• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 4
  • 2
  • Tagged with
  • 31
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle de la signalisation ErbB/Neurégulines dans la propagation de PEA3 dans les motoneurones de la moelle épinière

Lebossé, Marie 20 June 2011 (has links)
Les signaux environnementaux ont une grande influence sur le devenir de certaines populations de motoneurones. J'étudie la population qui exprime le facteur de transcription PEA3, située au niveau brachial, caractérisée et spécifiée par ce facteur, et qui innerve les muscles dorsaux des membres (Livet et al., 2002 ; Vrieseling et al., 2006). Cette population représente un des exemples les mieux compris de l'acquisition d'une identité neuronale par des signaux provenant du muscle cible. Au cours du développement, l'expression de PEA3 se met en place de manière séquentielle. PEA3 est d'abord exprimé dans un premier sous-groupe de neurones localisé en position postérieure dans le domaine (neurones pionniers), puis dans un deuxième sous-groupe de neurones situé en position plus antérieure. Le développement de cette population implique des échanges de signaux entre les neurones pionniers, instruits par le muscle cible, et le deuxième groupe de neurones antérieurs, instruit par les neurones pionniers. Le GDNF, produit par les cellules du futur muscle cible, induit PEA3 dans les neurones pionniers (Haase et al., 2002). Puis le HGF, un autre facteur dérivé du membre, induit les neurones pionniers à sécréter un ‘signal de propagation’, qui agit à distance et induit l'expression de PEA3 dans le deuxième groupe de neurones (neurones recrutés) (Helmbacher et al., 2003). L'objectif initial de ma thèse a été basé sur l'identification de ce signal de propagation. J'ai d'abord utilisé une approche pharmacologique dans un système in vitro de cultures d'explants de moelles épinières d'embryons de souris. En y inhibant la voie EGF, j'ai démontré que le signal de propagation appartient à cette famille de molécules. Les récepteurs de la voie EGF (ErbB1 à ErbB4) sont exprimés chez l'embryon de poulet et de souris dans la moelle épinière brachiale, et spécifiquement dans les motoneurones, au moment où PEA3 est exprimé. Parmi les ligands de la voie EGF, je me suis intéressée aux neurégulines, une famille de glycoprotéines connue pour son implication dans la mise en place du système nerveux. J'ai montré que des isoformes du gène neuréguline1 (nrg1), possédant un domaine immunoglobuline (type I) sont capables d'induire l'expression de pea3 dans la moelle épinière brachiale, et spécifiquement dans les neurones recrutés. J'ai pu démontrer, en utilisant des souris mutantes pour le récepteur à l’HGF (metd/d), que le signal de propagation est vraisemblablement une isoforme NRG1, de type I. / Signals derived from the environment have an important influence on development of some motorneurons populations. I study the population that expresses the transcription factor PEA3, localized at the brachial level, characterized and specified by this factor. This population innervates the limb dorsal muscles (Livet et al., 2002 ; Vrieseling et al., 2006). This population represents one of the best understood examples of an acquisition of a neuronal identity induced by signals derived from the target muscle. During development, PEA3 expression is made in two times in motorneurons. Initially, PEA3 is expressed in a first population, localized in the posterior part of the domain (pionneers neurons), then in a second population, localized in a more anterior position. Development of this population implies exchanges of signals between pionneers neurons, instructed by the target muscle, and anterior neurons, instructed by pionneers neurons. GDNF, produced by cells of the future target muscle, induces PEA3 in the pioneers neurons (Haase et al., 2002). Then, HGF, another limb-derived factor, induces pioneers neurons to secrete a propagation signal’, which induces PEA3 expression in the second population of neurons (recruited neurons) (Helmbacher et al., 2003). The initial purpose of my phD was to identify this ‘propagation signal’. First, I used a pharmacological approach in an in vitro assay of mouse embryos spinal cord explants culture. I did inhibition of the EGF pathway in this assay, and I showed that the propagation signal belongs to this family. EGF receptors (ErbB1 à ErbB4) are expressed in chick and mouse embryos, and especially in motorneurons, when PEA3 is expressed. Among the EGF ligands, I studied neuregulins, a family of glycoproteins involved in the nervous system development. I showed that isoforms of neuregulin1 gene (nrg1), which have an immunoglobulin domain (type I) induce pea3 expression in the brachial spinal cord, and especially in the recruited neurons. I observed, by using mice mutants for HGF receptor (metd/d), that the propagation signal is plausibly a typeI NRG1 isoform. Keywords : motorneurons, PEA3, recruitment, ErbB.
12

