• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 28
  • 11
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 163
  • 47
  • 33
  • 30
  • 27
  • 23
  • 18
  • 18
  • 17
  • 16
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Characterization of a Degradable Polar Hydrophobic Ionic Polyurethane Using a Monocyte/Endothelial Cell Co-culture (in vitro) and a Subcutaneous Implant Mouse Model (in vivo)

McDonald, Sarah M. 10 February 2011 (has links)
A degradable/polar/hydrophobic/ionic (D-PHI) polyurethane with properties intended to promote tissue regeneration in a small diameter peripheral artery vascular graft was evaluated for cell biocompatibility and growth. Films were cast in polypropylene 96 well plates for monocyte/endothelial cell (EC) co-culture in vitro studies and porous scaffold discs were implanted in an in vivo subcutaneous mouse model. After 7 days in culture the co-culture demonstrated cell adhesion and growth, low esterase activity (a measure of degradative potential and cell activation), no detectable release of pro-inflammatory cytokine (tumour necrosis factor -α) but measurable anti-inflammatory interleukin (IL)-10. The EC and the co-culture expressed the EC biomarker CD31, whereas the monocyte monoculture did not. Cytokine array analysis of the in vivo characterization of D-PH supported an anti-inflammatory phenotype of cells at the site of the implant. Levels of IL-6 significantly decreased over time while IL-10 was significantly higher at 6 weeks post implant. TNF-α levels did not change significantly from 24 hours onwards, however the trend was towards lesser amounts following the initial time point. Histological analysis of the explanted scaffolds showed excellent tissue ingrowth and vascularization. A live/dead stain showed that the cells infiltrating the scaffolds were viable. Both the in vitro and in vivo results of this thesis indicate that D-PHI is a good candidate material for tissue engineering a peripheral artery vascular graft.
72

Regulation of Innate Immune Cells

Maharjan, Anu 05 September 2012 (has links)
Immune cells such as neutrophils and monocytes enter tissues after tissue damage and clear cell debris to allow repair cells such as fibroblasts to close the wound. Monocytes also differentiate into fibroblast-like cells called fibrocytes to mediate wound healing, similar to fibroblasts. However, in abnormal wound healing such as acute respiratory distress syndrome (ARDS) and fibrosing diseases, the accumulation of immune cells such as neutrophils or fibrocytes become detrimental to health. In ARDS, neutrophils accumulate in the lungs and causes additional damage by producing reactive oxygen species (ROS). In fibrosing diseases, increased fibrocyte differentiation is one of the causes that increase extracellular matrix deposition, which leads to severe scar tissue build up. Since there are no effective treatments for ARDS or fibrosing diseases, understanding the regulation of neutrophil activation or fibrocyte differentiation could be helpful to develop new effective therapies. The Gomer lab has found several factors that either promote or inhibit fibrocyte differentiation. The pro-fibrotic cytokines such as IL-4 and IL-13 potentiate fibrocyte differentiation while the plasma protein serum amyloid P (SAP), crosslinked IgG, and the pro-inflammatory cytokines IFN-γ and IL-12 inhibit fibrocyte differentiation. In this thesis, I have now shown that additional factors such as toll-like receptor 2 (TLR2) agonists and low molecular weight hyaluronic acid (LMWHA) inhibit fibrocyte differentiation, while high molecular weight hyaluronic acid (HMWHA) potentiate fibrocyte differentiation. The accumulation of neutrophils in the lungs is one of the major factors that debilitate the health of a patient in ARDS. Since neutrophils have Fc receptors, I examined the effect of SAP on neutrophil spreading, adherence, activation, and accumulation. SAP inhibits neutrophil spreading induced by cell debris and TNF-α induced adhesion, but SAP is unable to have any effect on classic neutrophil adhesion molecules or the production of hydrogen peroxide. SAP inhibits neutrophil accumulation in the lungs of bleomycin-injured mice. There is an exciting possibility of using SAP as a therapeutic agent to treat ARDS.
73

The role of monocyte and monocyte-derived cells in influenza-induced pathology and Th1 immune responses

