• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 48
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Weighted Unranked Tree Automata over Tree Valuation Monoids

Götze, Doreen 16 March 2017 (has links) (PDF)
Quantitative aspects of systems, like the maximal consumption of resources, can be modeled by weighted automata. The usual approach is to weight transitions with elements of a semiring and to define the behavior of the weighted automaton by mul- tiplying the transition weights along a run. In this thesis, we define and investigate a new class of weighted automata over unranked trees which are defined over valuation monoids. By turning to valuation monoids we use a more general cost model: the weight of a run is now determined by a global valuation function. Besides the binary cost functions implementable via semirings, valuation functions enable us to cope with average and discounting. We first investigate the supports of weighted unranked tree automata over valuation monoids, i.e., the languages of all words which are evalu- ated to a non-zero value. We will furthermore consider the support of several other weighted automata models over different structures, like words and ranked trees. Next we prove a Nivat-like theorem for the new weighted unranked tree automata. More- over, we give a logical characterization for them. We show that weighted unranked tree automata are expressively equivalent to a weighted MSO logic for unranked trees. This solves an open problem posed by Droste and Vogler. Finally, we present a Kleene- type result for weighted ranked tree automata over valuation monoids.
42

C*-algebras from actions of congruence monoids

Bruce, Chris 20 April 2020 (has links)
We initiate the study of a new class of semigroup C*-algebras arising from number-theoretic considerations; namely, we generalize the construction of Cuntz, Deninger, and Laca by considering the left regular C*-algebras of ax+b-semigroups from actions of congruence monoids on rings of algebraic integers in number fields. Our motivation for considering actions of congruence monoids comes from class field theory and work on Bost–Connes type systems. We give two presentations and a groupoid model for these algebras, and establish a faithfulness criterion for their representations. We then explicitly compute the primitive ideal space, give a semigroup crossed product description of the boundary quotient, and prove that the construction is functorial in the appropriate sense. These C*-algebras carry canonical time evolutions, so that our construction also produces a new class of C*-dynamical systems. We classify the KMS (equilibrium) states for this canonical time evolution, and show that there are several phase transitions whose complexity depends on properties of a generalized ideal class group. We compute the type of all high temperature KMS states, and consider several related C*-dynamical systems. / Graduate
43

Weighted Unranked Tree Automata over Tree Valuation Monoids

Götze, Doreen 14 March 2017 (has links)
Quantitative aspects of systems, like the maximal consumption of resources, can be modeled by weighted automata. The usual approach is to weight transitions with elements of a semiring and to define the behavior of the weighted automaton by mul- tiplying the transition weights along a run. In this thesis, we define and investigate a new class of weighted automata over unranked trees which are defined over valuation monoids. By turning to valuation monoids we use a more general cost model: the weight of a run is now determined by a global valuation function. Besides the binary cost functions implementable via semirings, valuation functions enable us to cope with average and discounting. We first investigate the supports of weighted unranked tree automata over valuation monoids, i.e., the languages of all words which are evalu- ated to a non-zero value. We will furthermore consider the support of several other weighted automata models over different structures, like words and ranked trees. Next we prove a Nivat-like theorem for the new weighted unranked tree automata. More- over, we give a logical characterization for them. We show that weighted unranked tree automata are expressively equivalent to a weighted MSO logic for unranked trees. This solves an open problem posed by Droste and Vogler. Finally, we present a Kleene- type result for weighted ranked tree automata over valuation monoids.
44

Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups / Représentations de monoïdes et structures de treillis en combinatoire des groupes de Weyl.