Neural drive to human respiratory muscles

Saboisky, Julian Peter, Clinical School - Prince of Wales Hospital, Faculty of Medicine, UNSW January 2008 (has links)
This thesis addresses the organisation of drive to human upper airway and inspiratory pump muscles. The characterisation of single motor unit activity is important as the discharge frequency or timing of discharge of each motor unit directly reflects the output of single motoneurones. Thus, the firing properties of a population of motor units is indicative of the neural drive to the motoneurone pool. The experiments presented in Chapter 2 measured the recruitment time of five inspiratory pump muscles (diaphragm, scalene, second parasternal intercostal, and third and fifth dorsal external intercostal muscles) during normal quiet breathing and quantified the timing and magnitude of drive reaching each muscle. Chapter 3 examined the EMG activity of a major upper airway muscle (the genioglossus). The single motor units of the genioglossus display activity that can be grouped into six types based on its association or lack of association with respiration. The types of activity are termed: Inspiratory Phasic, Inspiratory Tonic, Expiratory Phasic, Expiratory Tonic, Tonic, and Tonic Other. A new method is presented in Chapter 4 to illustrate large amounts of data from single motor units recorded from respiratory muscles in a concise manner. This single figure displays for each motor unit, the recruitment time and firing frequency, the peak discharge frequency and its time, and the derecruitment time and its frequency. This method, termed the time-and-frequency plot, is used to demonstrate differences in behaviour between populations of diaphragm (Chapter 2) and genioglossus (Chapter 3) motoneurones. In Chapter 5, genioglossus activity during quiet breathing is compared between a group of patients with severe OSA and healthy control subjects. The distribution of central drive is identical between the OSA and control subjects with the same proportion of the six types of motor unit activity in both groups. However, there are alterations in the onset time of Inspiratory Phasic and Inspiratory Tonic motor units in OSA subjects and their peak discharge rates are also altered. Single motor unit action potentials in OSA subjects showed an increased area. This suggests the presence of neurogenic changes and may provide a pathophysiological explanation for the increased multiunit electromyographic activity reported in OSA subjects during wakefulness.
13

Factors sèrics en l’Esclerosi Lateral Amiotròfica. Modulació del receptor de glutamat de tipus NMDA GluN1/GluN2A

