• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 16
  • 2
  • 1
  • 1
  • Tagged with
  • 40
  • 19
  • 17
  • 15
  • 14
  • 13
  • 13
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Corporate Credit Risk Modeling Expansions to a Scorecard Model Approach /

Haug, Thomas. January 2007 (has links) (PDF)
Master-Arbeit Univ. St. Gallen, 2007.
12

Eignung von Technologie- und integrierten Portfolioinstrumenten zur strategischen F&E-Planung in Unternehmen reifer, technologieintensiver Branchen

Schmidt, Toni. January 2004 (has links) (PDF)
Bachelor-Arbeit Univ. St. Gallen, 2004.
13

Managerial guidelines to address motivational factors in the BMW SA Body-in-White section

Haarhoff, John Michael 06 December 2011 (has links)
M.Comm. / The BMW SA Body-in-White section performs an integral function in the production of BMW 3 -series automobiles for the local and international market. The plant as a whole, and the Body-in-White section in particular faces several challenges not least of all the need to reach cost parity with its German sister plants. This means that the planned future production increases will have to be achieved with fewer people, and therefore ways will have to found in order to extract more productive output from existing staff. In this regard the understanding and application of motivational theory holds the key to overcoming the challenges that the department will face. In the course of this research, the theories directly related to motivation as well as certain associated theories will be investigated in order to gain insight as to the content and process of motivation in the work place. The aim is to gain a holistic view of motivational aspects in general, and to provide the basis for a questionnaire aimed at identifying what motivational factors are currently at play in the BMW Body-in-White section. Finally, having identified the issues affecting motivation in the department certain deficiencies or areas of possible improvement will be identified. Recommendations will then be put forward as to how management can go about addressing motivational factors specifically in the BMW Body-in-White section, with the aim of creating an environment conducive to high employee job satisfaction and performance.
14

Evaluation von Arbeitsstrukturen /

Kienlin, Emanuel von. Unknown Date (has links)
Universiẗat, Diss., 1999--Kassel.
15

Transport by kinesin motors diffusing on a lipid bilayer

Grover, Rahul 23 March 2016 (has links) (PDF)
Intracellular transport of membrane-bound vesicles and organelles is a process fundamental for many cellular functions including cell morphogenesis and signaling. The transport is mediated by ensembles of motor proteins, such as kinesins, walking on microtubule tracks. When transporting membrane-bound cargo inside a cell, the motors are linked to diffusive lipid bilayers either directly or via adaptor molecules. The fluidity of the lipid bilayers induces loose inter-motor coupling which is likely to impact the collective motor dynamics and may induce cooperativity. Here, we investigate the influence of loose coupling of kinesin motors on its transport characteristics. In the first part of this thesis, we used truncated kinesin-1 motors with a streptavidin-binding-peptide (SBP) tag and performed gliding motility assays on streptavidin-loaded biotinylated supported lipid bilayers (SLBs), so called ‘membrane-anchored’ gliding motility assays. We show that the membrane-anchored motors act cooperatively; the microtubule gliding velocity increases with increasing motor density. This is in contrast to the transport behavior of multiple motors rigidly bound to a substrate. There, the motility is either insensitive to the motor density or shows negative interference at higher motor density, depending on the structure of the motors. The cooperativity in transport driven by membrane-anchored motors can be explained as following: while stepping on a microtubule, membrane-anchored motors slip backwards in the viscous membrane, thus propelling the microtubule in the solution at a velocity, given by the difference of the motor stepping velocity and the slipping velocity. The motor stepping on the microtubule occurs at maximal stepping velocity because the load on the membrane-anchored motors is minute. Thus, the slipping velocity of membrane-anchored motors determines the microtubule gliding velocity. At steady state, the drag force on the microtubule in the solution is equal to the collective drag force on the membrane-anchored motors slipping in the viscous membrane. As a consequence, at low motor density, membrane-anchored motors slip back faster to balance the drag force of the microtubule in the solution. This results in a microtubule gliding velocity significantly lower than the maximal stepping velocity of the individual motors. In contrast, at high motor density, the microtubules are propelled faster with velocities equal to the maximal stepping velocity of individual motors. Because, in this case, the collective drag force on the motors even at very low slipping velocity, is large enough to balance the microtubule drag in the solution. The theoretical model developed based on this explanation is in good agreement with the experimental data of gliding velocities at different motor densities. The model gives information about the distance that the diffusing motors can isotropically reach to bind to a microtubule, which for membrane-anchored kinesin-1 is ~0.3 µm, an order of magnitude higher as compared to rigidly bound motors, owing to the lateral mobility of motors on the membrane. In addition, the model can be used to predict the number of motors involved in transport of a microtubule based on its gliding velocity. In the second part of the thesis, we investigated the effect of loose inter-motor coupling on the transport behavior of KIF16B, a recently discovered kinesin motor with an inherent lipid-binding domain. Recent studies based on cell biological and cell extract experiments, have postulated that cargo binding of KIF16B is required to activate and dimerize the motor, making it a superprocessive motor. Here, we demonstrate that recombinant full-length KIF16B is a dimer even in the absence of cargo or additional proteins. The KIF16B dimers are active and processive, which demonstrates that the motors are not auto-inhibited in our experiments. Thus, in cells and cell extracts Kif16B may be inhibited by additional factors, which are removed upon cargo binding. Single molecule analysis of KIF16B-GFP reveals that the motors are not superprocessive but exhibit a processivity similar to kinesin-1 indicating that additional factors are most likely necessary to achieve superprocessivity. Transport on membrane-anchored KIF16B motors exhibited a similar cooperative behavior as membrane-anchored kinesin-1 where the microtubule gliding velocity increased with increasing motor density. Taken together, our results demonstrate that the loose coupling of motors via lipid bilayers provides flexibility to cytoskeletal transport systems and induces cooperativity in multi-motor transport. Moreover, our ‘membrane-anchored’ gliding motility assays can be used to study the effects of lipid diffusivity (e.g. the presence of lipid micro-domains and rafts), lipid composition, and adaptor proteins on the collective dynamics of different motors.
16