Gay, Joël 25 June 2018 (has links)
La combinatoire algébrique est le champ de recherche qui utilise des méthodes combinatoires et des algorithmes pour étudier les problèmes algébriques, et applique ensuite des outils algébriques à ces problèmes combinatoires. L’un des thèmes centraux de la combinatoire algébrique est l’étude des permutations car elles peuvent être interprétées de bien des manières (en tant que bijections, matrices de permutations, mais aussi mots sur des entiers, ordre totaux sur des entiers, sommets du permutaèdre…). Cette riche diversité de perspectives conduit alors aux généralisations suivantes du groupe symétrique. Sur le plan géométrique, le groupe symétrique engendré par les transpositions élémentaires est l’exemple canonique des groupes de réflexions finis, également appelés groupes de Coxeter. Sur le plan monoïdal, ces même transpositions élémentaires deviennent les opérateurs du tri par bulles et engendrent le monoïde de 0-Hecke, dont l’algèbre est la spécialisation à q=0 de la q-déformation du groupe symétrique introduite par Iwahori. Cette thèse se consacre à deux autres généralisations des permutations. Dans la première partie de cette thèse, nous nous concentrons sur les matrices de permutations partielles, en d’autres termes les placements de tours ne s’attaquant pas deux à deux sur un échiquier carré. Ces placements de tours engendrent le monoïde de placements de tours, une généralisation du groupe symétrique. Dans cette thèse nous introduisons et étudions le 0-monoïde de placements de tours comme une généralisation du monoïde de 0-Hecke. Son algèbre est la dégénérescence à q=0 de la q-déformation du monoïde de placements de tours introduite par Solomon. On étudie par la suite les propriétés monoïdales fondamentales du 0-monoïde de placements de tours (ordres de Green, propriété de treillis du R-ordre, J-trivialité) ce qui nous permet de décrire sa théorie des représentations (modules simples et projectifs, projectivité sur le monoïde de 0-Hecke, restriction et induction le long d’une fonction d’inclusion).Les monoïdes de placements de tours sont en fait l’instance en type A de la famille des monoïdes de Renner, définis comme les complétés des groupes de Weyl (c’est-à-dire les groupes de Coxeter cristallographiques) pour la topologie de Zariski. Dès lors, dans la seconde partie de la thèse nous étendons nos résultats du type A afin de définir les monoïdes de 0-Renner en type B et D et d’en donner une présentation. Ceci nous conduit également à une présentation des monoïdes de Renner en type B et D, corrigeant ainsi une présentation erronée se trouvant dans la littérature depuis une dizaine d’années. Par la suite, nous étudions comme en type A les propriétés monoïdales de ces nouveaux monoïdes de 0-Renner de type B et D : ils restent J-triviaux, mais leur R-ordre n’est plus un treillis. Cela ne nous empêche pas d’étudier leur théorie des représentations, ainsi que la restriction des modules projectifs sur le monoïde de 0-Hecke qui leur est associé. Enfin, la dernière partie de la thèse traite de différentes généralisations des permutations. Dans une récente séries d’articles, Châtel, Pilaud et Pons revisitent la combinatoire algébrique des permutations (ordre faible, algèbre de Hopf de Malvenuto-Reutenauer) en terme de combinatoire sur les ordres partiels sur les entiers. Cette perspective englobe également la combinatoire des quotients de l’ordre faible tels les arbres binaires, les séquences binaires, et de façon plus générale les récents permutarbres de Pilaud et Pons. Nous généralisons alors l’ordre faibles aux éléments des groupes de Weyl. Ceci nous conduit à décrire un ordre sur les sommets des permutaèdres, associaèdres généralisés et cubes dans le même cadre unifié. Ces résultats se basent sur de subtiles propriétés des sommes de racines dans les groupes de Weyl qui s’avèrent ne pas fonctionner pour les groupes de Coxeter qui ne sont pas cristallographiques / Algebraic combinatorics is the research field that uses combinatorial methods and algorithms to study algebraic computation, and applies algebraic tools to combinatorial problems. One of the central topics of algebraic combinatorics is the study of permutations, interpreted in many different ways (as bijections, permutation matrices, words over integers, total orders on integers, vertices of the permutahedron…). This rich diversity of perspectives leads to the following generalizations of the symmetric group. On the geometric side, the symmetric group generated by simple transpositions is the canonical example of finite reflection groups, also called Coxeter groups. On the monoidal side, the simple transpositions become bubble sort operators that generate the 0-Hecke monoid, whose algebra is the specialization at q=0 of Iwahori’s q-deformation of the symmetric group. This thesis deals with two further generalizations of permutations. In the first part of this thesis, we first focus on partial permutations matrices, that is placements of pairwise non attacking rooks on a n by n chessboard, simply called rooks. Rooks generate the rook monoid, a generalization of the symmetric group. In this thesis we introduce and study the 0-Rook monoid, a generalization of the 0-Hecke monoid. Its algebra is a proper degeneracy at q = 0 of the q-deformed rook monoid of Solomon. We study fundamental monoidal properties of the 0-rook monoid (Green orders, lattice property of the R-order, J-triviality) which allow us to describe its representation theory (simple and projective modules, projectivity on the 0-Hecke monoid, restriction and induction along an inclusion map).Rook monoids are actually type A instances of the family of Renner monoids, which are completions of the Weyl groups (crystallographic Coxeter groups) for Zariski’s topology. In the second part of this thesis we extend our type A results to define and give a presentation of 0-Renner monoids in type B and D. This also leads to a presentation of the Renner monoids of type B and D, correcting a misleading presentation that appeared earlier in the litterature. As in type A we study the monoidal properties of the 0-Renner monoids of type B and D : they are still J-trivial but their R-order are not lattices anymore. We study nonetheless their representation theory and the restriction of projective modules over the corresponding 0-Hecke monoids. The third part of this thesis deals with different generalizations of permutations. In a recent series of papers, Châtel, Pilaud and Pons revisit the algebraic combinatorics of permutations (weak order, Malvenuto-Reutenauer Hopf algebra) in terms of the combinatorics of integer posets. This perspective encompasses as well the combinatorics of quotients of the weak order such as binary trees, binary sequences, and more generally the recent permutrees of Pilaud and Pons. We generalize the weak order on the elements of the Weyl groups. This enables us to describe the order on vertices of the permutahedra, generalized associahedra and cubes in the same unified context. These results are based on subtle properties of sums of roots in Weyl groups, and actually fail for non-crystallographic Coxeter groups.
45