Teixidó Viyuela, Laura 18 February 2011 (has links)
L’Esclerosi Lateral Amiotròfica (ELA o ALS) és una malaltia neuromuscular caracteritzada per la degeneració selectiva de les motoneurones (MN) superiors e inferiors del còrtex motor, el tronc de l’encèfal i la medul•la espinal, que resulta en una debilitat, espasticitat i atròfia progressives de la musculatura. Menys del 10% dels casos corresponen a la forma familiar de la malaltia, i un 20% d’aquests estan relacionats a mutacions en el gen de l’enzim superòxid dismutasa 1 (mSOD1). La resta de casos corresponen a la forma esporàdica. Les causes implicades en la degeneració selectiva de les MN en la ELA són encara desconegudes. La seva patogènesi s’ha atribuït a diversos mecanismes com serien l’estrès oxidatiu, l’agregació proteica anormal, la disfunció mitocondrial, el transport axonal aberrant, la neuroinflamació, l’autoimmunitat o l’excitotoxicitat per glutamat. En el present estudi hem treballat amb dues d’aquestes hipòtesis en avaluar l’efecte dels sèrums de pacients amb ELA i altres malalties de la MN sobre l’activitat del receptor ionotròpic de glutamat de tipus N-metil-D-Aspartat (NMDAR), expressat en el model d’oòcit de Xenopus laevis. Mitjançant assaigs de ELISA hem analitzat la presència d’autoanticossos associats a ELA en el sèrum de pacients. L’acció dels sèrums control i patològics en els oòcits de Xenopus produïa la generació de corrents oscil•latoris de clorur (Cl-). Aquests corrents havien estat prèviament descrits en aquestes cèl•lules i són deguts a l’activació dels canals de Cl- dependents de calci (Ca2+), endògens en els oòcits de Xenopus, a causa de la mobilització de Ca2+ intracel•lular. L’alliberació de Ca2+ dels compartiments intracel•lulars es activada per l’acció d’un factor sèric, anomenat àcid lisofosfatídic o lisofosfatidat (LPA), sobre el seu receptor, present en la membrana dels oòcits, i a través d’una via de senyalització de segons missatgers. Així doncs, en aquest model, la generació de corrents oscil•latoris de Cl- és una mesura indirecta de la mobilització intracel•lular de Ca2+. En presència del NMDAR, les respostes generades pel sèrum ELA eren significativament superiors a les activades pel sèrum d’individus sans i d’altres malalties de la MN. La resposta generada pel sèrum ELA presentava una dependència respecte de la presència de les dues subunitats del NMDAR i era sensible al bloqueig del receptor amb MK-801, un antagonista no competitiu. Vàrem reproduir els experiments amb sèrums del model de rata transgènica mSOD1 G93A, considerat un model de la forma familiar de la malaltia. Les mostres de sèrum mSOD1 G93A generaven, en presència del NMDAR, respostes significativament superiors a les activades pel sèrum de rata WT. En analitzar l’acció de la fracció de IgG purificada dels sèrums control i patològics en el model d’oòcit de Xenopus, es generaven corrents transitoris d’entrada de tipus no oscil•latori, els quals diferien dels generats en el cas del sèrum complet. La resposta activada per IgG de pacients amb ELA en presència del NMDAR era també significativament superior a la generada per les IgG d’individus sans. En la segona part d’aquest estudi s’ha comprovat la presència d’anticossos contra la proteïna Semaforina 3A (Sema3A) en alguns sèrums de ELA i Lower Motor Neuron Disease (LMND), una altra forma comuna de malaltia de la MN. La Sema3A és una molècula quimiotàctica de guia axonal recentment relacionada amb la patologia de la ELA en detectar-se una sobreexpressió d’aquesta proteïna en cèl•lules de Schwann terminals del model de ratolí mSOD1 G93A. Tot i descartar-se que els anticossos contra Sema3A siguin un marcador específic de la ELA, al no detectar-se en tots el sèrums de pacients, i alhora, al estar presents també en algunes mostres LMND, aquests autoanticossos podrien tenir un efecte defensiu contra les senyals nocives exercides per Sema3A sobre els axons de les MN. / Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease, characterized by the selective degeneration of the superior motor neurons in the motor cortex and of the inferior motor neurons in the brain-stem and spinal cord. The familial form of the illness is associated with the mutation of the superoxide dismutase enzyme (SOD-1). This and other mutations accounts for fewer than 10% of cases; the rest, more than 90%, correspond to the sporadic form. In this study we tested the effect of sera from sporadic ALS patients and from mutated human SOD-1 (mSOD1 G93A) transgenic rats on N-methyl-D-aspartate receptors (NMDAR). We hypothesize that an endogenous excitotoxic factor is implicated in neuronal death in ALS, mediated by the activation of NMDAR noncanonical signalling pathways. Sera from ALS patients or healthy subjects were pretreated to inactivate complement pathways and dialysed to remove glutamate. Sera from mSOD1 G93A rats were obtained at different stages of the neurodegenerative progression. Sera from transgenic rats were also pretreated to eliminate complement system and glutamate. Immunoglobulins G (IgGs) from ALS patients and healthy subjects were obtained by affinity chromatography and dialyzed against phosphate-buffered saline. Human NMDAR were expressed in Xenopus laevis oocytes, and glutamate-induced currents were recorded using the two electrode voltage clamp technique. We observed that sera from sporadic ALS patients induced transient oscillatory currents in Xenopus oocytes expressing NMDAR with a total electric charge significantly higher than the electric charge carried by currents induced by sera from healthy subjects. The currents were inhibited by MK-801, a noncompetitive blocker of NMDAR. Results of sera from mSOD1 G93A transgenic rats were similar to those of sera from ALS patients; samples from patients with another type of neuromuscular disease did not exert this effect. IgG from ALS patients have a significant effect on NMDAR-injected oocytes and that response was doubled respect to the observed in the case of IgG from healthy subjects. Our data agree with the view that ALS patients sera contain some soluble factors that activates NMDAR, not opening directly the ionic conductance, but activating a non-canonical pathway.
14

Role of electrical and mixed synapses in the modulation of spinal cord sensory reflexes