Buckling instabilities of semiflexible filaments in biological systems

Baczyński, Krzysztof Konrad January 2009 (has links)
In dieser Arbeit werden Knickinstabilitäten von Filamenten in biologischen Systemen untersucht. Das Zytoskelett von Zellen ist aus solchen Filamenten aufgebaut. Sie sind für die mechanische Stabilität der Zelle verantwortlich und spielen eine große Rolle bei intrazellulären Transportprozessen durch molekulare Motoren, die verschiedene Lasten wie beispielsweise Organellen entlang der Filamente des Zytoskeletts transportieren. Filamente sind semiflexible Polymere, deren Biegeenergie ähnlich groß ist wie die thermische Energie, so dass sie auch als elastische Balken auf der Nanoskala gesehen werden können, die signifikante thermische Fluktuationen zeigen. Wie ein makroskopischer elastischer Balken können auch Filamente eine mechanische Knickinstabilität unter Kompression zeigen. Im ersten Teil dieser Arbeit wird untersucht, wie diese Instabilität durch thermische Fluktuationen der Filamente beeinflusst wird. In Zellen können Kompressionskräfte durch molekulare Motoren erzeugt werden. Das geschieht zum Beispiel während der Zellteilung in der mitotischen Spindel. Im zweiten Teil der Arbeit untersuchen wir, wie die stochastische Natur einer von Motoren generierten Kraft die Knickinstabilität von Filamenten beeinflusst. Zunächst stellen wir kurz das Problem von Knickinstabilitäten auf der makroskopischen Skala dar und führen ein Modell für das Knicken von Filamenten oder elastischen Stäben in zwei Raumdimensionen und in Anwesenheit thermischer Fluktuationen ein. Wir präsentieren eine analytische Lösung für Knickinstabilitäten in Anwesenheit thermischer Fluktuationen, die auf einer Renormierungsgruppenrechnung im Rahmen des nichtlinearen Sigma-Models basiert. Wir integrieren die kurzwelligen Fluktuationen aus, um eine effektive Theorie für die langwelligen Moden zu erhalten, die die Knickinstabilität bestimmen. Wir berechnen die Änderung der kritischen Kraft für die Knickinstabilität und zeigen, dass die thermischen Fluktuationen in zwei Raumdimensionen zu einer Zunahme der kritischen Kraft führen. Außerdem zeigen wir, dass thermische Fluktuationen im geknickten Zustand zu einer Zunahme der mittleren projizierten Länge des Filaments in Richtung der wirkenden Kraft führen. Als Funktion der Konturlänge des Filaments besitzt die mittlere projizierte Länge eine Spitze an der Knickinstabilität, die durch thermische Fluktuationen abgerundet wird. Unser Hauptresultat ist die Beobachtung, dass ein geknicktes Filament unter dem Einfluss thermischer Fluktuationen gestreckt wird, d.h. dass seine mittlere projizierte Länge in Richtung der Kompressionskraft auf Grund der thermischen Fluktuationen zunimmt. Unsere analytischen Resultate werden durch Monte-Carlo Simulationen der Knickinstabilität semiflexibler Filamente in zwei Raumdimensionen bestätigt. Wir führen auch Monte-Carlo Simulationen in höheren Raumdimensionen durch und zeigen, dass die Zunahme der projizierten Länge unter dem Einfluss thermischer Fluktuationen weniger ausgeprägt ist und stark von der Wahl der Randbedingungen abhängt. Im zweiten Teil der Arbeit formulieren wir ein Modell für die Knickinstabilität semiflexibler Filamente unter dem Einfluss molekularer Motoren. Wir untersuchen ein System, in dem sich eine Gruppe von Motoren entlang eines fixierten Filaments bewegt, und dabei ein zweites Filament als Last trägt. Das Last-Filament wird gegen eine Wand gedrückt und knickt. Während des Knickvorgangs können die Motoren, die die Kraft auf das Filament generieren, stochastisch von dem Filament ab- und an das Filament anbinden. Wir formulieren ein stochastisches Model für dieses System und berechnen die “mean first passage time“, d.h. die mittlere Zeit für den Übergang von einem Zustand, in dem alle Motoren gebundenen sind zu einem Zustand, in dem alle Motoren abgebunden sind. Dieser Übergang entspricht auch einem