Automates à contraintes semilinéaires = Automata with a semilinear constraint

Cadilhac, Michaël 11 1900 (has links)
Cette thèse présente une étude dans divers domaines de l'informatique théorique de modèles de calculs combinant automates finis et contraintes arithmétiques. Nous nous intéressons aux questions de décidabilité, d'expressivité et de clôture, tout en ouvrant l'étude à la complexité, la logique, l'algèbre et aux applications. Cette étude est présentée au travers de quatre articles de recherche. Le premier article, Affine Parikh Automata, poursuit l'étude de Klaedtke et Ruess des automates de Parikh et en définit des généralisations et restrictions. L'automate de Parikh est un point de départ de cette thèse; nous montrons que ce modèle de calcul est équivalent à l'automate contraint que nous définissons comme un automate qui n'accepte un mot que si le nombre de fois que chaque transition est empruntée répond à une contrainte arithmétique. Ce modèle est naturellement étendu à l'automate de Parikh affine qui effectue une opération affine sur un ensemble de registres lors du franchissement d'une transition. Nous étudions aussi l'automate de Parikh sur lettres: un automate qui n'accepte un mot que si le nombre de fois que chaque lettre y apparaît répond à une contrainte arithmétique. Le deuxième article, Bounded Parikh Automata, étudie les langages bornés des automates de Parikh. Un langage est borné s'il existe des mots w_1, w_2, ..., w_k tels que chaque mot du langage peut s'écrire w_1...w_1w_2...w_2...w_k...w_k. Ces langages sont importants dans des domaines applicatifs et présentent usuellement de bonnes propriétés théoriques. Nous montrons que dans le contexte des langages bornés, le déterminisme n'influence pas l'expressivité des automates de Parikh. Le troisième article, Unambiguous Constrained Automata, introduit les automates contraints non ambigus, c'est-à-dire pour lesquels il n'existe qu'un chemin acceptant par mot reconnu par l'automate. Nous montrons qu'il s'agit d'un modèle combinant une meilleure expressivité et de meilleures propriétés de clôture que l'automate contraint déterministe. Le problème de déterminer si le langage d'un automate contraint non ambigu est régulier est montré décidable. Le quatrième article, Algebra and Complexity Meet Contrained Automata, présente une étude des représentations algébriques qu'admettent les automates contraints et les automates de Parikh affines. Nous déduisons de ces caractérisations des résultats d'expressivité et de complexité. Nous montrons aussi que certaines hypothèses classiques en complexité computationelle sont reliées à des résultats de séparation et de non clôture dans les automates de Parikh affines. La thèse est conclue par une ouverture à un possible approfondissement, au travers d'un certain nombre de problèmes ouverts. / This thesis presents a study from the theoretical computer science perspective of computing models combining finite automata and arithmetic constraints. We focus on decidability questions, expressiveness, and closure properties, while opening the study to complexity, logic, algebra, and applications. This thesis is presented through four research articles. The first article, Affine Parikh Automata, continues the study of Klaedtke and Ruess on Parikh automata and defines generalizations and restrictions of this model. The Parikh automaton is one of the starting points of this thesis. We show that this model of computation is equivalent to the constrained automaton that we define as an automaton which accepts a word only if the number of times each transition is taken satisfies a given arithmetic constraint. This model is naturally extended to affine Parikh automata, in which an affine transformation is applied to a set of registers on taking a transition. We also study the Parikh automaton on letters, that is, an automaton which accepts a word only if the number of times each letter appears in the word verifies an arithmetic constraint. The second article, Bounded Parikh Automata, focuses on the bounded languages of Parikh automata. A language is bounded if there are words w_1, w_2, ..., w_k such that every word in the language can be written as w_1...w_1w_2...w_2 ... w_k...w_k. These languages are important in applications and usually display good theoretical properties. We show that, over the bounded languages, determinism does not influence the expressiveness of Parikh automata. The third article, Unambiguous Constrained Automata, introduces the concept of unambiguity in constrained automata. An automaton is unambiguous if there is only one accepting path per word of its language. We show that the unambiguous constrained automaton is an appealing model of computation which combines a better expressiveness and better closure properties than the deterministic constrained automaton. We show that it is decidable whether the language of an unambiguous constrained automaton is regular. The fourth article, Algebra and Complexity Meet Constrained Automata, presents a study of algebraic representations of constrained automata and affine Parikh automata. We deduce expressiveness and complexity results from these characterizations. We also study how classical computational complexity hypotheses help in showing separations and nonclosure properties in affine Parikh automata. The thesis is concluded by a presentation of possible future avenues of research, through several open problems.
46