Bautista Guzman, Wendy Diana 21 May 2012 (has links)
The first part of my thesis involves an investigation into mechanisms underlying the presynaptic regulation of transmitter release from myelinated hindlimb sensory afferents in rodents. The central hypothesis is that in addition to chemical transmission in spinal neuronal networks, electrical synapses formed by connexins are critically involved in presynaptic inhibition of large diameter sensory afferents. Subsequent sections of the thesis present a detailed examination of the distribution of connexins in the rodent spinal cord with a particular emphasis on the neuronal connexin, Cx36. Connexin36 (Cx36) is widely believed to be the protein forming the neuronal gap junctions that create electrical synapses between mammalian neurons in many areas of the central nervous system (Condorelli et al 1998). The first part of thesis concerns a previously unknown role of neuronal connexins in interneurone pathways involved in presynaptic control of synaptic transmission in the lumbar spinal cord of rodents. As far as we are aware, the idea that electrical contacts between spinal neurones contribute to spinal presynaptic inhibition is a novel hypothesis. Evidence will be presented: 1) that Cx36 is present in regions of the spinal cord containing interneurones involved in presynaptic inhibition, 2) that the lack of Cx36 in Cx36-/- knockouts mice results in a severe impairment of presynaptic inhibition, and 3) that blocking gap junctions pharmacologically in wild type mice impairs presynaptic inhibition. The exploration of this hypothesis will involve a combination of electrophysiological and immunohistochemical approaches in juvenile wild-type and knockout mice lacking Cx36, as well as immunohistochemical observations in adult rodents. This first section of the thesis begins with the development of a preparation in which several measures of presynaptic inhibition described in the in vivo adult cat preparation can be examined in vitro in young mice. The following sections of the thesis describe the distribution and features of Cx36 on neurones in mice and rats of different ages in four parts. The first will show that Cx36 is the only connexin associated with spinal neurons and refutes claims in the literature about the existence of a variety of connexions on spinal neurons. The second part will show that while gap junctions between some spinal neurons are only a transient developmental phenomenon, they persist in abundance in adult animals. The third part will present evidence of a previously unsuspected III association of Cx36 gap junctions at the chemical synapse between muscle afferent fibres and motoneurones. Specifically, an association between Cx36 and the glutamate transporter used in primary afferents, Vglut1 will be described. To our knowledge these results are the first to suggest the existence of mixed (electrical and chemical) synapses between primary afferents and motoneurones in the mature mammalian spinal cord. The final part of the thesis will describe the presence of Cx36 gap junctions on adult sacral motoneurones involved in control of sexual, urinary and defecation functions in the rodent.
15

Neural drive to human respiratory muscles

Saboisky, Julian Peter, Clinical School - Prince of Wales Hospital, Faculty of Medicine, UNSW January 2008 (has links)
This thesis addresses the organisation of drive to human upper airway and inspiratory pump muscles. The characterisation of single motor unit activity is important as the discharge frequency or timing of discharge of each motor unit directly reflects the output of single motoneurones. Thus, the firing properties of a population of motor units is indicative of the neural drive to the motoneurone pool. The experiments presented in Chapter 2 measured the recruitment time of five inspiratory pump muscles (diaphragm, scalene, second parasternal intercostal, and third and fifth dorsal external intercostal muscles) during normal quiet breathing and quantified the timing and magnitude of drive reaching each muscle. Chapter 3 examined the EMG activity of a major upper airway muscle (the genioglossus). The single motor units of the genioglossus display activity that can be grouped into six types based on its association or lack of association with respiration. The types of activity are termed: Inspiratory Phasic, Inspiratory Tonic, Expiratory Phasic, Expiratory Tonic, Tonic, and Tonic Other. A new method is presented in Chapter 4 to illustrate large amounts of data from single motor units recorded from respiratory muscles in a concise manner. This single figure displays for each motor unit, the recruitment time and firing frequency, the peak discharge frequency and its time, and the derecruitment time and its frequency. This method, termed the time-and-frequency plot, is used to demonstrate differences in behaviour between populations of diaphragm (Chapter 2) and genioglossus (Chapter 3) motoneurones. In Chapter 5, genioglossus activity during quiet breathing is compared between a group of patients with severe OSA and healthy control subjects. The distribution of central drive is identical between the OSA and control subjects with the same proportion of the six types of motor unit activity in both groups. However, there are alterations in the onset time of Inspiratory Phasic and Inspiratory Tonic motor units in OSA subjects and their peak discharge rates are also altered. Single motor unit action potentials in OSA subjects showed an increased area. This suggests the presence of neurogenic changes and may provide a pathophysiological explanation for the increased multiunit electromyographic activity reported in OSA subjects during wakefulness.
16

Etude des altérations du métabolisme induites par le glutamate dans un modèle in vitro de la sclérose latérale amyotrophique (SLA) par une approche métabolomique / Study of the metabolic alterations induced by glutamate in an in vitro model of amyotrophic lateral sclerosis (ALS) using a metabolomic approach

