• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 28
  • 11
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 170
  • 48
  • 34
  • 30
  • 27
  • 24
  • 20
  • 19
  • 18
  • 18
  • 16
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Sub-phenotypes of Macrophages and Monocytes in COPD and Molecular Pathways for Novel Drug Discovery

Yan, Yichen 22 August 2022 (has links)
Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder and the third leading cause of mortality. In this thesis we performed a clustering analysis of four specific immune cells in the GSE136831 dataset, using the default recommended parameters of the Seurat package in R, and obtained 16 subclasses with various COPD and cell-type proportions. Clusters 3, 7 and 9 had more pronounced independence and were all composed of macrophage-dominated control samples. The results of the pseudo-time analysis based on Monocle 3 package in R showed three different patterns of cell evolution. All started with a high percentage of COPD states, one ended with a high rate of Control states, and the other two still finished with a high percentage of COPD states. The results of differentially expressed gene analysis corroborated the existence of finer clusters and provided support for their rational categorization based on the similar marker genes. The gene ontology (GO) enrichment analysis for cluster 0 and cluster 6 provided feedback on enriched biological process terms with significant and unique characteristics, which could help explore latent novel COPD treatment directions. Finally, some top-ranked potential pharmaceutical molecules were searched via the connectivity map (cMAP) database. / Graduate / 2023-08-12
92

Activation of Caspase-1 Signaling Complexes by the P2X7 Receptor Requires Intracellular K <sup>+</sup> Efflux and Protein Synthesis Induced by Priming with Toll-Like Receptor Ligands

Kahlenberg, Joanne Michelle 29 June 2004 (has links)
No description available.
93

Intracellular and extracellular regulation of the inflammatory protease caspase-1

Shamaa, Obada 02 October 2014 (has links)
No description available.
94

Characterization of the LYCD-Dependent Transcriptional Response in the THP-1 Cell Culture Monocytes

Osterburg, Andrew Robert 29 September 2005 (has links)
No description available.
95

Abnormalities in the Adhesion and Aggregation Profiles of Circulating Monocytes in Psoriasis

Golden, Jackelyn B. 27 January 2016 (has links)
No description available.
96

The Role of Cellular Crosstalk in Modulating Natural Killer Cell Responses to Immunotherapy for Cancer

Campbell, Amanda Rose 12 September 2016 (has links)
No description available.
97

Mucosal and Systemic Immune Phenotype is Altered During HIV-1 Infection and is Partially Restored and Further Disrupted in the Absence of Detectable Viral Replication

McCausland, Marie Rose 08 February 2017 (has links)
No description available.
98

The Biochemical Basis of The miR-21 Expression by The Mu-Opioid Receptor

Chang, Jen-Kuan January 2015 (has links)
Opioid receptors are members of the superfamily of seven transmembrane G protein-coupled receptors (GPCRs) which share several structural and functional characteristics. There are 3 subtypes of opioid receptors, designated μ (MOR), δ (DOR), and κ (KOR) opioid receptors, have been found in the immune, nervous, gastrointestinal and other tissues. We have attempted to clarify the nature of MOR-induced signal transduction pathways in leukocytes. We found that the activation of MOR leads to a significant induction of ERK phosphorylation in peripheral blood mononuclear cells from normal donors using the MOR-selective agonist DAMGO. We are also interested in determining the role of this signaling pathway in the regulation of the immune response. Recent experiments using selective inhibitors suggests that the activation of ERK involves a pathway composed of Raf, Ras, and MEK1/2 kinases, but is independent of PI3 kinase. After treatment of multiple protein kinase inhibitors we found the PKC inhibitor Go-6983 and PLC inhibitor U73122 could also inhibit ERK phosphorylation in MOR stable line (HEK-MOR). According to the results from the Go-6983 and H-89 inhibitor treatment experiments, we found PKCμ/PKD1, a family member of Protein Kinase D, may be involved in MOR-induced ERK phosphorylation. We also found PKCμ/PKD1 S916 phosphorylation after MOR activation and the PKCμ specific inhibitor CID755673 inhibited the MOR-mediated ERK activation. ERK phosphorylation activated several transcription factors in human monocytes, the activation of transcription factors has been proved to induce miRNA expression. We have initiated a series of experiments to study the regulation of miRNA expression by MOR in human monocytes. We found miR-21, miR-155, miR-29a, miR-20b expression were significantly up-regulated following morphine treatment, and morphine-induced miR-21 expression is down-regulated following pretreatment with the ERK inhibitor U0126 and PKD inhibitor CID755673 in human primary monocytes. The results suggest that morphine-induced MOR activation results in up-regulation of miRNA expression human monocytes and this may regulate monocyte and/or macrophage function thought PKCμ/Ras/Raf/ERK signaling pathway. / Molecular Biology and Genetics
99

