• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 4
  • 2
  • 1
  • Tagged with
  • 31
  • 15
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Luminescence de l'argent dans les phosphates

Belharouak, Ilias 05 October 1999 (has links) (PDF)
Le but de ce travail était d'étudier et de caractériser la luminescence de l'argent dans les matériaux phosphatés, qu'ils soient cristallisés ou vitreux. Trois types de centres photoluminescents ont été mis en évidence : le premier centre, appelé (A) est caractéristique des transitions dans les phases AgM(PO3)3 (M = Mg, Zn, Ba) et Na2-xAgxZnP2O7 dont les structures ont été complètement déterminées. La dynamique de son émission peut être expliquée dans la plupart des cas par un système à trois niveaux. Le centre (C) est attribué à des "paires" d'argent. En effet, lorsque les structures cristallines le permettent, des interactions indirectes Ag+--Ag+ peuvent se développer entre deux cations voisins, chacun occupant son propre site cristallochimique. Un type particulier d'interaction d10--d10 a pu être rencontré, il s'agit des associations Ag+--Zn2+ dont l'existence est suggérée pour expliquer la présence de l'émission (C) détectée dans le polyphosphate AgZn(PO3)3. La fluorescence (B) est détectée à la périphérie des agrégats micrométriques d'argent métallique dans les verres phosphosilicate du système "P2O5-SiO2-ZnO-Ag2O". Ses caractéristiques spécifiques ont permis de l'associer à un type d'interaction différent, en l'occurence à des interactions Ag0--Ag+.
22

Modulační vliv monovalentních iontů na δ-opioidní receptory / Modulatory effect of monovalent ions on δ-opioid receptors

Vošahlíková, Miroslava January 2014 (has links)
The exact role of opioid receptors in drug addiction and modulatory mechanism of action of monovalent cations on these receptors are still not fully understood. Our results support the view that the mechanism of addiction to morphine is primarily based on desensitization of μ- and δ-opioid receptors. Desenzitization of agonist response proceeds already at the level of G protein functional activity. Long-term exposure of rats to morphine resulted in increase of number of δ-opioid receptors and change of their sensitivity to sodium ions. Analysis of the effect of different monovalent ions on agonist binding in δ-OR- Gi1α (Cys351 -Ile351 )-HEK293 cell line confirmed the preferential sensitivity of δ-opioid receptor to sodium ions. We have distinguished the high- and low-affinity Na+ sites. Biophysical analysis of interaction of lithium, sodium, potassium and cesium ions with plasma membranes isolated from HEK293 cells with the help of fluorescent probes indicated that monovalent ions interact, in low-affinity manner, with the polar, membrane-water interface of membrane bilayer. Key words: morphine, forebrain cortex, opioid receptors, G proteins, monovalent ions, plasma membrane, fluorescence spectroscopy.
23

Modulační vliv monovalentních iontů na δ-opioidní receptory / Modulatory effect of monovalent ions on δ-opioid receptors

Vošahlíková, Miroslava January 2014 (has links)
The exact role of opioid receptors in drug addiction and modulatory mechanism of action of monovalent cations on these receptors are still not fully understood. Our results support the view that the mechanism of addiction to morphine is primarily based on desensitization of μ- and δ-opioid receptors. Desenzitization of agonist response proceeds already at the level of G protein functional activity. Long-term exposure of rats to morphine resulted in increase of number of δ-opioid receptors and change of their sensitivity to sodium ions. Analysis of the effect of different monovalent ions on agonist binding in δ-OR- Gi1α (Cys351 -Ile351 )-HEK293 cell line confirmed the preferential sensitivity of δ-opioid receptor to sodium ions. We have distinguished the high- and low-affinity Na+ sites. Biophysical analysis of interaction of lithium, sodium, potassium and cesium ions with plasma membranes isolated from HEK293 cells with the help of fluorescent probes indicated that monovalent ions interact, in low-affinity manner, with the polar, membrane-water interface of membrane bilayer. Key words: morphine, forebrain cortex, opioid receptors, G proteins, monovalent ions, plasma membrane, fluorescence spectroscopy.
24

Carbon nanotube membranes for brackish groundwater desalination and removal of organic micropollutants from water