Lin, Kaifeng Lisa January 2009 (has links)
<p>Monocytes and monocyte-derived cells are important in providing innate immunity against various pathogens. Monocytes become macrophages or dendritic cells after they enter tissues during inflammation. Macrophages phagocytose microbes and kill them intracellularly in lysosomes. After macrophages are activated, they secret a variety of cytokines as part of innate defense. However, such cytokines have been implicated in causing autoimmune diseases and influenza-induced pathology. For these reasons, we have investigated the role of monocytes and monocyte-derived cells in inducing immune pathology. Moreover, monocytes are also thought to affect adaptive immunity by shaping T cell responses. Yet the enterity of their contributions to adaptive immune response remains to be determined. </p><p>CCR2 is the chemokine receptor required for inflammatory monocytes to enter tissues, and its deficiency in mice has been shown to be protective for influenza-induced immune pathology. We hypothesized that cells that depend on CCR2 to migrate into inflammaed lungs are the cells that induce immune pathology during influenza infection. First, we identified cell types that are recruited to the lungs by CCL2. Similar myeloid cell types, monocytes, monocyte-derived DCs (moDCs), and exudated macrophages (exMAC), also accumulate in the lungs during influenza infection. We then show that these myeloid cells types are derived from monocytes, and that they produce high levels of TNF-&#945; and NOS2. Finally, we show a strong correlation between reduced accumulation of myeloid cells and decreased influenza-induced pathology and mortality in CCR2-deficient mice, suggesting that CCR2 inhibition may be a viable therapy for highly pathogenic influenza infection.</p><p>In the second part of this work, we focus on monocyte-derived dendritic cells in lymph nodes (LN). Inflammatory DCs in LN can arise from moDCs recruited via lymphatics (peripheral moDCs) and from inflammatory monocytes that enter LN directly from the blood (blood-derived moDCs). We examine the role of blood-derived moDCs in inducing LN T cell activation and polarization after immunogenic stimuli. We find that, following viral infection or immunization, inflammatory monocytes are recruited into LN directly from the blood to become CD11c<super>+<super>CD11b<super>hi<super>Gr-1<super>+<super> inflammatory DCs, which produce high levels of IL-12 (p70) and potently stimulate Th1 responses. This monocyte extravasation requires CCR2 but not CCL2 or CCR7. Thus, inflammatory DCs accumulation and Th1 responses are markedly reduced in CCR2<super>-/-<super> mice, preserved in CCL2<super>-/-<super> mice, and relatively increased in CCL19/21-Ser-deficient <italic>plt<italic> mice, in which all other LN DC types are reduced. </p><p>Our findings provide important insights into mutiple roles that monocytes play in both innate and adaptive immunity. Monocytes provide an early response against pathogens. As we now demonstrate, this response can be excessive, leading to a significant immune pathology during influenza infection that has been previously attributed to neutrophils. We also provide the first demonstration that monocytes play an important role in regulating adaptive immune responses. We find that monocyte-derived DCs are both sufficient and necessary for the development of Th1-polarized immune responses within LNs. Taken together, our results demonstrate that the roles played by monocytes in innate immunity adaptive immunity, and immune pathology are much greater than previously appreciated and that regulating monocyte function may be an effective means to regulate certain types of immune responses.</p> / Dissertation
74

Leukocyte and endothelial gene expression: response to endothelial stimulation and leukocyte transmigration