Übergang aus dem gebogenen zurück in einen ungebogenen Zustand des Last-Filaments. Unser Resultat zeigt, dass für genügend kurze Mikrotubuli die Bewegung der Motoren von der durch das Last-Filament generierten Kraft beeinflusst wird. Diese Ergebnisse können in zukünftigen Experimenten überprüft werden. / We study buckling instabilities of filaments in biological systems. Filaments in a cell are the building blocks of the cytoskeleton. They are responsible for the mechanical stability of cells and play an important role in intracellular transport by molecular motors, which transport cargo such as organelles along cytoskeletal filaments. Filaments of the cytoskeleton are semiflexible polymers, i.e., their bending energy is comparable to the thermal energy such that they can be viewed as elastic rods on the nanometer scale, which exhibit pronounced thermal fluctuations. Like macroscopic elastic rods, filaments can undergo a mechanical buckling instability under a compressive load. In the first part of the thesis, we study how this buckling instability is affected by the pronounced thermal fluctuations of the filaments. In cells, compressive loads on filaments can be generated by molecular motors. This happens, for example, during cell division in the mitotic spindle. In the second part of the thesis, we investigate how the stochastic nature of such motor-generated forces influences the buckling behavior of filaments. In chapter 2 we review briefly the buckling instability problem of rods on the macroscopic scale and introduce an analytical model for buckling of filaments or elastic rods in two spatial dimensions in the presence of thermal fluctuations. We present an analytical treatment of the buckling instability in the presence of thermal fluctuations based on a renormalization-like procedure in terms of the non-linear sigma model where we integrate out short-wavelength fluctuations in order to obtain an effective theory for the mode of the longest wavelength governing the buckling instability. We calculate the resulting shift of the critical force by fluctuation effects and find that, in two spatial dimensions, thermal fluctuations increase this force. Furthermore, in the buckled state, thermal fluctuations lead to an increase in the mean projected length of the filament in the force direction. As a function of the contour length, the mean projected length exhibits a cusp at the buckling instability, which becomes rounded by thermal fluctuations. Our main result is the observation that a buckled filament is stretched by thermal fluctuations, i.e., its mean projected length in the direction of the applied force increases by thermal fluctuations. Our analytical results are confirmed by Monte Carlo simulations for buckling of semiflexible filaments in two spatial dimensions. We also perform Monte Carlo simulations in higher spatial dimensions and show that the increase in projected length by thermal fluctuations is less pronounced than in two dimensions and strongly depends on the choice of the boundary conditions. In the second part of this work, we present a model for buckling of semiflexible filaments under the action of molecular motors. We investigate a system in which a group of motors moves along a clamped filament carrying a second filament as a cargo. The cargo-filament is pushed against the wall and eventually buckles. The force-generating motors can stochastically unbind and rebind to the filament during the buckling process. We formulate a stochastic model of this system and calculate the mean first passage time for the unbinding of all linking motors which corresponds to the transition back to the unbuckled state of the cargo filament in a mean-field model. Our results show that for sufficiently short microtubules the movement of kinesin-I-motors is affected by the load force generated by the cargo filament. Our predictions could be tested in future experiments.
17