Gumbi, Nozipho Nonsikelelo 07 1900 (has links)
This thesis reports on the synthesis and characterisation of various types of oxidised multiwalled carbon nanotubes (O-MWCNTs) modified polymeric membranes. These OMWCNT modified polymeric membranes were then assessed in terms of their remediation potential, in particular for the removal of estrogenic hormones, dissolved proteins and salts from brackish water sources. The fabricated O-MWCNT-based polyethersulfone (PES) membranes were applied as (i) adsorptive membranes, (ii) molecular-sieving membranes and (iii) as membrane substrates for thin-film composite nanofiltration (NF) membrane preparation. The research work commences with the preparation of MWCNTs via a facile catalytic chemical vapour deposition method and their chemical oxidation with strong acids in order to introduce hydrophilic carboxylic (–COOH) and hydroxyl (–OH) surface functional group moieties on the MWCNT outer walls. Intrinsically, MWCNTs are chemically inert and tend to form agglomerated nanoclusters (due to van der Waals interaction forces), which induce further difficulties in their homogenous dispersion in polar solvents (such as N-methyl-2- pyrrolidone and dimethylacetamide) employed to dissolve the polymers in the study. The introduction of these oxygen-containing moieties was therefore necessary to aid the dispersion of MWCNTs in organic solvents and for their enhanced interaction with PES and sulfonated polysulfone (SPSf). The PES/O-MWCNT ultrafiltration (UF) membranes were produced via a non-solvent induced phase separation (NIPS) method and employed in the adsorptive removal of natural hormone estrone (E1). The PES/O-MWCNT UF membranes thus prepared were characterised using SEM, AFM, zeta potential measurements and MWCO experiments. It was found that the adsorption of E1 initially increased with an increase in O-MWCNT content followed by a constant decline on further increments. Moreover, the inclusion of OMWCNTs (0.5 wt.%) in the PES membrane matrix resulted in an increase in the maximum adsorption capacity for E1 compared to pristine PES membrane, i.e., 31.25 mg/g adsorption capacity was achieved for PES/O-MWCNT compared to 23.81 mg/g for bare PES UF membrane. Based on the correlation coefficients, the Freundlich isotherm provided a better fit for the adsorption data and the adsorption kinetics followed the pseudo-second order kinetic model. Interestingly, after five regeneration cycles, the PES/O-MWCNT membranes were found to maintain similar adsorption efficiencies. The PES/O-MWCNT membranes thus prepared, present a viable approach for the removal of natural hormones and other endocrine disruptors present in water systems compared to the use of common adsorbents such as activated carbon, which end up generating large amounts of chemical sludge that require disposal in the environment. The third part of the study focused on the controlled formation of macrovoid-free polyethersulfone/sulfonated polysulfone (PES/SPSf) UF membranes with high water permeabilities, mechanical strength and antifouling properties, in the presence of O-MWCNTs. To date, the majority of polymeric nanocomposite membranes modified with O-MWCNTs as nanofillers, generally have finger-like structures and macrovoids in the membrane sublayer. While the presence of finger-like structures is favoured for the reduction in mass flow resistance, their presence induces mechanically weak points in the membrane and reduces the nanocomposite membranes’ mechanical strength properties and long-term performance stability. As such macrovoid-free PES/SPSf/O-MWCNT membranes were fabricated via the NIPS techniques, using H2O and polyethylene glycol (PEG 20 kDa) as non-solvent additives. The SEM cross-sectional images showed that a fully sponge-like morphology of the PES/SPSf membrane can be achieved in the presence of different loadings of O-MWCNTs. This was attributable to the formation of stronger hydrogen bonds between the SPSf polymer and non-solvent additives i.e., H2O, PEG 20kDa and OMWCNTs. The combination of the macrovoid-free morphology and homogenous distribution of high mechanical strength O-MWCNTs in the membrane matrix provided excellent mechanical strength enhancements for PES/SPSf/O-MWCNT membranes. Additionally, pure water flux initially increased from 598 L/m2 .h to 713 L/m2 .h followed by a decline to 578 L/m2 .h upon further increments in O-MWCNT contents, due to agglomeration of O-MWCNTs at higher loadings. The fabricated PES/SPSf/O-MWCNT membranes also displayed superior antifouling properties (FRR > 90%) and antibacterial properties (99% bacterial killing ratio) against E. coli