Nanadoumgar, Blandine 12 October 2016 (has links)
La Sclérose Latérale Amyotrophique (SLA) est une maladie neurodégénérative caractérisée par une perte sélective des motoneurones et impliquant les effets neurotoxiques des astrocytes. Le but de ce travail est d’explorer les altérations du métabolisme dans les astrocytes induites par des conditions associées à la SLA. Nous avons dans un premier temps mis en place une méthodologie d’analyse spectrométrique (résonance magnétique nucléaire et spectrométries de masse) du métabolome cellulaire. Ensuite, nous avons invalidé les cellules NSC-34 comme modèle in vitro d’étude de l’excitotoxicité induite par le glutamate. Nous avons enfin étudié les altérations métaboliques dans les astrocytes primaires dans des conditions de la SLA et décrit plusieurs dysfonctionnements métaboliques dans ces cellules induits par l’expression de la mutation SOD1G93A, par la présence des motoneurones sauvages et par l’exposition au glutamate. Ce travail met en évidence les relations métaboliques entre la SLA et le métabolisme énergétique cérébral. Nos résultats contribuent à la compréhension des altérations métaboliques des astrocytes dans la SLA et pourraient aider à appréhender de nouvelles cibles thérapeutiques associées aux altérations métaboliques dans la SLA, afin de protéger les motoneurones des perturbations induites par le glutamate. / The selective degeneration of motoneuron that characterizes amyotrophic lateral sclerosis (ALS), implicates non-cell-autonomous effects of astrocytes. The aim of this work is to explore the metabolic status of astrocytes exposed to ALS-associated conditions, using metabolomics approach. We first, developed a methodology for the analysis of cellular metabolome using different analytical technologies, and then we evaluated the relevance of differentiated NSC-34 as an in vitro model for glutamate excitotoxicity studies. Finally, we evaluated metabolic alterations in astrocytes in ALS-associated conditions and we described several metabolic dysfunctions in these cells induced by the expression of a SOD1G93A mutation, the presence of wildtype motoneurons and glutamate exposition. These studies highlight major impacts of ALS on the brain energetic metabolism. This work provides novel insight for understanding the metabolic dysfunction of astrocytes in ALS conditions and opens perspective of therapeutics targets though focus on these metabolic ways, in order to protect motoneurons from glutamate injury.
17

Etude métabolomique d'un modèle in vitro de sclérose latérale amyotrophique exposé au stress oxydant / Metabolomics study of an in vitro model of amyotrophic lateral sclerosis exposed to oxidative stress

Veyrat-Durebex, Charlotte 15 December 2014 (has links)
La Sclérose Latérale Amyotrophique (SLA) est une affection neurodégénérative affectant sélectivement les motoneurones et conduisant au décès en 2 à 4 ans. Des facteurs génétiques, ainsi que diverses hypothèses physiopathologiques, telles que l’excitotoxicité et le stress oxydant, ont été évoqués pour expliquer la dégénérescence des motoneurones, mais aucune étiologie n’explique aujourd’hui la survenue de cette pathologie. Afin d’améliorer les connaissances des voies métaboliques impliquées dans la physiopathologie de la SLA, nous avons développé un modèle in vitro de co-Culture de motoneurones et d’astrocytes sur-Exprimant la Superoxyde Dismutase (SOD1) humaine sauvage ou mutée (SOD1G93C) et exposée au stress oxydant. Nous avons étudié les modifications de métabolisme après traitement oxydant par une approche métabolomique utilisant la chromatographie gazeuse couplée à la spectrométrie de masse et une analyse statistique multivariée des résultats. Ainsi nous avons observé une modification de métabolites impliqués notamment dans le cycle de Krebs, la neurotransmission excitatrice et la synthèse du glutathion, dans un modèle in vitro de SLA exposé au stress oxydant. / Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder affecting selectively motor neurons and leading to death in 2 to 4 years. Genetic factors and various pathophysiological hypotheses, such as excitotoxicity and oxidative stress, have been suggested to explain the degeneration of motor neurons, but today no etiology explains the occurrence of this disease. In order to improve the knowledge of the metabolic pathways involved in the pathogenesis of ALS, we developed an in vitro model of co-Culture of motor neurons and astrocytes over-Expressing human superoxide dismutase (SOD1), wild-Type or mutated (SOD1G93C), and exposed to oxidative stress. We studied the changes in metabolism after oxidative treatment with a metabolomics approach using gas chromatography-Mass spectrometry and multivariate statistical analysis. Thus we observed a change in metabolites involved in the citric acid cycle, the excitatory neurotransmission and the glutathione synthesis, in an in vitro model of ALS exposed to oxidative stress.
18

