were all selective inhibitors of the MAO-B isoform. Two
compounds exhibited SI values in excess of 1000. Since these compounds are also highly
potent MAO-B inhibitors, they represent suitable leads for the design of potent and selective
MAO-B inhibitors. The 8-sulfinylcaffeines and 8-sulfonylcaffeine were found to be weak MAO-A
inhibitors with IC50 values of 166–250 μM. The SI values demonstrate that these compounds are
MAO-B selective inhibitors, although to a lesser degree than the 8-
[(phenylethyl)sulfanyl]caffeines. The 8-[(phenylpropyl)sulfanyl]caffeines are also MAO-A
inhibitors with IC50 values of 0.708–6.48 μM. It is noteworthy that these homologues are the
most potent MAO-A inhibitors among the compounds evaluated in this study. In fact, one of the
8-[(phenylpropyl)sulfanyl]caffeines, 8-{[3-(4-chlorophenyl)propyl]sulfanyl}caffeine (IC50 = 0.708
μM), is the only compound with an IC50 value for the inhibition of MAO-A in the submicromolar
range. The 8-[(phenylpropyl)sulfanyl]caffeines display, in general, lower degrees of selectivity
for MAO-B than the corresponding 8-[(phenylethyl)sulfanyl]caffeines.
Reversibility studies: The reversibility of the interaction of a representative inhibitor, 8-{[2-(3-
(trifluoromethyl)phenyl)ethyl]sulfanyl}caffeine, with MAO-B was investigated by evaluating the
recovery of the enzymatic activity after dilution of the enzyme-inhibitor complex. For this
purpose, MAO-B was preincubated with the test compound at concentrations of 10 × IC50 and
100 × IC50 for 30 min. The reactions were subsequently diluted 100-fold to 0.1 × IC50 and 1 ×
IC50, respectively. The results show that, after dilution to 0.1 × IC50 and 1 × IC50, the MAO-B
catalytic activities are recovered to 35% and 22%, respectively, of the control value. For
reversible enzyme inhibition, the enzyme activities are expected to recover to levels of
approximately 90% and 50%, respectively, after 100-fold dilution of the preincubations
containing inhibitor concentrations of 10 × IC50 and 100 × IC50. After preincubation of MAO-B
with the irreversible inhibitor (R)-deprenyl (at 10 × IC50), and dilution of the resulting complex to
0.1 × IC50, MAO-B activity is not recovered (3.0% of control). These data indicate that the test
compound does indeed react reversibly with MAO-B but because enzyme activities are not
recovered to the expected 90% and 50% respectively, it may suggest that the test compound
possess a quasi-reversible or tight-binding component. Hansch-type structure activity relationship studies: A limited Hansch-type QSAR study was
performed for the inhibition of MAO by the 8-[(phenylethyl)sulfanyl]caffeines. For this purpose,
five parameters were used to describe the physicochemical properties of the C-3 substituents
on the phenyl rings of the inhibitors. The Van der Waals volume (Vw) and Taft steric parameter
(Es) served as descriptors of the bulkiness of the substituents, while the lipophilicities were
described by the Hansch constant (π). The electronic properties were described by the classical
Hammett constant (σm) and the Swain-Lupton constant (F). A one-parameter fit with the Taft
steric parameter versus the inhibition potency (logIC50) yielded the best correlation with a
correlation coefficient (R2) of 0.912 and a statistical F value of 41.27 (Fmax = 35). The positive
sign of the Es (+0.47) parameter coefficient indicated that the inhibition potencies of the 8-
[(phenylethyl)sulfanyl]caffeines towards MAO-B may be enhanced by substitution with sterically
large groups at C-3 of the phenyl rings of the inhibitors. / Thesis (MSc (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2013
|
18 |
Novel sulfanyl- and sulfinylcaffeine analogues as inhibitors of monoamine oxidase / Wayne MentzMentz, Wayne January 2013 (has links)
Parkinson’s disease (PD) is a neurodegenerative disorder, which is progressive in nature and
usually associated with the elderly. It is the second most common age-related
neurodegenerative disorder after Alzheimer’s disease (AD). PD occurs when there is a dramatic
loss of dopamine (DA) in the striatum, a substructure of the basal ganglia, of the brain due to
the degeneration of the nigrostriatal pathway that contains the dopaminergic neurons. Motor
symptoms of PD include bradykinesia, muscular rigidity and resting tremors. Non-motor
symptoms include speech and sleep problems, hallucinations and depression. Diverse
treatment options are available to treat the symptoms of PD, including levodopa (L-Dopa), DA
agonists and monoamine oxidase B (MAO-B) inhibitors.