Chemomechanical coupling and motor cycles of the molecular motor myosin V

Bierbaum, Veronika January 2011 (has links)
In the living cell, the organization of the complex internal structure relies to a large extent on molecular motors. Molecular motors are proteins that are able to convert chemical energy from the hydrolysis of adenosine triphosphate (ATP) into mechanical work. Being about 10 to 100 nanometers in size, the molecules act on a length scale, for which thermal collisions have a considerable impact onto their motion. In this way, they constitute paradigmatic examples of thermodynamic machines out of equilibrium. This study develops a theoretical description for the energy conversion by the molecular motor myosin V, using many different aspects of theoretical physics. Myosin V has been studied extensively in both bulk and single molecule experiments. Its stepping velocity has been characterized as a function of external control parameters such as nucleotide concentration and applied forces. In addition, numerous kinetic rates involved in the enzymatic reaction of the molecule have been determined. For forces that exceed the stall force of the motor, myosin V exhibits a 'ratcheting' behaviour: For loads in the direction of forward stepping, the velocity depends on the concentration of ATP, while for backward loads there is no such influence. Based on the chemical states of the motor, we construct a general network theory that incorporates experimental observations about the stepping behaviour of myosin V. The motor's motion is captured through the network description supplemented by a Markov process to describe the motor dynamics. This approach has the advantage of directly addressing the chemical kinetics of the molecule, and treating the mechanical and chemical processes on equal grounds. We utilize constraints arising from nonequilibrium thermodynamics to determine motor parameters and demonstrate that the motor behaviour is governed by several chemomechanical motor cycles. In addition, we investigate the functional dependence of stepping rates on force by deducing the motor's response to external loads via an appropriate Fokker-Planck equation. For substall forces, the dominant pathway of the motor network is profoundly different from the one for superstall forces, which leads to a stepping behaviour that is in agreement with the experimental observations. The extension of our analysis to Markov processes with absorbing boundaries allows for the calculation of the motor's dwell time distributions. These reveal aspects of the coordination of the motor's heads and contain direct information about the backsteps of the motor. Our theory provides a unified description for the myosin V motor as studied in single motor experiments. / Die hier vorgelegte Arbeit entwickelt unter Verwendung vieler verschiedener Aspekte der statistischen Physik eine Theorie der chemomechanischen Kopplung für den Energieumsatz des molekularen Motors Myosin V. Das Myosin V ist sowohl in chemokinetischen wie in Einzelmolekülexperimenten grundlegend untersucht worden. Seine Schrittgeschwindigkeit ist in Abhängigkeit verschiedener externer Parameter, wie der Nukleotidkonzentration und einer äußeren Kraft, experimentell bestimmt. Darüber hinaus ist eine große Anzahl verschiedener chemokinetischer Raten, die an der enzymatischen Reaktion des Moleküls beteiligt sind, quantitativ erfasst. Unter der Wirkung externer Kräfte, die seine Anhaltekraft überschreiten, verhält sich der Motor wie eine Ratsche: Für Kräfte, die entlang der Schrittbewegung des Motors wirken, hängt seine Geschwindigkeit von der ATP-Konzentration ab, für rückwärts angreifende Kräfte jedoch ist die Bewegung des Motors unabhängig von ATP. Auf der Grundlage der chemischen Zustände des Motors wird eine Netzwerktheorie aufgebaut, die die experimentellen Beobachtungen des Schrittverhaltens für Myosin V einschließt. Diese Netzwerkbeschreibung dient als Grundlage für einen Markovprozess, der die Dynamik des Motors beschreibt. Die Verwendung diskreter Zustände bietet den Vorteil der direkten Erfassung der chemischen Kinetik des Moleküls. Darüber hinaus werden chemische und mechanische Eigenschaften des Motors in gleichem Maße im Modell berücksichtigt. Durch die Erfassung der Enzymkinetik mittels eines stochastischen Prozesses lässt sich die Motordynamik mit Hilfe des stationären Zustands der Netzwerkdarstellung beschreiben. Um diesen zu bestimmen, verwenden wir eine graphentheoretische Methode, die auf Kirchhoff zurückgreift. Wir zeigen in Einklang mit den Gesetzen der Thermodynamik für Nichtgleichgewichtssysteme, dass das Schrittverhalten des Motors von mehreren chemomechanischen Zyklen beeinflusst wird. Weiterhin untersuchen wir das funktionale Verhalten mechanischer Schrittraten in Abhängigkeit der äußeren Kraft unter Verwendung einer geeigneten Fokker-Planck-Gleichung. Hierfür wird auf die Theorie einer kontinuierlichen Beschreibung von molekularen Methoden zurückgegriffen. Wir berechnen Größen wie die mittlere Schrittgeschwindigkeit, das Verhältnis von Vorwärts- und Rückwärtsschritten, und die Lauflänge des Motors in Abhängigkeit einer äußeren angreifenden Kraft sowie der Nukleotidkonzentration, und vergleichen diese mit experimentellen Daten. Für Kräfte, die kleiner als die Anhaltekraft des Motors sind, unterscheidet sich der chemomechanische Zyklus grundlegend von demjenigen, der für große Kräfte dominiert. Diese Eigenschaft resultiert in einem Schrittverhalten, das mit den experimentellen Beobachtungen übereinstimmt. Es ermöglicht weiterhin die Zerlegung des Netzwerks in einzelne Zyklen, die die Bewegung des Motors für verschiedene Bereiche externer Kräfte erfassen. Durch die Erweiterung unseres Modells auf Markovprozesse mit absorbierenden Zuständen können so die Wartezeitenverteilungen für einzelne Zyklen des Motors analytisch berechnet werden. Sie erteilen Aufschluss über die Koordination des Motors und enthalten zudem direkte Informationen über seine Rückwärtsschritte, die experimentell nicht erfasst sind. Für das gesamte Netzwerk werden die Wartezeitenverteilungen mit Hilfe eines Gillespie-Algorithmus bestimmt. Unsere Theorie liefert eine einheitliche Beschreibung der Eigenschaften von Myosin V, die in Einzelmolekülexperimenten erfasst werden können.
18