bacteria. The fabricated support fabricfree PES/SPSf/O-MWCNT UF membranes with macrovoid-free sublayer morphologies displayed attractive features for use as UF membranes in the pre-treatment stages of water treatment and as support substrates for the preparation of TFC membranes. In general, sponge-like and macrovoid-free membrane structures are regarded as unfit for use as support membranes for TFC membrane preparation since they increase the membrane’s resistance to water flow, thereby reducing the overall TFC membrane permeability. This assumption has largely been based on sponge-like and macrovoid-free membranes structures achieved through the use of extremely high polymer concentrations, particularly using polysulfone (PSf) polymer. Hence, the sponge-like structures formed are very dense and less porous. Nevertheless, the macrovoid-free PES/SPSf/O-MWCNT membranes produced in this study, consisted of open cellular network microstructures within the membrane sublayer, which could be visualised at higher SEM magnifications. This part of the work therefore investigated the role of hydrophilic, macrovoid-free PES/SPSf and PES/SPSf/O-MWCNT as support membranes on the performance of TFC NF membranes. The TFC NF membranes were prepared via an efficient interfacial polymerization reaction between piperazine (PIP) and trimesoyl chloride (TMC). The deposition of the polyamide thin-film layer was confirmed by ATR-FTIR, SEM, AFM, contact angle and zeta potential measurements. Membrane performance results showed that TFC NF membranes fabricated on PES/SPSf/O-MWCNT support membranes displayed a 35% improvement in pure water flux with comparable salt rejections from those prepared on bare PES/SPSf support membranes. Salt rejection followed the order of Na2SO4 > MgSO4 > NaCl, which is typical for negatively charged NF membranes. It was established that the presence of hydrophilic O-MWCNTs in the support membrane allowed for the formation of a thin polyamide layer on the top surface of the support membrane, which gave rise to enhanced water permeability of the TFC NF membrane and the possibility of polyamide rejection layer within the support membrane pore channels. To further improve the performance of the TFC NF membranes, in particular, the monovalent/bivalent salt selectivity, a mixture of PIP and 2,4-diaminobenzene sulfonic acid (2,4-DABSA) at different weight ratios was prepared in the aqueous solution and reacted with TMC in the organic phase solution. It was found that the addition of low monomer weight ratio of 2,4-DABSA in the amine mixture, lead to the generation of a sulfonated TFC NF membrane with superior membrane performance in terms of pure water permeability (30.2 L/m2 .h), monovalent/bivalent salt selectivity (𝛼NaCl/Na2SO4 = 25.0) at low operating pressures (3 bar) and salt concentrations in the range of brackish waters. This was attributable to the combined presence of sulfonic acid groups on the membrane surface and the formation of the thin polyamide layer. Moreover, sulfonated TFC NF membranes exhibited good antifouling properties against bovine serum albumin (BSA), with FRR of 96.4% after three cycles of fouling and cleaning, with a fairly stable membrane performance over a 10-day period of pure water flux and Na2SO4 rejection testing. Indeed, the use of a macrovoid-free PES/SPSf/O-MWCNT support membrane did not only provide the mechanical strength for the deposition of TFC NF membrane, but also their open, cellular network microstructure, combined with high hydrophilicity and large surface pore sizes were beneficial in the reduction of polyamide layer thickness, and subsequently in the enhancement of TFC NF membrane performance. The study provided insightful information on lesser known aspects of O-MWCNT incorporated polymeric membranes, with regards to membrane structural configurations in relation to the membrane structure-performance relationships. It has been deduced that (i) the right combination of membrane surface characteristics and adsorbate solution chemistry is necessary for an open UF membrane to display reasonable removal efficiencies for low molecular-weight solutes, (ii) the combination of macrovoid-free membrane morphology with good dispersion of O-MWCNTs in the polymer matrix is necessary to realise significant enhancements in the mechanical properties of sulfonated membrane and (iii) formation of a thin sulfonated polyamide layer on top of the hydrophilic PES/SPSf/O-MWCNT support membrane is necessary to achieve high salt selectivity, and allow for the sulfonated TFC NF membrane to be operated at low pressures. / College of Engineering, Science and Technology
25