Study of plactic monoids by rewriting methods / Etude des monoïdes plaxiques par des méthodes de réécriture

Hage, Nohra 08 December 2016 (has links)
Cette thèse est consacrée à l’étude des monoïdes plaxiques par une nouvelle approche utilisant des méthodes issues de la réécriture. Ces méthodes sont appliquées à des présentations de monoïdes plaxiques décrites en termes de tableaux de Young, de bases cristallines de Kashiwara et de modèle des chemins de Littelmann. On étudie le problème des syzygies pour la présentation de Knuth des monoïdes plaxiques. En utilisant la procédure de complétion homotopique basée sur les procédures de complétion de Squier et de Knuth–Bendix, on construit des présentations cohérentes de monoïdes plaxiques de type A. Une telle présentation cohérente étend la notion de présentation convergente d’un monoïde par une famille génératrice de syzygies, décrivant toutes les relations entre les relations. On explicite une présentation cohérente finie des monoïdes plaxiques de type A avec les générateurs colonnes. Cependant, cette présentation n’est pas minimale dans le sens que plusieurs de ses générateurs sont superflus. En appliquant la procédure de réduction homotopique, on réduit cette présentation en une présentation cohérente finie qui étend la présentation de Knuth, donnantainsi toutes les syzygies des relations de Knuth. D’une manière plus générale, on étudie des présentations de monoïdes plaxiques généralisés du point de vue de la réécriture. On construit des présentations convergentes finies de ces monoïdes en utilisant les chemins de Littelmann. De plus, on étudie ces présentations pour le type C en termes de bases cristallines de Kashiwara. En introduisant les générateurs colonnes admissibles, on construit une présentation convergente finie du monoïde plaxique de type C avec des relations explicites. Cette approche nous permettrait d’étudier le problème des syzygies des présentations de monoïdes plaxiques en tout type / This thesis focuses on the study of plactic monoids by a new approach using methods issued from rewriting theory. These methods are applied on presentations of plactic monoids given in terms of Young tableaux, Kashiwara’s crystal bases and Littelmann path model. We study the syzygy problem for the Knuth presentation of the plactic monoids. Using the homotopical completion procedure that extends Squier’s and Knuth–Bendix’s completions procedure, we construct coherent presentations of plactic monoids of type A. Such a coherent presentation extends the notion of a presentation of a monoid by a family of generating syzygies, taking into account all the relations among the relations. We make explicit a finite coherent presentation of plactic monoids of type A with the column generators. However, this presentation is not minimal in the sense that many of its generators are superfluous. After applying the homotopical reduction procedure on this presentation, we reduce it to a finite coherent one that extends the Knuth presentation, giving then all the syzygies of the Knuth relations. More generally, we deal with presentations of plactic monoids of any type from the rewriting theory perspective. We construct finite convergent presentations for these monoids in a general way using Littelmann paths. Moreover, we study the latter presentations in terms of Kashiwara’s crystal graphs for type C. By introducing the admissible column generators, we obtain a finite convergent presentation of the plactic monoid of type C with explicit relations. This approach should allow us to study the syzygy problem for the presentations of plactic monoids for any type
47