Cellules souches pluripotentes induites (iPSc) différenciées en motoneurones spinaux : vers des modèles cellulaires de neuropathies périphériques d'origine génétique / Spinal motor neurons from Indiuced Pluripotent Stem Cells (iPSc) : cellular models of genetic peripheral neuropathies

Faye, Pierre-Antoine 05 October 2015 (has links)
Les cellules souches induites à la pluripotence (iPSc) apparaissent comme une solution très intéressante pour créer et observer le comportement de cellules spécifiques et inaccessibles d'un patient. Notre équipe travaille sur les pathologies génétiques des nerfs périphériques et en particulier la maladie de Charcot-Marie-Tooth (CMT). Un de nos objectifs est le développement de modèles de motoneurones de patients utilisant la stratégie des iPSc afin de mieux comprendre la physiopathologie des neuropathies liées au gène GDAP1. Ce gène a été décrit en 1998 pour être responsable d'une forme axonale de CMT ; il code une protéine de la membrane externe mitochondriale dont la fonction précise reste encore méconnue. Des fibroblastes dermiques (FD) ont été obtenus après une biopsie de peau d'une personne saine (témoin) et d'un patient homozygote porteur de la mutation non-sens p.Gln163* dans le gène GDAP1. Par la suite, les FDs ont été reprogrammés en cellules iPSc en utilisant le cocktail de Yamanaka (plasmides non intégratifs composés d’Oct4, Sox2, Klf4 et l-Myc). Après amplification, tous les contrôles ont été effectués pour conclure que nos iPSc avaient les mêmes propriétés et les mêmes capacités que les cellules souches embryonnaires ainsi qu’un caryotype normal. Enfin, nous avons optimisé le protocole de différenciation avec succès de manière à obtenir à partir des iPSc des rosettes (structures pleines de progéniteurs neuronaux), puis des neurones et finalement des motoneurones pour le contrôle et le patient. Les premières différences entre le contrôle et le patient ont été observées lors de l’obtention de rosettes. Les cellules du patient présentaient de nombreuses gouttelettes lipidiques et la proportion de rosettes obtenue était plus faible. Une fois les motoneurones obtenus, des tests de microscopie confocale et électroniques ont montré des différences du réseau mitochondrial entre le témoin et le patient, ainsi qu’une morphologie des mitochondries se rapprochant de celle observée lors de biopsie de nerf de patient (rondes / accumulées). De manière à réduire la durée de différenciation, une méthode de tri cellulaire a été utilisée la SdFFF. Cette méthode nous a permis de trier différents progéniteurs (neuraux / endothéliaux). La génération de motoneurones à partir de fibroblastes dermiques de patient atteint de CMT axonale via les iPSc était une première étape cruciale pour mieux comprendre le rôle de GDAP1 dans cette pathologie. Ce modèle cellulaire de CMT4A est un premier pas pour réaliser des tests précliniques de médicaments afin d'identifier de futurs candidats pharmacologiques. / Induced pluripotent stem cells (iPSc) are a highly interesting tool to create and observe the behavior of specific and unattainable cells from a patient. Our team is interested in genetic peripheral nerves disorders and especially in Charcot-Marie-Tooth disease (CMT). One of our objectives is the development of motor neurons models from patients using the iPSc strategy in order to better understand the pathophysiology of GDAP1-related neuropathies. This gene was found in 1998 to be mutated in an axonal form of CMT and encodes a mitochondrial outer membrane protein, which function remains unclear. We first obtained dermal fibroblasts (DF) from skin biopsies of a healthy person and of a homozygous patient carrying GDAP1 non-sense mutation (p.Gln163*). Then, we reprogrammed DFs into iPSc using non-integrative plasmids (Oct4, Sox2, Klf4 and l-Myc). After amplification, all quality controls were performed to conclude that our iPSc had the same properties and capacities than embryonic stem cells and a normal karyotype. Finally, we optimized protocols to successfully differentiate these iPSc into rosettes (structures full of neural progenitors), then into neurons and finally into motor neurons for control and GDAP1 patients. The first differences between control and patient cells were observed during the rosette formation, where a lot of patient cells were full of lipid droplets, and the rosette proportion was lower than the control cells. Mitochondria morphology was totally different in motor neurons between control and patient, where mitochondria had the same morphology than the mitochondria observed in patient nerve biopsies (round and accumulated). In order to reduce the time of differentiation, a cell sorting method was used (SdFFF). It allowed us to sort different progenitors (neural / endothelial). Generation of motor neurons using axonal CMT-patient-derived iPSc was a first crucial step to better understand the role of GDAP1 in this pathology. This cellular model of CMT4A should ultimately allow us to perform preclinical drug screening in order to identify candidate pharmacological treatments for CMT patients.
19