Charging behaviour of the amine moiety at the air-water interface. A vibrational sum frequency study / Amingruppens laddningsbeteende vid ytgränsskiktet mellan vatten och luft. En vibrationssumfrekvensstudie

Gullstrand, Mikael January 2021 (has links)
Laddningsbeteendet hos amingruppen vid ytgränsskiktet mellan vatten och luft har studerats under ändring av vattenfasens pH och NaCl-koncentration via den ickelinjära laserspektroskopiska tekniken, vibrationssumfrekvensspektroskopi (VSFS). Modellen som användes för ytan bestod av ett Langmuirmonolager av 1-docosanamin, en icke-löslig fettkedjeamin med NH2-gruppen riktad mot vattenfasen. En av de huvudsakliga syftena med projektet var att bestämma det skenbara samt yt-pKa:t för amingruppen, såväl som att testa gränserna för de klassiska Poisson-Boltzmann-formuleringarna av teorin för det elektriska dubbellagret. Molekylär information av laddningsbeteendet hos aminen erhölls från VSFS-spektra genom att följa NH-, OH- och CH-sträckningsvibrationsmoderna. Specifikt så identifierades de spektrala dragen från den neutrala formen (R-NH2) och den laddade formen (R-NH3+) av aminen, vilka direkt korrelerades med monolagrets ytladdning. Intensiteten hos OH-banden från vattenmolekylerna i det diffusa dubbellagret kunde länkas till ytpotentialen och CH-vibrationerna från alkylkedjan av amino-tensiden kopplades slutligen till packningstätheten hos monolagret. Ytterligare experiment utfördes med en deutererad vattenfas (D2O) för att bekräfta sträckningsvibrationsmoderna hos NH3+, vilka aldrig tidigare har rapporterats. Resultaten visar på att fettkedjeaminen får ett avsevärt lägre yt- och skenbart pKa jämfört med bulken (∼ 4 jämfört med 10,5). Detta är i enlighet med vad Gouy-Chapmann-modellen av det elektriska dubbellagret förutser. Dessutom så indikerar datat att det inneboende pKa:t hos aminen också blir lägre vid ytan än för bulken (9,7±0,7 jämfört med 10,5), vilket kan beskrivas som en effekt av begränsningen i frihetsgrader hos den ytbundna aminen. Dock, så hindrades en mer utförlig kvantitativ jämförelse mot teorin av ett sämre val av det experimentella referensvärdet som användes för att jämföra data mellan olika dagar. Dessutom så var anpassningsrutinen för datat begränsad på grund av spektrala vibrationsöverlapp mellan de relativt svaga aminbanden och de mycket starkare vatten- och alkylsträckningssignalerna. Intressant nog, för högre pH-värden, då aminen är helt oladdad, bevisade sumfrekvensspektra att hydroxidjonen föredrar att adsorbera till ytan genom att monolagret fick en negativ nettoladdning. Överlag så förbättrar studierna som presenteras i denna master-projektuppsats vår molekylära förståelse kring hur den biofysiskt betydande amingruppen beter sig vid ytgränsskikt. / The charging behaviour of the amine moiety at the water-air interface upon changes in the aqueous subphase pH and NaCl concentration has been studied using  the non-linear laser spectroscopy technique, Vibrational Sum Frequency Spectroscopy (VSFS).  The model surface consisted of a Langmuir monolayer of 1-docosaneamine, an insoluble fatty amine that exposes its NH2  group to solution. One of the main purposes of the project is to determine the surface, and the apparent pKa of the amine moiety, as well as testing the limits of validity of classical formulations of the electrical double layer theory within the Poisson-Boltzmann formalism. Molecular information of the charging behaviour was obtained from the VSFS spectra by targeting the NH, OH and CH stretching modes. Specifically, spectral features from the neutral amine (i.e. R-NH2) and charged (R-NH3+) groups could be identified and directly correlated to the surface charge of the monolayer. The intensity of the  OH bands from water molecules in the diffuse double layer, were linked to the surface potential, and finally, the CH modes from the surfactant alkyl chain gave information of the packing density in the monolayer. Additional experiments were also carried out in D2O to help confirm the assignment of the NH3+ stretching modes that had not been previously reported. The results show that as predicted from the Gouy-Chapman electric double layer model, the apparent pKa of the fatty amine monolayer is significantly lower than in the bulk  (∼ 4 compared with 10.5) . However, the data show indication that the intrinsic pKa at the surface is also lower than in the bulk (9.7+/- 0.7, compared to 10.5), an effect that is ascribed to the 2D molecular confinement in the monolayer. A more quantitative comparison with the theoretical predictions was nonetheless hampered by a poor selection of the experimental reference for comparing data collected in different days, and the limitations in the fitting routines due spectral overlap of the relatively weak amine bands with the OH and CH stretching modes. Interestingly, at high pH when the fatty amine is fully uncharged, the sum frequency spectra show evidence that OH- ion preferentially adsorbed to the surface, making it effectively net negatively charged. Overall, the studies presented in this master thesis, improve our molecular understanding of the behaviour of the biophysically relevant amine-functionality at interfaces.
26