Une approche combinatoire du problème de séparation pour les langages réguliers / A combinatorial approach to the separation problem for regular languages

Van Rooijen, Lorijn 04 December 2014 (has links)
Le problème de séparation pour une classe de langages S est le suivant : étant donnés deux langages L1 et L2, existe-t-il un langage appartenant à S qui contient L1, en étant disjoint de L2 ? Si les langages à séparer sont des langages réguliers, le problème de séparation pour la classe S est plus général que le problème de l'appartenance à cette classe, et nous fournit des informations plus détaillées sur la classe. Ce problème de séparation apparaît dans un contexte algébrique sous la forme des parties ponctuelles, et dans un contexte profini sous la forme d'un problème de séparation topologique. Pour quelques classes de langages spécifiques, ce problème a été étudié en utilisant des méthodes profondes de la théorie des semigroupes profinis.Dans cette thèse, on s'intéresse, dans un premier temps, à la décidabilité de ce problème pour plusieurs sous-classes des langages réguliers. Dans un second temps, on s'intéresse à obtenir un langage séparateur, s'il existe, ainsi qu'à la complexité de ces problèmes.Nous établissons une approche générique pour prouver que le problème de séparation est décidable pour une classe de langages donnée. En utilisant cette approche, nous obtenons la décidabilité du problème de séparation pour les langages testables par morceaux, les langages non-ambigus, les langages localement testables, et les langages localement testables à seuil. Ces classes correspondent à des fragments de la logique du premier ordre, et sont parmi lesclasses de langages réguliers les plus étudiées. De plus, cette approche donne une description d'un langage séparateur, pourvu qu'il existe. / The separation problem, for a class S of languages, is the following: given two input languages, does there exist a language in S that contains the first language and that is disjoint from the second langage ?For regular input languages, the separation problem for a class S subsumes the classical membership problem for this class, and provides more detailed information about the class. This separation problem first emerged in an algebraic context in the form of pointlike sets, and in a profinite context as a topological separation problem. These problems have been studied for specific classes of languages, using involved techniques from the theory of profinite semigroups.In this thesis, we are not only interested in showing the decidability of the separation problem for several subclasses of the regular languages, but also in constructing a separating language, if it exists, and in the complexity of these problems.We provide a generic approach, based on combinatorial arguments, to proving the decidability of this problem for a given class. Using this approach, we prove that the separation problem is decidable for the classes of piecewise testable languages, unambiguous languages, and locally (threshold) testable languages. These classes are defined by different fragments of first-order logic, and are among the most studied classes of regular languages. Furthermore, our approach yields a description of a separating language, in case it exists.
48