Décryptage du réseau neuronal responsable de l’atonie musculaire pendant le sommeil paradoxal chez le rat : création d’un modèle rongeur du RBD (REM sleep Behavior Disorder) / Neuronal network of paradoxical sleep muscle atonia : a pre-requirement in the creation of a RBD (REM sleep Behavior Disorder) rodent model

Valencia Garcia, Sara 04 December 2014 (has links)
Les circuits neuronaux responsables du sommeil paradoxal (SP) et de l'atonie musculaire qui le caractéristique sont l'objet de nombreuses recherches expérimentales, notamment en raison de l'existence de plusieurs pathologies invalidantes associées. Cette thèse de Neurobiologie s'inscrit plus spécifiquement dans la description anatomique et fonctionnelle du réseau neuronal responsable de l'atonie musculaire et son potentiel dysfonctionnement dans les troubles comportementaux en SP (RBD, REM sleep Behavior Disorder). Pour ce faire, nous avons combiné plusieurs techniques faisant appel à la neuroanatomie fonctionnelle, au traçage rétrograde de voies nerveuses, à l'hybridation in situ à la polysomnographie et à l'inactivation irréversible de populations neuronales ciblées moléculairement à l'aide de virus adéno-associés contenant des short hairpin RNAs (AAV-shRNA) chez le rat libre de ses mouvements. Nous avons ainsi montré que, contrairement à l'hypothèse généralement admise, le noyau sublatérodorsal pontique (SLD) n'est pas le générateur du SP. En effet, l'inactivation neurochimique de ses neurones glutamatergiques ou sa lésion totale diminuent les quantités de SP sans le supprimer, indiquant que le SLD n'est pas suffisant pour la genèse du SP. En revanche, ces expériences démontrent son implication directe dans la mise en place de l'atonie musculaire lors du SP. En effet, la déconnexion neurochimique des neurones glutamatergiques du SLD provoque pendant le SP l'apparition intermittente de tonus musculaire accompagné de comportements moteurs anormaux. En parallèle, nos travaux de thèse ont permis d'apporter des données expérimentales nouvelles sur la localisation, au sein de la formation réticulée bulbaire ventrale et non dans la moelle épinière, des interneurones GABA/glycine responsables de l'hyperpolarisation des motoneurones somatiques pendant le SP. En effet, ces neurones réticulaires sont exclusivement recrutés pendant le SP et envoient des projections monosynaptiques inhibitrices vers les motoneurones somatiques lombaires. De plus, leur déconnexion neurochimique ciblée déclenche des comportements moteurs anormaux sous-tendus par le maintien d'un tonus musculaire irrégulier pendant le SP. L'analyse actimétrique de ces comportements moteurs oniriques induits expérimentalement montre qu'ils sont très semblables à ceux observés après l'inactivation du SLD et à ceux décrits chez les patients RBD. Les données rapportées dans cette thèse permettent de mieux comprendre les mécanismes neurobiologiques générant le SP et ceux contribuant au contrôle moteur pendant le SP. Par la même occasion, nos travaux ont permis de valider deux modèles rongeurs du RBD humain, ouvrant ainsi des perspectives expérimentales pour l'élaboration de traitements ciblés de cette pathologie affectant le SP / A growing number of studies investigate the neuronal network responsible for paradoxical (PS) (or REM) sleep genesis and muscle atonia specific of this sleep state. The aim of this thesis was to characterize at the anatomical and functional levels the populations of neurons involved in generating muscle atonia during PS and their potential failure in REM sleep Behavior Disorder (RBD). For this purpose, we combined a large panel of experimental techniques such as functional neuroanatomy, retrograde tract-tracing, in situ hybridization, polysomnography and irreversible inactivation of genetically-targeted neurons with short-hairpin RNAs introduced in viral adenovectors (AAV-shRNA) in freely moving rats. We thus demonstrated for the first time that, in contrast to the currently admitted hypothesis, the pontine sublaterodorsal nucleus (SLD) is not the PS generator, since genetic inactivation of its glutamatergic neurons or its whole lesion diminish the quantities of but do not eliminate PS. This indicates that the SLD is not sufficient for PS generation. In contrast, our experiments clearly show that the SLD is responsible for muscle atonia because the specific inactivation of its glutamatergic neurons induces an irregular muscle tone concomitant to atypical motor behaviors during PS. In addition, we achieved original data about the location within the ventral medullary reticular formation, and not at spinal levels as often believed, of the glycine/GABA interneurons managing the sustained hyperpolarization of somatic motoneurons during PS. We indeed observed that these medullary neurons are selectively recruited during PS and send monosynaptic inhibitory efferents to the lumbar somatic motoneurons. Furthermore, their genetic inactivation is followed by an increase of abnormal motor behaviors underpinned by a sustained, although irregular, muscle tone. The actimetric analysis of these oneiric experimentally induced behaviors reveals that they are very similar to those observed after SLD inactivation or those reported in RBD patients. Taken together, data harvested during this Thesis help us to better understand the complex neurobiological mechanisms generating PS or specifically contributing to the control of the motor system during PS. At the same time, we validated two rodent models closely mimicking human RBD and thus opening new research fields for the development of targeted treatments for this pathology affecting REM sleep
20