The MAOs are flavoproteins that are bound to the outer membrane of the mitochondria and
catalyze the oxidative deamination of neurotransmitters such as serotonin (5-HT), noradrenaline
(NA) and DA. Two isoforms occur, namely MAO-A and –B, which share a 70% sequence
identity. MAO-A catalyzes the oxidation of 5-HT and MAO-B has a substrate specificity towards
benzylamine and 2-phenylethylamine. DA, NA, adrenaline and tryptamine are oxidized by both
forms. MAO-A plays an important role in depression while MAO-B plays an important role in PD.
The two isoforms are not evenly distributed in the brain. Of particular relevance to PD is the
observation that, in the basal ganglia, MAO-B is the predominant form and the oxidation of DA
in this region is largely due to MAO-B activity. Also, with an increase in age, there is an up to
fourfold increase in MAO-B activity in the brain. In the aged parkinsonian brain, MAO-B is
therefore a major DA metabolizing enzyme and MAO-B inhibitors have an important role in the
therapy of PD. MAO-B inhibitors may potentially reduce the metabolic destruction of DA and
thereby provide relief from the symptoms of PD. MAO-B inhibitors may also exert a
neuroprotective effect in PD. In the catalytic cycle of MAO-B, one mole each of an aldehyde,
hydrogen peroxide and ammonia are formed for each mole of primary amine substrate oxidized.
Ferrous iron, which is abundant in the basal ganglia, may react with the hydrogen peroxide to
form hydroxyl radicals in the Fenton reaction. The hydroxyl radical damages virtually all types of
biomolecules including proteins, DNA, lipids, carbohydrates and amino acids. The aldehyde, in turn, may react with amino groups of proteins, and thus lead to cell injury. Inhibitors of MAO-B
may reduce the MAO-catalyzed formation of hydrogen peroxide and aldehydes in the basal
ganglia, and thus act as neuroprotective agents.
MAO-B inhibitors that are currently being used in the treatment of PD are selegiline and
rasagiline. Both are irreversible inhibitors of MAO-B. While irreversible inhibitors of MAO have
been used extensively as drugs, irreversible inhibition has a number of disadvantages. These
include the loss of selectivity as a result of repeated drug administration and a slow and variable
rate of enzyme recovery following termination of drug treatment. The turnover rate for the
biosynthesis of MAO-B in the human brain may require as much as 40 days while with
reversible inhibition, enzyme activity is recovered when the inhibitor is eliminated from the
tissues. For these reasons the discovery of novel MAO-B inhibitors, which interact reversibly
with the enzymes are of value in the therapy of PD.
The goal of this study was to design novel and reversible inhibitors of MAO-B, which may find
application in the therapy of PD. In the current study, caffeine was used as scaffold for the
design of new MAO inhibitors. Caffeine is reported to be a weak inhibitor of MAO-B, with an IC50
value of 5084 μM. Substitution at C-8 of the caffeine moiety, however, yields compounds with
potent MAO-B inhibitory properties. Of particular importance to this study is a recent report that
a series of 8-sulfanylcaffeine analogues acts as selective inhibitors of human MAO-B. Among
the compounds examined, 8-[(phenylethyl)sulfanyl]caffeine was found to be a particularly potent
MAO-B inhibitor with an IC50 value of 0.223 μM. In an attempt to further enhance the MAO-B
inhibition potency of 8-[(phenylethyl)sulfanyl]caffeine, and possibly to discover highly potent
MAO-B inhibitors, a series of five 8-[(phenylethyl)sulfanyl]caffeine analogues was synthesized
and evaluated as inhibitors of human MAO-A and –B. For the purpose of this study 8-
[(phenylethyl)sulfanyl]caffeine homologues containing C-3 alkyl (CF3, CH3 and OCH3) and
halogen (Cl and Br) substituents on the phenyl ring were considered. Furthermore, a series of
two 8-sulfinylcaffeine analogues and one 8-sulfonylcaffeine were synthesized and their MAO
inhibitory potencies were measured. The purpose with these compounds was to compare the
MAO inhibitory properties of the 8-sulfinylcaffeine analogues and 8-sulfonylcaffeine with those
of the 8-sulfanylcaffeine analogues. This study also investigates the MAO inhibition properties of
three selected 8-[(phenylpropyl)sulfanyl]caffeine and two 8-(benzylsulfanyl)caffeine analogues.