Collective behavior of molecular motors / Kollektives Verhalten molekularer Motoren

Neetz, Manuel 11 April 2012 (has links) (PDF)
Microtubule associated molecular motors are involved in a multitude of fundamental cellular processes such as intracellular transport and spindle positioning. During these movements multiple motor proteins often work together and are, therefore, able to exert high forces. Thus force generation and sensing are common mechanisms for controlling motor driven movement. These mechanisms play a pivotal role when motor proteins antagonize each other, e.g. to facilitate oscillations of the spindle or the nucleus. Single motor proteins have been characterized in depth over the last two decades, our understanding of the collective behavior of molecular motors remains, however, poor. Since motor proteins often cooperate while they walk along microtubules, it is necessary to describe their collective reaction to a load quantitatively in order to understand the mechanism of many motor-driven processes. I studied the antagonistic action of many molecular motors (of one kind) in a gliding geometry. For this purpose I crosslinked two microtubules in an antiparallel fashion, so that they formed \"doublets\". Then I observed the gliding motility of these antiparallel doublets and analyzed the gliding velocity with respect to the relative number of motors pulling or pushing against each other. I observed that the antiparallel doublets gliding on conventional kinesin-1 (from Drosophila melanogaster) as well as cytoplasmic dynein (from Saccharomyces cerevisae) exhibited two distinct modes of movement, slow and fast, which were well separated. Furthermore I found a bistability, meaning, that both kinds of movement, slow and fast, occurred at the same ratio of antagonizing motors. Antiparallel doublets gliding on the non-processive motor protein Ncd (the kinesin-14 from D. melanogaster) showed, however, no bistability. The collective dynamics of all three motor proteins were described with a quantitative theory based on single-motor properties. Furthermore the response of multiple dynein motors towards an external, well-defined load was measured in a gliding geometry by magnetic tweezing. Examples of multi-motor force-velocity relationships are presented and discussed. I established, furthermore, a method for counting single surface immobilized motors to guide the evaluation of the tweezing experiments.
19

Exploiting molecular machines on surfaces

Mendoza, Sandra Marina, January 2007 (has links)
Proefschr. Rijksuniversiteit Groningen. / Met lit. opg.-Met samenvatting in het Nederlands en Spaans.
20

Memory Motoren mit eingespritzten kunststoffgebundenen Permanentmagneten

Semin, Vladimir, Ulm, Jürgen, Wiedemann, Jan 21 September 2021 (has links)
In diesem Beitrag wird der Einfluss der Formfreiheit von gespritzten kunststoffgebundenen Permanentmagneten (PM) auf die Parameter eines Memory Motors, einer neuartigen Motortopologie, die es ermöglicht den PM-Fluss mit kurzen Stromimpulsen zu regeln. Mithilfe numerischer FEM-Simulationen einer in der Literatur vorgeschlagenen Memory Motor Topologie wurde demonstriert, dass der Einsatz der Magnete mit komplexer Form eine Verringerung der Drehmomentwelligkeit ermöglicht.

Page generated in 0.0652 seconds