DNA Nanoparticles for Non-viral Gene Therapy: Mechanistic Studies and Targeting

Sun, Wenchao 26 June 2012 (has links)
No description available.
27

Electrokinetic flow in micro- and nano-fluidic components

Zheng, Zhi 19 November 2003 (has links)
No description available.
28

An Evaluation of Current Practices in Seepage Control

Boyer, D. G., Cluff, C. B. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / The need for increased control of seepage from both natural and artificial small ponds and lakes has become more apparent with the increased frequency of their construction and use on the farm, ranch, and in recreational urban use. Seepage control methods are also becoming more numerous. Unfortunately, comparisons as to effectiveness, longevity and costs are not readily available. This paper investigates some control techniques being used in this region and evaluated them according to the above criteria. Emphasis was on the use of available physiochemical methods other than rubber membranes and concrete liners. Examples of the types of controls in use include plastic, soil compaction aids, hydrophobic chemicals and monovalent cation applications, such as sodium chloride. Some examples of the use of these methods in Arizona are shown and the results of some field comparison tests conducted using 8 x 8 square foot double -ringed infiltrometers presented. Recommendations are made of additional research that should be undertaken to improve the technology of the control of seepage losses.
29

Synthesis of Bivalent and Monovalent Sugar Ligands, their Interfacial and Solution Phase Lectin Bindng Studies