Predicting the efficacy of monoclonal antibodies against multiple myeloma / 多発性骨髄腫に対する抗体療法の有効性の予測

Shimazu, Yutaka 25 March 2024 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13603号 / 論医博第2313号 / 新制||医||1073(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 森田 智視, 教授 佐藤 俊哉, 教授 永井 純正 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
100

Unraveling the Role of EphA4 in Immune-Mediated Arteriogenesis After Ischemic Stroke

Ju, Jing 19 December 2024 (has links)
Stroke, a life-threatening condition, primarily resulting from ischemic events often caused by occlusion of the middle cerebral artery (MCA). Pre-existing leptomeningeal collateral (LMC) vessels connect MCA branches to anterior or posterior arteries, situated along the brain's cortical surface or meninges, under healthy conditions these vessels remain dormant due to their small diameters and relatively low flow velocity. LMCs serve as vascular redundancies that retrogradely re-supply blood to help salvage the penumbra following cerebral vascular occlusion. Their outward growth or remodeling (arteriogenesis) is essential for promoting cerebral reperfusion and preventing tissue damage after ischemic stroke. Increased fluid shear stress on collateral vessel wall activates arteriogenesis result in the activation of the endothelium and subsequent recruitment of peripheral-derived immune cells (PDICs), which have been shown to aid this unique adaptive process in other organ systems, however their role and mechanism(s) involved in LMC remodeling in stroke has not previously been evaluated. Initial findings suggest the EphA4, a well-established axonal growth and guidance receptors, plays a novel role in LMC arteriogenesis. This dissertation examined PDIC-specific functions of EphA4 using GFP labeled bone marrow chimeric mice subjected to permanent middle cerebral artery occlusion (pMCAO). We assessed immune cell population changes, infarct volume, functional recovery, characterized subtypes of infiltrated immune cell, and measured collateral vessel diameters. Additionally, we explored the Tie2-mediated PI3K signaling pathway in peripheral-derived monocyte/macrophages (PDM) treated with soluble Tie2-Fc and a PI3K p110α inhibitor. The results from this dissertation show that loss of PDIC-specific EphA4 led to increased collateral remodeling, associated with decreased infarct volume, improved cerebral blood flow, and functional recovery within 24 hours post-pMCAO. The crosstalk between EphA4-Tie2 signaling in PDMs, regulated through PI3K/Akt axis, inhibited pial collateral remodeling. In conclusion, our findings highlight the negative regulatory role of PDM-specific EphA4 in collateral growth and remodeling by inhibiting Tie2 function via the PI3K regulated pathway. Peripheral myeloid-derived EphA4 emerges as a new regulator of cerebral vascular injury and neuroinflammation following acute ischemic stroke. / Doctor of Philosophy / Stroke, a life-threatening condition, occurs when blood flow to part of the brain is disrupted due to the vascular occlusion of a major brain artery, such as the MCA. Within protective layers of our brain, there are pre-existing pial collateral vessels that act as backup connections. These vessels play an important role in increasing cerebral reperfusion and preventing tissue damage after stroke. One fascinating aspect of stroke recovery involves PDICs. These immune cells migrate into the blood hypo-perfused region of the brain and regulate the growth of collateral vessels. However, the specific functions of PDICs, particularly a receptor called EphA4, has remained unclear. Our research delved into the immune response following ischemic stroke using genetically modified mice. We examined immune cell populations, infarct volume (the damaged brain tissue), functional recovery, and collateral vessel diameters. Notably, we discovered that deletion of PDIC-specific EphA4 enhanced collateral vessel remodeling. This led to decreased infarct volume, better blood flow, and improved functional recovery within 24 hours after stroke. Furthermore, we explored a signaling pathway involving Tie2 and PI3K in PDM. This crosstalk between EphA4 and Tie2, mediated through PI3K regulation, played a critical role in suppressing collateral vessel remodeling. In summary, understanding how immune cells contribute to stroke recovery may pave the way for novel therapeutic approaches to enhance outcomes for stroke patients.

Page generated in 0.0385 seconds