Chemistry: The target 8-sulfanylcaffeine analogues were synthesized according to the literature
procedure. 8-Chlorocaffeine was reacted with an appropriate mercaptan in the presence of NaOH, to yield the target 8-sulfanylcaffeine analogues in yields of 6.4–50.7%. 8-Chlorocaffeine,
in turn, was conveniently synthesized in high yield by reacting chlorine with caffeine in
chloroform. In certain instances, the mercaptan starting materials were not commercially
available and were thus synthesized according to the literature procedure by reacting an
appropriate alkylbromide with thiourea. The resulting thiouronium salt was hydrolyzed in the
presence of NaOH to yield the target mercaptan. The 8-sulfinylcaffeine analogues and 8-
sulfonylcaffeine were synthesized by reacting the 8-sulfanylcaffeines with H2O2 in the presence
of glacial acetic acid and acetic anhydride. The structures and the purities of the inhibitors were
verified by NMR, MS and HPLC analyses.
MAO inhibition studies: The MAO inhibitory properties of the test compounds were examined
using the recombinant human enzymes. The mixed MAO-A/B substrate, kynuramine, was
employed as substrate for both enzymes and the inhibition potencies were expressed as the
IC50 values.
The 8-[(phenylethyl)sulfanyl]caffeine analogues were found to be highly potent inhibitors of
MAO-B. The IC50 values recorded for these homologues ranged from 0.017–0.125 μM, making
them twofold to 13-fold more potent MAO-B inhibitors than the lead compound, 8-
[(phenylethyl)sulfanyl]caffeine (IC50 = 0.223 μM). For comparison, the reversible MAO-B
selective inhibitor, lazabemide, exhibits an IC50 value of 0.091 μM under the same conditions
(unpublished data from our laboratory). Interestingly, both alkyl (CF3, CH3 and OCH3) and
halogen (Cl and Br) substitution lead to highly potent MAO-B inhibition. It may therefore be
concluded that substitution on C-3 is a general strategy to enhance the MAO-B inhibition
potency of 8-[(phenylethyl)sulfanyl]caffeine. The results of the MAO inhibitory studies with the 8-
[(phenylpropyl)sulfanyl]caffeine analogues showed that these compounds are also inhibitors of
MAO-B with IC50 values of 0.061–0.500 μM. Those homologues substituted with chlorine on the
para and meta positions of the phenyl ring were found to be exceptionally potent inhibitors with
IC50 values of 0.061 μM and 0.062 μM, respectively. For the series of 8-
(benzylsulfanyl)caffeines, meta substitution with chlorine (IC50 = 0.227 μM) and bromine
(IC50 = 0.199 μM) was also found to enhance the MAO-B inhibition potency of 8-
(benzylsulfanyl)caffeine (IC50 = 1.86 μM). The results document that the 8-sulfinylcaffeines are
also inhibitors of MAO-B with IC50 values of 11.8–131 μM. The 8-sulfonylcaffeine was also found
to be a MAO-B inhibitor. Compared to the 8-sulfanylcaffeines, these homologues are, however,
weaker inhibitors. It may, therefore, be concluded that 8-sulfinylcaffeines and 8-sulfonylcaffeines are comparatively weak MAO-B inhibitors and less suited for the design of high potency MAO-B
inhibitors.