Murthy, Bandaru Narasimha 10 1900 (has links) (PDF)
Carbohydrate-protein interactions are responsible for several biological functions. While these interactions maintain high levels of specificities, the binding strength of individual carbohydrate-protein recognitions are weak, with dissociation constants (Kd) ~10-3-10-6 M. In order to increase the binding strengths meaningful to physiological functions, multivalent, clustered patches of carbohydrate ligands are required. Synthetic glycoclusters contribute in a significant manner to understand the fine details of the weak carbohydrate-protein interactions. The extent of clustering of the ligands, spatial, topological orientations and the nature of the scaffolds are prominent issues to address the carbohydrate-protein interactions in general. Chapter 1 of the Thesis presents a summary of the synthetic cluster glycosides, mechanisms and energetics of their interactions with lectins. The presence of several ligands within the molecular scaffold is not sufficient, rather there exists a critical demand on the spatial disposition of the individual ligands in the multivalent ligand system to achieve enhanced binding affinities. In order to assess the multivalent effects, influence of linkers and the spatial disposition of the ligands, a systematic study was undertaken, involving a series of the most minimal of the multivalent sugar ligand system, namely, the bivalent sugar ligands. In a programme, it was desired to study the bivalent and monovalent sugar ligand-lectin interactions in a two-dimensional membrane model system. An appropriate model system was the Langmuir monolayer formations of the sugar ligands and their recognitions of the lectins at the interface. A series of bivalent and monovalent glycolipids were thus designed and synthesized. Molecular structure of the ligands utilized to study the lectins binding behavior at the air-water interface are presented in Figure 1. The sugar density dependent lectin binding at the air-water interface caused by the glycolipids was studied in detail. Prior to lectin binding studies, the monolayer behavior of the glycolipids (GL), non-sugars (NS) and their mixtures were assessed. It was observed that the apparent molecular areas of the mixed monolayers increased with increasing percentage of the glycolipid in the mixed monolayer. Interactions of the glycolipid mixed monolayers with lectin were assessed at a constant surface pressure of 10 mN/m. The adsorption kinetics of the lectin concanavalin A (Con A) with the mixed monolayers was monitored by the surface area variation (ΔA) as a function of time. The detailed studies showed a maximum increase in ΔA of 10% of the bivalent glycolipids in the mixed monolayer and a ΔA of 20% of the monovalent glycolipids (Figure 2). With both bivalent and monovalent glycolipids, change in the area per molecule had decreased progressively with higher percentage of the glycolipids in the monolayers. On the other hand, with ethylene glycol spacers, the relative responses and the amount of bound lectin increased. Figure 2. Ligand-lectin interactions at the air-water interface as a function of the percentage of (a) bivalent glycolipids and (b) monovalent glycolipids in the mixed monolayers. To verify the specificity of these interactions, the mannopyranoside non-specific lectin, namely, wheat germ agglutinin (WGA) was tested and there were no deviations in the ΔA for various ratios of the sugar–non-sugar mixed monolayers. The study established that (i) maximal binding of the lectin to the bivalent glycolipids occurred at lower sugar densities at the interface than that for the monovalent glycolipids and (ii) the surface presenting sparsely populated sugar residues are efficient for a lectin binding. Chapter 2 presents the details of synthesis and ligand-lectin interactions at the air-water interface, relevant in the two-dimensional membrane model system. A study of the multivalent effects originating through glycolipid micelles and their lectin interactions was undertaken in another programme. The kinetic studies of the glycolipid micelles-lectin interactions were conducted with the aid of surface plasmon resonance (SPR) technique. Prior to the SPR studies, the critical micellar concentration (CMC), aggregation number and the hydrodynamic diameter of each glycolipid (GL-1 to GL-6, Figure 1) micelles were determined. The glycolipid micelles were used as the analytes on a Con A immobilized surface. The sensorgrams obtained for the interaction of the various glycolipid micelles with Con A are presented in Figure 3. Figure 3. Sensorgrams obtained for the binding of various glycolipids micelles to a Con A immobilized surface, at a constant glycolipid concentration of 250 µM. The kinetic studies of the interactions were performed and the analysis showed that the bivalent analyte model provided a better fitting for the interaction sensorgrams. The analysis revealed that the ka1/kd1 values remained largely uniform for all the glycolipids, whereas the ka2/kd2 values were about two orders of magnitude larger for the bivalent glycolipid (GL-4 to GL-6) micelle-lectin interactions than for the monovalent series (GL-1 to GL-3) (Table 1). From the SPR studies, it emerged that the additional sugar unit in the bivalent glycolipid micelles provided a favorable complexation between the sugar ligand and the lectin. Further, the glycolipid micelles mediated layer-by-layer Con A multilayer formation was also studied by SPR and atomic force microscopy (AFM) methods. Chapter 3 provides the SPR studies of glycolipid micelles-lectin interactions. A study of the monomolecular recognitions of the mono- and bivalent sugar ligands 1-8 (Figure 4) to a lectin was undertaken subsequently. The kinetic studies of the bivalent vs monovalent ligands during lectin binding were conducted by employing the SPR technique, for which the sugar ligands 1-6 were used as the analytes on a lectin coated sensor surface. Figure 4. Structures of the mono- and bivalent sugar ligands 1-8 and the NS derivative. The following observations were made