Williams, Marcie Renee 06 March 2009 (has links)
Leukocyte transmigration is a critical step of the inflammatory process. In this project I have examined leukocyte responses to transmigration and endothelial responses to both chemical and mechanical stimuli which are known to be involved in leukocyte transmigration. My work has identified ~2500 differentially expressed genes following endothelial exposure to interleukin-1 beta (IL1β). Interestingly, IL1β induces up-regulation of claudin-1 and pre-b-cell colony enhancing factor and down-regulation of claudin-5 and occludin, which are all involved in maintaining endothelial cell-cell junctions. Analysis of endothelial cell (EC) transcriptional changes following neutrophil transmigration found few differentially expressed genes in comparison to IL1β treated ECs; indicating that the effects of transmigration on ECs are minimal in comparison to the global transcriptional changes induced by IL1β. Atherosclerosis, characterized by monocyte accumulation within the vessel lumen, is found in regions of flow reversal and low time averaged oscillatory shear stress. I have examined the effects of this type of shear stress on endothelial cell gene expression. My data indicates that most genes differentially expressed under these conditions are controlled by low average shear stress rather than flow reversal. These differentially expressed genes are involved in regulating the cell cycle and the immune response. My work shows that cell proliferation is increased following exposure to low steady shear stress or exposure to reversing oscillatory flow in comparison to high steady shear stress. Additionally monocyte adhesion is increased following exposure of ECs to reversing oscillatory flow. My work has also examined the impact of transmigration on monocyte gene expression. I have identified genes which are differentially expressed in monocytes by exposure to EC secretions, monocyte/EC contact, and diapedesis. I have also shown that freshly isolated human monocytes have reduced apoptosis following transmigration. Surprisingly, I also found that monocytes had reduced expression of anti-microbial peptides following transmigration. Overall my work identifies important endothelial and leukocyte transcriptional responses to the process of transmigration which extends from cytokine stimulation through diapedesis.
75

MCP-1 and APP involvement in glial differentiation and migration of neuroprogenitor cells

Vrotsos, Emmanuel George. January 2009 (has links)
Thesis (Ph.D.)--University of Central Florida, 2009. / Adviser: Kiminobu Sugaya. Includes bibliographical references (p. 45-50).
76

Indicators of Inflammation in the Fasting Induced Fatty Liver of the American Mink (Neovison vison)

26 November 2012 (has links)
The presence of inflammation in the progression of fatty liver disease induced by fasting was determined in mink. Tumour necrosis factor alpha (TNF-?), and monocyte chemoattractant protein 1 (MCP-1) liver mRNA levels were quantified by real-time PCR. Mink fasted for 5 and 7 days had significantly higher levels of TNF-? and MCP-1 liver mRNA, compared to mink fasted for 0, 1, and 3 days. Mink fasted for 7 days, but re-fed for 28 days had the lowest mRNA levels of both TNF-?, and MCP-1 demonstrating the liver’s ability to restore homeostasis post-fasting. TNF-? mRNA levels were correlated with MCP-1 liver mRNA and liver fat percent. To confirm the physical presence of inflammation, slides stained with haematoxylin and eosin were analyzed for bile ducts resulting in no significant differences. Results indicate that elevated MCP-1 and TNF-? expression are associated with fasting induced fatty liver in mink.
77

Novel Functions of IL-27 in Innate Immunity: Characterization of IL-27-induced Inflammatory Responses in Human Monocytes and Impact of HIV Infection on IL-27 Expression and Function

