• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 16
  • 2
  • 1
  • 1
  • Tagged with
  • 40
  • 19
  • 17
  • 15
  • 14
  • 13
  • 13
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Transport by kinesin motors diffusing on a lipid bilayer

Grover, Rahul 25 November 2015 (has links)
Intracellular transport of membrane-bound vesicles and organelles is a process fundamental for many cellular functions including cell morphogenesis and signaling. The transport is mediated by ensembles of motor proteins, such as kinesins, walking on microtubule tracks. When transporting membrane-bound cargo inside a cell, the motors are linked to diffusive lipid bilayers either directly or via adaptor molecules. The fluidity of the lipid bilayers induces loose inter-motor coupling which is likely to impact the collective motor dynamics and may induce cooperativity. Here, we investigate the influence of loose coupling of kinesin motors on its transport characteristics. In the first part of this thesis, we used truncated kinesin-1 motors with a streptavidin-binding-peptide (SBP) tag and performed gliding motility assays on streptavidin-loaded biotinylated supported lipid bilayers (SLBs), so called ‘membrane-anchored’ gliding motility assays. We show that the membrane-anchored motors act cooperatively; the microtubule gliding velocity increases with increasing motor density. This is in contrast to the transport behavior of multiple motors rigidly bound to a substrate. There, the motility is either insensitive to the motor density or shows negative interference at higher motor density, depending on the structure of the motors. The cooperativity in transport driven by membrane-anchored motors can be explained as following: while stepping on a microtubule, membrane-anchored motors slip backwards in the viscous membrane, thus propelling the microtubule in the solution at a velocity, given by the difference of the motor stepping velocity and the slipping velocity. The motor stepping on the microtubule occurs at maximal stepping velocity because the load on the membrane-anchored motors is minute. Thus, the slipping velocity of membrane-anchored motors determines the microtubule gliding velocity. At steady state, the drag force on the microtubule in the solution is equal to the collective drag force on the membrane-anchored motors slipping in the viscous membrane. As a consequence, at low motor density, membrane-anchored motors slip back faster to balance the drag force of the microtubule in the solution. This results in a microtubule gliding velocity significantly lower than the maximal stepping velocity of the individual motors. In contrast, at high motor density, the microtubules are propelled faster with velocities equal to the maximal stepping velocity of individual motors. Because, in this case, the collective drag force on the motors even at very low slipping velocity, is large enough to balance the microtubule drag in the solution. The theoretical model developed based on this explanation is in good agreement with the experimental data of gliding velocities at different motor densities. The model gives information about the distance that the diffusing motors can isotropically reach to bind to a microtubule, which for membrane-anchored kinesin-1 is ~0.3 µm, an order of magnitude higher as compared to rigidly bound motors, owing to the lateral mobility of motors on the membrane. In addition, the model can be used to predict the number of motors involved in transport of a microtubule based on its gliding velocity. In the second part of the thesis, we investigated the effect of loose inter-motor coupling on the transport behavior of KIF16B, a recently discovered kinesin motor with an inherent lipid-binding domain. Recent studies based on cell biological and cell extract experiments, have postulated that cargo binding of KIF16B is required to activate and dimerize the motor, making it a superprocessive motor. Here, we demonstrate that recombinant full-length KIF16B is a dimer even in the absence of cargo or additional proteins. The KIF16B dimers are active and processive, which demonstrates that the motors are not auto-inhibited in our experiments. Thus, in cells and cell extracts Kif16B may be inhibited by additional factors, which are removed upon cargo binding. Single molecule analysis of KIF16B-GFP reveals that the motors are not superprocessive but exhibit a processivity similar to kinesin-1 indicating that additional factors are most likely necessary to achieve superprocessivity. Transport on membrane-anchored KIF16B motors exhibited a similar cooperative behavior as membrane-anchored kinesin-1 where the microtubule gliding velocity increased with increasing motor density. Taken together, our results demonstrate that the loose coupling of motors via lipid bilayers provides flexibility to cytoskeletal transport systems and induces cooperativity in multi-motor transport. Moreover, our ‘membrane-anchored’ gliding motility assays can be used to study the effects of lipid diffusivity (e.g. the presence of lipid micro-domains and rafts), lipid composition, and adaptor proteins on the collective dynamics of different motors.:Abstract vii 1 Introduction 1 1.1 Intracellular transport driven by motor proteins 2 1.2 Attachment of motor proteins to cargo 13 1.3 In vitro approaches to study transport by motor proteins 16 1.4 Aim of this study 23 2 Transport by kinesin-1 anchored to supported lipid bilayers 24 2.1 Formation and characterization of biotinylated SLBs 26 2.2 Anchoring kinesin-1 to biotinylated SLBs 28 2.3 Gliding motility of microtubules by kinesin-1 linked to SLBs 34 2.4 Theoretical description of gliding motility on diffusing motor proteins 40 2.5 Comparison of the gliding velocity between experiment and theory 46 2.6 Gliding motility on phase-separated SLBs 53 2.7 Discussion 55 3 Transport by KIF16B with an inherent lipid-binding domain 62 3.2 Biophysical characterization of KIF16B 70 3.3 Gliding motility of microtubules by KIF16B linked to SLBs 78 3.4 Transport of SUVs and lipid-coated beads attached to KIF16B 87 3.5 Discussion 90 4 Conclusion and outlook 96 5 Materials and methods 99 5.1 Reagents and solutions 99 5.2 Molecular biology 100 5.3 Protein expression and purification 104 5.4 In vitro motility assays 110 5.5 Image acquisition and data analysis 118 References 126 List of figures 141 List of tables 143 Abbreviations and symbols 144 Acknowledgements 147
22