from the SPR analysis. (i) Within the mono- and bivalent series, the response units increased in the series 1–3 and 4–6; (ii) the equilibrium responses were attained within 105 seconds in the monovalent ligands and (iii) the association response gradually increased for the bivalent ligands 5 and 6 and reached an equilibrium after ~3 min. An important outcome of the kinetic studies was the identification of ka and kd for the monomolecular interactions, that were distinctly different for the bivalent ligands. Specifically, the ka was significantly faster and kd was slower for bivalent sugar ligands, in comparison to the monovalent sugar ligands (Table 2). Table 2. SPR derived kinetic parameters for the interactions of sugar ligand to a Con A immobilized surface at 25 oC. Isothermal titration calorimetry (ITC) studies were also conducted, in order to correlate the functional valencies and the thermodynamic parameters. The studies were conducted at ligand concentrations much below their CMCs. The general observations from the ITC studies were that the binding site saturations were slower for the monovalent sugar ligands, in comparison to the bivalent sugar ligands. It was observed that the binding affinities of bivalent ligands 5 and 6 enhanced ~5 times higher than the monovalent ligands 2 and 3 (Table 3). The effective linker length, which allowed the sugar ligands to be functionally active, was determined to be ~15 Å and this separation was necessary for the intermolecular cross-linking formation. The dynamic light scattering (DLS) study of the bivalent ligands 5 or 6-lectin complexes showed the presence of intermolecular cross-linked complexes that existed in solution from the initial stages of the binding process. Upon realizing the nanometric diameters of the sugar ligand-lectin complex, an attempt was undertaken to visualize the complexes by transmission electron micoscopy (TEM). In TEM, 4-Con A complex exhibited particle sizes in the range of 5-10 nm, matching nearly the size of the lectin alone. On the other hand, 5–Con A and 6–Con A complexes provided sizes varying between 20¬150 nm. These particle sizes corresponded to similar aggregate sizes derived from the DLS studies. Chaper 4 describes the kinetic, thermodynamic, DLS and TEM studies of sugar ligand-lectin intearctions. Table 3. Binding stoichiometries and thermodynamic parameters of the sugar ligand-Con A interactions at 25 oC.a Ligand n Ka (x 10 -4) ΔG ΔH TΔS 1 0.91 9.14 ( ± 0.75) -6.76 -3.39 3.37 2 1.01 5.76 (± 0.80) -6.49 -3.98 2.51 3 1.09 7.06 (± 1.23) -6.61 - 3.01 3.60 4 1.10 5.75 (± 0.27) -6.49 - 6.39 0.10 5 0.50 20.6 (± 1.7) -7.59 - 12.80 -5.21 6 0.47 37. 4 (± 2. 4) -7.61 -11.54 -3.93 7 1.03 0.86 (± 0.06) -5.36 -7.9 -2.62 8 1.05 2.48 (± 0.12) -5.99 -6.3 -0.32 MeαMan 1.04 0.79 (± 0.04) -5.27 -7.83 -2.56 Ka is in the unit of M-1; ΔG, ΔH and TΔS are in the units of kcal mol-1. Errors in ΔG are ~1-4%. Errors in ΔH are in the range of 1-8%. Errors in TΔS are in the range of 1-6 %. A study was undertaken further to assess the kinetic interactions of the tumor-associated T-antigen with a lectin. Synthesis of amine-tethered T-antigen and lactose derivatives (Figure 5) were accomplished and an assessment of their kinetic interactions with lectin peanut agglutinin (PNA) was conducted. Figure 5. Structures of the amine-tethered T-antigen, lactose and mannose derivatives. The lectin PNA was used as the analyte onto the sugar ligand immobilized surfaces. It was found that the interaction with T-antigen showed higher response units than the lactose derivative (Figure 6). The kinetic studies of PNA with immobilized T-antigen and the lactose derivatives demonstrated that the binding followed a bivalent analyte model of the interaction. The T-antigen derivative interacted with the lectin and relatively faster association (ka) and a slower dissociation (kd) were observed, in comparison to the lactose derivative. The ratio of second binding kinetic constants (ka2/kd2) was observed higher than the first binding kinetic constants (ka1/kd1). Further, the ITC studies were conducted, in order to provide the thermodynamic parameters governing the lectin-T-antigen interactions. The combined approach of SPR and ITC studies showed that the T-antigen derivative exhibited a higher binding affinity to PNA than the lactose derivative. Chapter 5 presents synthesis of the T-antigen and lactose derivatives and studies of their lectin interactions. In summary, the thesis provides a detailed insight into the kinetic and thermodynamic parameters of the bivalent sugar ligand-lectin interactions, in comparison to the monovalent sugar ligands. Langmuir monolayer formation of the sugar ligands and the assessment of their lectin binding at the air-water interface demonstrated that the surface presenting sparsely populated sugar residues are efficient for a lectin binding. The kinetic studies of various glycolipid micelles-lectin interactions showed that the additional sugar unit in the bivalent glycolipid micelles provided a favorable complexation between the sugar ligand and the lectin. The detailed monomolecular kinetic studies showed that the bivalent sugar ligands underwent a faster association (kon) and a slower dissociation (koff) of the ligand-lectin complexes. The ITC studies on sugar ligand-lectin interactions led to identify not only the thermodynamic parameters, but also the influence of the hydrophobic alkyl units and the linker moieties. The DLS and TEM characterizations of sugar ligand-lectin complexes showed the status of the complexation, sizes and the morphologies. The studies were extended further to tumor associated T-antigen-lectin interactions. Overall, the Thesis establishes the most minimal multivalent sugar ligands, namely, the bivalent sugar ligand-letin interactions. The studies presented in the Thesis should be useful to design multivalent sugar ligands for highly avid lectin interactions and also to raise possibilities for the construction of defined lectin oligomers, facilitated through the multivalent sugar ligand-lectin cross-linking interactions.
30