Guzzo, Christina 12 April 2012 (has links)
Interleukins, cytokines secreted by leukocytes, are predominant messengers modulating immune responses. Interleukin-27 (IL-27), a key immunomodulatory cytokine, functions to induce both pro- and anti-inflammatory effects in various immune cells. IL-27 is a heterodimeric cytokine, composed of IL-27p28 and Epstein-Bar virus induced gene 3 (EBI3) subunits, and binds to a receptor composed of IL-27Rα (WSX-1) and gp130. Initial studies focused on describing IL-27 functions in skewing T helper cell development to a Th1 response, with few reports on functions in monocytes. Thus, in this thesis, I aimed to characterize novel functions of IL-27 in innate immune responses of monocytes. I initially established that IL-27 induced a pro-inflammatory cytokine profile (IL-6, IP-10, MIP-1α, MIP-1β, and TNF-α) mediated via STAT1/3 and NF-κB signaling pathways. Further investigation led to the discovery that IL-27 could enhance LPS responses via upregulation of TLR4 expression and NF-κB signaling. Together, these studies described novel signaling mechanisms (NF-κB and JAK/STAT crosstalk) and gene targets (cytokines and TLR4) of IL-27 that drive inflammatory responses. In continuing the quest for novel IL-27 functions in innate immunity, I reported IL-27 can upregulate expression of the IFN-responsive, antiviral protein called BST-2. My results showing IL-27-induced expression of BST-2 mRNA and cell surface protein were supported by previous studies reporting IL-27-induced expression of other antiviral molecules. Furthermore, previous studies showed IL-27 could inhibit HIV replication via antiviral gene induction, pointing to potential for IL-27 immunotherapies. In light of the posited role for IL-27 in therapeutics, it became inherently critical to describe how IL-27 functions in the setting of HIV infection. Thus, in my final thesis chapters, I described the effect of HIV infection on IL-27 expression and functions, addressing a substantial void in literature. Interestingly, a trend of decreased IL-27 expression and significant impairment of IL-27-induced gene expression was observed in HIV infection. Therefore, decreased circulating IL-27 and decreased IL-27 responsiveness may collectively dysregulate IL-27 function in HIV. This thesis describes novel, IL-27-driven, proinflammatory responses, and highlights impairment of IL-27 function in HIV infection. This work bridged a gap in knowledge of IL-27 functions in monocytes and highlighted multifaceted mechanisms underlying immunoregulation by IL-27. / Thesis (Ph.D, Microbiology & Immunology) -- Queen's University, 2012-04-12 13:07:50.588
78

Mechanism and Inhibition of Hypochlorous Acid-Mediated Cell Death in Human Monocyte-Derived Macrophages

Yang, Ya-ting (Tina) January 2010 (has links)
Hypochlorous acid (HOCl) is a powerful oxidant produced by activated phagocytes at sites of inflammation to kill a wide range of pathogens. Yet, it may also damage and kill the neighbouring host cells. The abundance of dead macrophages in atherosclerotic plaques and their colocalization with HOCl-modified proteins implicate HOCl may play a role in killing macrophages, contributing to disease progression. The first part of this research was to investigate the cytotoxic effect and cell death mechanism(s) of HOCl on macrophages. Macrophages require efficient defense mechanism(s) against HOCl to function properly at inflammatory sites. The second part of the thesis was to examine the antioxidative effects of glutathione (GSH) and 7,8-dihydroneopterin (7,8-NP) on HOCl-induced cellular damage in macrophages. GSH is an efficient scavenger of HOCl and a major intracellular antioxidant against oxidative stress, whereas 7,8-NP is secreted by human macrophages upon interferon-γ (IFN-γ) induction during inflammation and can also scavenge HOCl. HOCl caused concentration-dependent cell viability loss in human monocyte derived macrophage (HMDM) cells above a specific concentration threshold. HOCl reacted with HMDMs to cause viability loss within the first 10 minutes of treatment, and it posed no latent effect on the cells afterwards regardless of the HOCl concentrations. The lack of caspase-3 activation, rapid influx of propidium iodide (PI) dye, rapid loss of intracellular ATP and cell morphological changes (cell swelling, cell membrane integrity loss and rupture) were observed in HMDM cells treated with HOCl. These results indicate that HOCl caused HMDM cells to undergo necrotic cell death. In addition to the loss of intracellular ATP, HOCl also caused rapid loss of GAPDH enzymatic activity and mitochondrial membrane potential, indicating impairment of the metabolic energy production. Loss of the mitochondrial membrane potential was mediated by mitochondrial permeability transition (MPT), as blocking MPT pore formation using cyclosporin A (CSA) prevented mitochondrial membrane potential loss. HOCl caused an increase in cytosolic calcium ion (Ca2+) level, which was due to both intra- and extra-cellular sources. However, extracellular sources only contributed significantly above a certain HOCl concentration. Preventing cytosolic Ca2+ increase significantly inhibited HOCl-induced cell viability loss. This suggests that cytosolic Ca2+ increase was associated with HOCl-induced necrotic cell death in HMDM cells, possibly via the activation of Ca2+-dependent calpain cysteine proteases. Calpain inhibitors prevented HOCl-induced lysosomal destabilisation and cell viability loss in HMDM cells. Calpains induced HOCl-induced necrotic cell death possibly by degrading cytoskeletal and other cellular proteins, or causing the release of cathepsin proteases from ruptured lysosomes that also degraded cellular components. The HOCl-induced cytosolic Ca2+ increase also caused mitochondrial Ca2+ accumulation and MPT activation-mediated mitochondrial membrane potential loss. MPT activation, like calpain activation, was also associated with the HOCl-induced necrotic cell death, as preventing MPT activation completely inhibited HOCl-induced cell viability loss. The involvement of both calpain activation and MPT activation in HOCl-induced necrotic cell death in HMDM cells implies a cause and effect relationship between these two events. HMDM cells depleted of intracellular GSH using diethyl maleate showed increased susceptibility towards HOCl insult compared to HMDM cells with intact intracellular GSH levels, indicating that intracellular GSH played an important role in protecting HMDM cells against HOCl exposure. Intracellular GSH level in each HMDM cell preparation directly correlated with HOCl concentration required to kill 50% of population for each cell preparation, indicating intracellular GSH concentrations determine the efficiency of GSH in preventing HOCl-induced damage to HMDM cells. Intracellular GSH and cell viability loss induced by 400 μM HOCl were significantly prevented by 300 μM extracellular 7,8-NP, indicating that added 7,8-NP is an efficient scavenger of HOCl and out-competed intracellular GSH for HOCl. The amount of 7,8-NP synthesized by HMDM cells upon IFN-γ induction was too low to efficiently prevent HOCl-mediated intracellular GSH and cell viability loss. HOCl clearly causes HMDM cells to undergo necrosis when the concentration exceeds the intracellular GSH concentrations. Above this concentration HOCl causes oxidative damage to the Ca2+ ion channels on cell and ER membranes, resulting in an influx of Ca2+ ions into the cytosol and possibly the mitochondria. The rise in Ca2+ ions triggers calpain activation, resulting in the MPT-mediated loss of mitochondrial membrane potential, lysosomal instability and cellular necrosis.
79