Automates à contraintes semilinéaires = Automata with a semilinear constraint

Cadilhac, Michaël 11 1900 (has links)
Cette thèse présente une étude dans divers domaines de l'informatique théorique de modèles de calculs combinant automates finis et contraintes arithmétiques. Nous nous intéressons aux questions de décidabilité, d'expressivité et de clôture, tout en ouvrant l'étude à la complexité, la logique, l'algèbre et aux applications. Cette étude est présentée au travers de quatre articles de recherche. Le premier article, Affine Parikh Automata, poursuit l'étude de Klaedtke et Ruess des automates de Parikh et en définit des généralisations et restrictions. L'automate de Parikh est un point de départ de cette thèse; nous montrons que ce modèle de calcul est équivalent à l'automate contraint que nous définissons comme un automate qui n'accepte un mot que si le nombre de fois que chaque transition est empruntée répond à une contrainte arithmétique. Ce modèle est naturellement étendu à l'automate de Parikh affine qui effectue une opération affine sur un ensemble de registres lors du franchissement d'une transition. Nous étudions aussi l'automate de Parikh sur lettres: un automate qui n'accepte un mot que si le nombre de fois que chaque lettre y apparaît répond à une contrainte arithmétique. Le deuxième article, Bounded Parikh Automata, étudie les langages bornés des automates de Parikh. Un langage est borné s'il existe des mots w_1, w_2, ..., w_k tels que chaque mot du langage peut s'écrire w_1...w_1w_2...w_2...w_k...w_k. Ces langages sont importants dans des domaines applicatifs et présentent usuellement de bonnes propriétés théoriques. Nous montrons que dans le contexte des langages bornés, le déterminisme n'influence pas l'expressivité des automates de Parikh. Le troisième article, Unambiguous Constrained Automata, introduit les automates contraints non ambigus, c'est-à-dire pour lesquels il n'existe qu'un chemin acceptant par mot reconnu par l'automate. Nous montrons qu'il s'agit d'un modèle combinant une meilleure expressivité et de meilleures propriétés de clôture que l'automate contraint déterministe. Le problème de déterminer si le langage d'un automate contraint non ambigu est régulier est montré décidable. Le quatrième article, Algebra and Complexity Meet Contrained Automata, présente une étude des représentations algébriques qu'admettent les automates contraints et les automates de Parikh affines. Nous déduisons de ces caractérisations des résultats d'expressivité et de complexité. Nous montrons aussi que certaines hypothèses classiques en complexité computationelle sont reliées à des résultats de séparation et de non clôture dans les automates de Parikh affines. La thèse est conclue par une ouverture à un possible approfondissement, au travers d'un certain nombre de problèmes ouverts. / This thesis presents a study from the theoretical computer science perspective of computing models combining finite automata and arithmetic constraints. We focus on decidability questions, expressiveness, and closure properties, while opening the study to complexity, logic, algebra, and applications. This thesis is presented through four research articles. The first article, Affine Parikh Automata, continues the study of Klaedtke and Ruess on Parikh automata and defines generalizations and restrictions of this model. The Parikh automaton is one of the starting points of this thesis. We show that this model of computation is equivalent to the constrained automaton that we define as an automaton which accepts a word only if the number of times each transition is taken satisfies a given arithmetic constraint. This model is naturally extended to affine Parikh automata, in which an affine transformation is applied to a set of registers on taking a transition. We also study the Parikh automaton on letters, that is, an automaton which accepts a word only if the number of times each letter appears in the word verifies an arithmetic constraint. The second article, Bounded Parikh Automata, focuses on the bounded languages of Parikh automata. A language is bounded if there are words w_1, w_2, ..., w_k such that every word in the language can be written as w_1...w_1w_2...w_2 ... w_k...w_k. These languages are important in applications and usually display good theoretical properties. We show that, over the bounded languages, determinism does not influence the expressiveness of Parikh automata. The third article, Unambiguous Constrained Automata, introduces the concept of unambiguity in constrained automata. An automaton is unambiguous if there is only one accepting path per word of its language. We show that the unambiguous constrained automaton is an appealing model of computation which combines a better expressiveness and better closure properties than the deterministic constrained automaton. We show that it is decidable whether the language of an unambiguous constrained automaton is regular. The fourth article, Algebra and Complexity Meet Constrained Automata, presents a study of algebraic representations of constrained automata and affine Parikh automata. We deduce expressiveness and complexity results from these characterizations. We also study how classical computational complexity hypotheses help in showing separations and nonclosure properties in affine Parikh automata. The thesis is concluded by a presentation of possible future avenues of research, through several open problems.

Page generated in 0.0314 seconds