Molecular insight into ion interactions at charged interfaces exposing sulfonate headgroups / Molekylär insikt i joninteraktioner vid laddade gränssnitt som exponerar huvudgrupper för sulfonat

Widehammar, Hugo January 2021 (has links)
Hur elektrolytlösningar interagerar med laddade ytor är viktigt för många fenomen. I detta arbete undersöktes samspelet mellan flera joner med en negativt laddad yta som exponerade sulfonat funktionella grupper mot lösning. Särskild vikt lades på deprotoneringsbeteendet vid ytan. Samspelet mellan olika joner och sulfonatgruppen hade inte tidigare beaktats ur ett molekylärt perspektiv. Här användes ett Langmuir-monolager bestående av dokosan-1-sulfonsyra deponerat på olika elektrolytlösningar som modellsystem. För att studera molekylära interaktioner mellan ytan och elektrolyterna användes Vibrational Sum Frequency Spectroscopy (VSFS). Denna inneboende ytkänsliga teknik gör det möjligt att observera små förändringar i vibrationsenergier i sulfonagruppen vid kontakt med olika joner, här hydronium, litium, natrium och cesium. Ett av huvudsyftena med detta arbete var att jämföra de experimentellt bestämda parametrarna med teoretiska modeller av det elektriska dubbelskiktet vid laddade gränssnitt, såsom Gouy-Chapman-teorin och andra mer avancerade Poisson-Boltzmann-baserade modeller, för att utforska deras lämplighet och gränser av giltighet. Docosan-1-sulfonsyra packades snyggt i monolager, med packningstätheten ökande med starkare jonstyrka I underfasen. Två toppar i vibrationsspektra sågs för sulfonatgruppen, den symmetriska och asymmetriska sträckningen vid 1048 cm-1 respektive 1150 cm-1. Dessa band sågs blåskiftas vid bindning av litium- och natriummotjoner. Amplituden för den symmetriska sträckningen kunde kopplas direkt till mängden laddade arter. Den teoretiska Gouy-Chapman-modellen var tillräcklig att användas för relativt låga ytpotentialer (<|150mV|). För högre potentialer var motjonens storlek nödvändig att inkludera i modellen för mer exakta förutsägelser. Sulfonsyrans surhetsgrad uppmättes till att vara pKa=-1.8±0.4 och bindningskonstanterna för olika hårda joner till den sulfonatfunktionella gruppen uppskattades vara pKLi=0 och pKNa=-0.7. Däremot binder den mjuka jonen, cesium, inte till sulfonatgruppen. Implikationen är att sulfonatgruppen bör betraktas som en hård jon I enlighet med Collins lag om matchande vattenaffiniteter. / How electrolyte solutions interact with charged surfaces is essential for many phenomena in physics, chemistry and biology. In this work, the interactions of several ions with a negatively charged surface exposing sulfonate functional groups to solution were investigated. Specific emphasis was made on the deprotonation behaviour at the surface. The interplay between different ions and the sulfonate moiety had not been previously considered from a molecular perspective.  Here, a Langmuir monolayer consisting of docosane-1-sulfonic acid deposited on top of different electrolyte solutions was used as model system. To study the molecular interactions between the surface and the electrolytes, Vibrational Sum Frequency Spectroscopy (VSFS) was used. This intrinsically surface sensitive technique allows observing small changes in vibrational energies of the sulfonate functional group when in contact with different ionic species, here hydronium, lithium, sodium and cesium. One of the main objectives of this work was to compare the experimentally determined parameters with theoretical models of the electric double layer at charged interfaces, such as the Gouy-Chapman theory and other more advanced Poisson-Boltzmann based models, to explore their suitability and limits of validity. Docosane-1-sulfonic acid packed nicely into monolayers, with the packing density increasing with stronger ionic strength in the subphase. Two peaks in the vibrational spectra were seen for the sulfonate functional group, the symmetric and asymmetric stretch at 1048 cm-1 and 1150 cm-1, respectively. These bands were seen to blue-shift upon binding of lithium and sodium counterions. The amplitude of the symmetric stretch could be directly linked to the amount of charged species. The Gouy-Chapman theoretical model was adequate to use for relative low surface potentials (<|150mV|). For higher potentials, the size of the counterion was necessary to include in the model for more accurate predictions. The acidity of the sulfonic acid was measured to be pKa=-1.8±0.4 and the binding constants for different hard ions to the sulfonate functional group were estimated to be pKLi=0 and pKNa=-0.7. In contrast, the soft ion, cesium, does not bind to the sulfonate. The implication is that the sulfonate moiety should be considered a hard ion in accordance with Collins law of matching water affinities.

Page generated in 0.0608 seconds