POLYCHLORINATED BIPHENYL-INDUCED ENDOTHELIAL CELL DYSFUNCTION AND ITS MODULATION BY DIETARY LIPIDS

Majkova, Zuzana 01 January 2010 (has links)
Cardiovascular diseases are the number one cause of death in Western societies. Endothelial dysfunction is an early event in the pathology of atherosclerosis, which is an underlying cause in the majority of cardiovascular events. Exposure to persistent environmental pollutants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of atherosclerosis. First, we tested a hypothesis that coplanar PCBs, dioxin-like chemicals with affinity for aryl hydrocarbon receptor (AhR), can stimulate up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of atherosclerosis. Coplanar PCBs 77 and 126 increased expression of MCP-1 in endothelial cells, and this effect was dependent on activation of AhR and increased levels of cytochrome P450 monoxygenases. Subsequent rise in the levels of reactive oxygen species (ROS) led to a downstream stimulation of redox-sensitive kinases and transcription factors. Lipid rafts, and particularly caveolae, are enriched in endothelial cells, and down-regulation of caveolin-1, a key structural protein of caveolae, decreases the progression of atherosclerosis. Studies using deletion of caveolin-1 in vitro and in vivo demonstrated that intact caveolae were required for up-regulation of MCP-1 and pro-inflammatory interleukin-6 (IL-6) by PCB77. Nutrition can modulate adverse outcomes of human exposure to environmental chemicals. Fish oil-derived long-chain omega-3 polyunsaturated fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can alleviate inflammatory responses and the risk of cardiovascular disease. Cyclopentenone metabolites produced by oxidation of DHA contribute to these protective effects. Endothelial cells were pre-treated with oxidized DHA (oxDHA), prepared by incubation of the fatty acid with a free radical generator. Subsequent up-regulation of MCP-1 by coplanar PCB77 was markedly reduced. DHA-derived cyclopentenones increased nuclear translocation and DNA binding of a transcription factor NF-E2-related factor-2 (Nrf2), as well as expression levels of its target, antioxidant enzyme NAD(P)H:quinone oxidoreductase (NQO1). This stimulation of antioxidant responses prevented ROS production and inflammatory responses induced by PCB77. These data support the concept that nutrition prevents toxicity caused by environmental pollutants; thus, nutrition and can be a sensible approach to alleviate chronic pathologies associated with these chemicals.
80