Collective behavior of molecular motors

Neetz, Manuel 23 March 2012 (has links)
Microtubule associated molecular motors are involved in a multitude of fundamental cellular processes such as intracellular transport and spindle positioning. During these movements multiple motor proteins often work together and are, therefore, able to exert high forces. Thus force generation and sensing are common mechanisms for controlling motor driven movement. These mechanisms play a pivotal role when motor proteins antagonize each other, e.g. to facilitate oscillations of the spindle or the nucleus. Single motor proteins have been characterized in depth over the last two decades, our understanding of the collective behavior of molecular motors remains, however, poor. Since motor proteins often cooperate while they walk along microtubules, it is necessary to describe their collective reaction to a load quantitatively in order to understand the mechanism of many motor-driven processes. I studied the antagonistic action of many molecular motors (of one kind) in a gliding geometry. For this purpose I crosslinked two microtubules in an antiparallel fashion, so that they formed \"doublets\". Then I observed the gliding motility of these antiparallel doublets and analyzed the gliding velocity with respect to the relative number of motors pulling or pushing against each other. I observed that the antiparallel doublets gliding on conventional kinesin-1 (from Drosophila melanogaster) as well as cytoplasmic dynein (from Saccharomyces cerevisae) exhibited two distinct modes of movement, slow and fast, which were well separated. Furthermore I found a bistability, meaning, that both kinds of movement, slow and fast, occurred at the same ratio of antagonizing motors. Antiparallel doublets gliding on the non-processive motor protein Ncd (the kinesin-14 from D. melanogaster) showed, however, no bistability. The collective dynamics of all three motor proteins were described with a quantitative theory based on single-motor properties. Furthermore the response of multiple dynein motors towards an external, well-defined load was measured in a gliding geometry by magnetic tweezing. Examples of multi-motor force-velocity relationships are presented and discussed. I established, furthermore, a method for counting single surface immobilized motors to guide the evaluation of the tweezing experiments.:1 Introduction to the functions of molecular motors 1 1.1 How molecular motors move 1 1.1.1 Of muscles and molecules 1 1.1.2 Kinesin-1, the working horse of single-molecule research 3 1.1.3 Kinesin-14, an unusual kinesin with a new twist 6 1.1.4 Cytoplasmic dynein, the molecule with many qualities 7 1.2 Structure and function of microtubules 8 1.3 The directionality of molecular motors 9 1.4 Force regulation in cell biology via molecular motors 10 1.4.1 Bidirectional cargo transport 10 1.4.2 Dynein drives intracellular oscillations 13 1.4.3 Control of spindle length 15 2 Introduction to the collective behavior of molecular motors in vitro 19 2.1 Cooperativity of molecular motors 19 2.2 How multiple motors work against a load 21 2.2.1 Theoretical concepts 21 2.2.2 Optical tweezing of multiple motors 22 2.2.3 Alternative experimental approaches 23 2.2.4 Membrane tube dynamics 24 2.3 Antagonizing molecular motors 25 2.3.1 Competition between dissimilar motors 25 2.3.2 Competition between identical motors 26 2.4 