Caractérisation de modèles Alzheimer de C. elegans transgéniques, exprimant la protéine Tau humaine dans leurs motoneurones GABAergiques

Schramm, Emilien 03 1900 (has links)
La maladie d’Alzheimer est une maladie neurodégénérative déterminée par deux caractéristiques : les plaques extracellulaires composées d’amyloïde-β et l’accumulation intracellulaire de tau hyperphosphorylée, appelée enchevêtrements neurofibrillaires. Malgré le nombre important d’études, la nature de la toxicité des espèces tau hyperphosphorylée et hypophosphorylée reste mal connue. Notre projet de recherche vise à caractériser quel état de phosphorylation de la tau contribue le plus à la toxicité neuronale ainsi que d’identifier les mécanismes sous-jacents. Pour répondre à ces objectifs, nous avons généré des modèles transgéniques de C. elegans exprimant soit une tau hyperphosphorylée humaine (12 glutamates pour mimer l’hyperphosphorylation de la tau trouvée chez des patients Alzheimer), une tau sauvage, ou une tau hypophosphorylée (12 alanines pour mimer l’hypophosphorylation), dans les motoneurones GABAergiques. Ensuite, pour caractériser nos modèles, nous avons mesuré leur comportement principalement avec des tests de locomotion en utilisant le logiciel WormLab. Nos résultats ont montré que la tau phosphorylée est l’espèce la plus toxique car la souche hyperP a montré une perturbation du système locomoteur se traduisant par une neurodégénérescence ainsi que des problèmes développementaux (longueur des vers). Puis nous avons testé certains médicaments utilisés dans des modèles de tauopathies, afin d’identifier des voies biologiques impliquées dans la toxicité de la tau hyperphosphorylée. Pour conclure, nos modèles vont être des outils utiles pour identifier des modificateurs génétiques et pharmacologiques dans la toxicité de la tau. / Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by two hallmarks: extracellular plaques composed of amyloid-β (Aβ) deposits and intraneuronal accumulation of hyper and abnormal phosphorylated tau, also called neurofibrillary tangles (NFT). Despite many decades of research, the nature hypophosphorylated or hyperphosphorylated Tau toxicity remains ill understood. Our research project aims to characterize which state of Tau phosphorylation contributes to neuronal toxicity and identify the underlying mechanisms. To assess these objectives, we generated transgenic C. elegans models expressing either a human hyperphosphorylated tau (incorporation of 12 glutamate residues to mimic Tau hyperphosphorylation found in AD’s patients) human wild type Tau, or a human hypophosphorylated tau (incorporation of 12 alanine residues to mimic Tau hypophosphorylation) in the GABAergic motoneurons. Then, to characterize our models, we measured their behavior mainly with locomotion’s test using WormLab software. Our results showed that hyperphosphorylation of tau is the most toxic species for our models because hyperP strain showed an impair in the locomotor system translating into neurodegeneration, as well as developmental problems such as worm length. Then we tested some drugs used in taupathies C. elegans models to see if we could identify some biological pathways implicated in the toxicity. To conclude, our models may be a useful tool to identify genetic and pharmacological modifiers of tau toxicity.

Page generated in 0.0468 seconds