The results also document that the 8-[(phenylethyl)sulfanyl]caffeines are relatively weak MAO-A
inhibitors with IC50 values of 5.66–141 μM, with one homologue exhibiting no inhibition under
the experimental conditions. As evident from the selectivity indices (SI values), the 8-
[(phenylethyl)sulfanyl]caffeines were all selective inhibitors of the MAO-B isoform. Two
compounds exhibited SI values in excess of 1000. Since these compounds are also highly
potent MAO-B inhibitors, they represent suitable leads for the design of potent and selective
MAO-B inhibitors. The 8-sulfinylcaffeines and 8-sulfonylcaffeine were found to be weak MAO-A
inhibitors with IC50 values of 166–250 μM. The SI values demonstrate that these compounds are
MAO-B selective inhibitors, although to a lesser degree than the 8-
[(phenylethyl)sulfanyl]caffeines. The 8-[(phenylpropyl)sulfanyl]caffeines are also MAO-A
inhibitors with IC50 values of 0.708–6.48 μM. It is noteworthy that these homologues are the
most potent MAO-A inhibitors among the compounds evaluated in this study. In fact, one of the
8-[(phenylpropyl)sulfanyl]caffeines, 8-{[3-(4-chlorophenyl)propyl]sulfanyl}caffeine (IC50 = 0.708
μM), is the only compound with an IC50 value for the inhibition of MAO-A in the submicromolar
range. The 8-[(phenylpropyl)sulfanyl]caffeines display, in general, lower degrees of selectivity
for MAO-B than the corresponding 8-[(phenylethyl)sulfanyl]caffeines.
Reversibility studies: The reversibility of the interaction of a representative inhibitor, 8-{[2-(3-
(trifluoromethyl)phenyl)ethyl]sulfanyl}caffeine, with MAO-B was investigated by evaluating the
recovery of the enzymatic activity after dilution of the enzyme-inhibitor complex. For this
purpose, MAO-B was preincubated with the test compound at concentrations of 10 × IC50 and
100 × IC50 for 30 min. The reactions were subsequently diluted 100-fold to 0.1 × IC50 and 1 ×
IC50, respectively. The results show that, after dilution to 0.1 × IC50 and 1 × IC50, the MAO-B
catalytic activities are recovered to 35% and 22%, respectively, of the control value. For
reversible enzyme inhibition, the enzyme activities are expected to recover to levels of
approximately 90% and 50%, respectively, after 100-fold dilution of the preincubations
containing inhibitor concentrations of 10 × IC50 and 100 × IC50. After preincubation of MAO-B
with the irreversible inhibitor (R)-deprenyl (at 10 × IC50), and dilution of the resulting complex to
0.1 × IC50, MAO-B activity is not recovered (3.0% of control). These data indicate that the test
compound does indeed react reversibly with MAO-B but because enzyme activities are not
recovered to the expected 90% and 50% respectively, it may suggest that the test compound
possess a quasi-reversible or tight-binding component. Hansch-type structure activity relationship studies: A limited Hansch-type QSAR study was
performed for the inhibition of MAO by the 8-[(phenylethyl)sulfanyl]caffeines. For this purpose,
five parameters were used to describe the physicochemical properties of the C-3 substituents
on the phenyl rings of the inhibitors. The Van der Waals volume (Vw) and Taft steric parameter
(Es) served as descriptors of the bulkiness of the substituents, while the lipophilicities were
described by the Hansch constant (π). The electronic properties were described by the classical
Hammett constant (σm) and the Swain-Lupton constant (F). A one-parameter fit with the Taft
steric parameter versus the inhibition potency (logIC50) yielded the best correlation with a
correlation coefficient (R2) of 0.912 and a statistical F value of 41.27 (Fmax = 35). The positive
sign of the Es (+0.47) parameter coefficient indicated that the inhibition potencies of the 8-
[(phenylethyl)sulfanyl]caffeines towards MAO-B may be enhanced by substitution with sterically
large groups at C-3 of the phenyl rings of the inhibitors. / Thesis (MSc (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2013
|
Page generated in 0.0668 seconds