Aim of the project 28 3 Characterization of molecular motors 31 3.1 Results: The run length of processive motors 31 3.1.1 Run length of kinesin-1 at different ATP concentrations 31 3.1.2 The run length of cytoplasmic dynein 34 3.2 Results for multi-motor gliding assays 37 3.2.1 The effect of ATP on the gliding motility 37 3.2.2 The effect of temperature on the gliding motility 39 3.2.3 Bead transport does not influence gliding motility 42 3.3 Discussion 43 4 Magnetic tweezing of multiple molecular motors 45 4.1 Concepts of the magnetic tweezing setup 45 4.1.1 Theoretical concepts 45 4.1.2 Implementation 48 4.1.3 Calibration 51 4.2 Results of multi-motor force measurements 53 4.2.1 External force leads to microtubule re-orientation 53 4.2.2 Cytoplasmic dynein is able to withstand high opposing loads 55 4.2.3 Force-velocity curves at very low motor densities 56 4.2.4 Averaging of multi-motor force-velocity relationships 58 4.3 Discussion 60 5 Reconstitution of antagonizing motor activity 63 5.1 The doublet assay 63 5.2 Experimental results of the doublet assay 65 5.2.1 Kinesin-1 driven doublets move in discrete velocity regimes 65 5.2.2 Velocity affects the shape of the bistability curve 68 5.2.3 Dynein\'s processivity allows bistability at low velocity 69 5.2.4 Ncd does not exhibit a bistability curve 70 5.3 Theoretical results of the doublets assay 71 5.3.1 General concepts 71 5.3.2 Theory for processive motors 73 5.3.3 Theory for non-processive motors 75 5.3.4 The emergence of bistability 78 5.3.5 Model for single-motor force-velocity relationships 81 5.4 Comparison between theoretical and experiment results 83 5.5 Discussion 87 6 Materials and Methods 91 6.1 List of chemicals and equipment 91 6.2 Buffer recipes 92 6.3 Protein purification 93 6.4 Preparation of microtubules 95 6.5 Preparation of flow cells 96 6.6 Fluorescence microscopy 98 6.7 Errors computation 100 6.8 Software 100 7 References 103 8 Acknowledgement 113
23

Nanotechnological applications of biomolecular motor systems / Nanotechnologische Anwendungen biomolekularer Motorsysteme

Diez, Stefan, Howard, Jonathon 11 October 2008 (has links)
Neuerliche Fortschritte im Verständnis biomolekularer Motoren rücken ihre Anwendung als Nanomaschinen in den Bereich des Möglichen. So könnten sie zum Beispiel als Nanoroboter arbeiten, um in molekularen Fabriken kleine – aber dennoch komplizierte – Strukturen auf winzigen Förderbändern herzustellen, um Netzwerke molekularer Nanodrähte und Transistoren für elektronische Anwendungen zu assemblieren oder sie könnten in adaptiven Materialien patrouillieren und diese, wenn nötig, reparieren. In diesem Sinne besitzen biomolekulare Motoren das Potenzial, die Basis für die Konstruktion, Strukturierung und Wartung nanoskaliger Materialien zu bilden. / Recent advances in understanding how biomolecular motors work have raised the possibility that they might find applications as nanomachines. For example, they could be used as molecule- sized robots that work in molecular factories where small, but intricate structures are made on tiny assembly lines, that construct networks of molecular conductors and transistors for use as electrical circuits, or that continually patrol inside “adaptive” materials and repair them when necessary. Thus biomolecular motors could form the basis of bottom-up approaches for constructing, active structuring and maintenance at the nanometer scale.
24