Rôle des protéines de choc thermique HSP90 et HSP70 dans la différenciation macrophagique

Lanneau, David 21 May 2010 (has links) (PDF)
La synthèse des protéines de choc thermique (HSPs) est un moyen de défense développé par la cellule pour faire face aux diverses agressions auxquelles elle peut être soumise. En tant que chaperons, les HSPs participent aux mouvements intracellulaires des protéines, préviennent l'agrégation des protéines altérées, éliminent les protéines anormales et contribuent à la conformation correcte des peptides nouvellement synthétisées. Mon équipe d'accueil s'intéresse aux rôles des HSPs dans des processus cellulaires tels que l'apoptose et la différenciation cellulaire. Le but de mon travail de thèse consiste à étudier le rôle des protéines de choc thermique HSP90 et HSP70 au cours de la différenciation des monocytes en macrophages. J'ai dans un premier temps étudié l'implication de HSP90 dans la différenciation macrophagique. c-IAP1 est un membre de la famille des protéines inhibitrices de l'apoptose impliqué dans la régulation de l'apoptose, dans le cycle cellulaire et dans la signalisation cellulaire. Nous avons précédemment montré que c-IAP1 migre du noyau vers le cytoplasme au cours de la différenciation cellulaire. Nous démontrons dans ce travail que c-IAP1 est une protéine cliente de la protéine de choc thermique HSP90β. Dans trois différents modèles de différenciation, ces protéines interagissent et migrent ensemble du noyau vers le cytoplasme au cours de la différenciation cellulaire. L'inhibition de HSP90 ou la déplétion spécifique de l'isoforme β par des siRNA conduisent à sa dégradation par le protéasome. La fonction de chaperon moléculaire de HSP90 envers c-IAP1 est spécifique de l'isoforme β car la déplétion de l'isoforme α n'a pas d'effets sur c-IAP1. De plus l'inhibition de HSP90 ou la déplétion de HSP90β bloquent la différenciation cellulaire tout comme la déplétion de c-IAP1 par siRNA. La deuxième partie de montre travail a consisté à étudier le rôle de HSP70 dans la différenciation macrophagique. Nous montrons que cette protéine est fortement induite après stimulation des cellules par le facteur de croissance M-CSF et que son inhibition bloque la différenciation des monocytes en macrophage. HSP70 interagit avec la protéine Spi-1/Pu.1, facteur de transcription clé de la différenciation macrophagique. L'expression de Spi-1/Pu.1 augmente également au cours de la différenciation macrophagique et ce de manière similaire à celle de HSP70. Ceci suggère l'implication des facteurs de transcription responsables de l'induction des HSPs, les Heat Shock Factor (HSF). L'étude du promoteur de Spi-1/Pu.1 a révélé la présence d'une séquence ressemblant fortement aux éléments de réponse classiques sur lesquels se fixe HSF1. HSF1 est capable de se fixer sur le promoteur de Spi-1/Pu.1 et l'inhibition de HSF1 bloque l'expression de Spi-1/Pu.1. HSF1 participe donc au contrôle de l'expression de Spi-1/Pu.1 lors de la différenciation macrophagique. HSP90 et HSP70 sont donc essentielles à la différenciation macrophagique. Comprendre les mécanismes cellulaires impliqués dans les voies de différenciation se révèle extrêmement important puisque des altérations des mécanismes de l'hématopoïèse sont retrouvées dans plusieurs types de leucémies (leucémies aiguës myéloblastiques et leucémies myélo-monocytaires chroniques). Connaître le rôle des HSPs dans la différenciation cellulaire permettrait donc de développer de nouvelles stratégies thérapeutiques pour le traitement de ces pathologies.

Page generated in 0.0297 seconds