Kontrafaktische Fallstudien in Geschichte und Ökonomie : Katalysator- vs. Magermotorlösungen

Laitenberger, Korinna 21 August 2006 (has links) (PDF)
„Ich glaube an das Pferd. Das Automobil ist nur eine vorübergehende Erscheinung.“ Kaiser Wilhelm II. (1859-1941) Was in der Geschichte verdanken wir dem Zufall? Oder war der Lauf der Dinge unausweichlich und hätte trotz kleiner Änderungen seinen Kurs beibehalten? Die Kontrafaktik gibt Antworten auf diese Fragen, indem sie Überlegungen anstellt, wie die Geschichte anders hätte verlaufen können. Dabei werden Handlungsspielräume und situative Einflussfaktoren aufgezeigt und auf ihren Kausalitätsgrad hin analysiert. Insbesondere wird die Frage gestellt, inwiefern bestimmte Entwicklungen kausal und somit unausweichlich für den status quo waren und welche nur zufällig entstanden sind. Speziell bei Innovationen ist die Fragestellung interessant: Warum setzen sich etwa bestimmte Produkte als Standards durch, während andere wenig Erfolg haben bzw. nicht einmal zu Ende entwickelt werden? ...
25

Das KZ-Aussenlager Genshagen : Struktur und Wahrnehmung der Zwangsarbeit in einem Rüstungsbetrieb 1944/45 /

Jegielka, Stephan. January 2005 (has links)
Master's thesis. / Includes bibliographical references (p. 105-109).
26

Movements of molecular motors : diffusion and directed walks

Klumpp, Stefan January 2003 (has links)
Bewegungen von prozessiven molekularen Motoren des Zytoskeletts sind durch ein Wechselspiel von gerichteter Bewegung entlang von Filamenten und Diffusion in der umgebenden Lösung gekennzeichnet. Diese eigentümlichen Bewegungen werden in der vorliegenden Arbeit untersucht, indem sie als Random Walks auf einem Gitter modelliert werden. Ein weiterer Gegenstand der Untersuchung sind Effekte von Wechselwirkungen zwischen den Motoren auf diese Bewegungen. <br /> <br /> Im einzelnen werden vier Transportphänomene untersucht: <br /> (i) Random Walks von einzelnen Motoren in Kompartimenten verschiedener Geometrien, <br /> (ii) stationäre Konzentrationsprofile, die sich in geschlossenen Kompartimenten infolge dieser Bewegungen einstellen,<br /> (iii) randinduzierte Phasenübergänge in offenen röhrenartigen Kompartimenten, die an Motorenreservoirs gekoppelt sind, und <br /> (iv) der Einfluß von kooperativen Effekten bei der Motor-Filament-Bindung auf die Bewegung. Alle diese Phänomene sind experimentell zugänglich, und mögliche experimentelle Realisierungen werden diskutiert. / Movements of processive cytoskeletal motors are characterized by an interplay between directed motion along filament and diffusion in the surrounding solution. In the present work, these peculiar movements are studied by modeling them as random walks on a lattice. An additional subject of our studies is the effect of motor-motor interactions on these movements. <br /> <br /> In detail, four transport phenomena are studied: <br /> (i) Random walks of single motors in compartments of various geometries, <br /> (ii) stationary concentration profiles which build up as a result of these movements in closed compartments, <br /> (iii) boundary-induced phase transitions in open tube-like compartments coupled to reservoirs of motors, and <br /> (iv) the influence of cooperative effects in motor-filament binding on the movements. All these phenomena are experimentally accessible and possible experimental realizations are discussed.
27

Bidirectional transport by molecular motors

Müller, Melanie J. I. January 2008 (has links)
In biological cells, the long-range intracellular traffic is powered by molecular motors which transport various cargos along microtubule filaments. The microtubules possess an intrinsic direction, having a 'plus' and a 'minus' end. Some molecular motors such as cytoplasmic dynein walk to the minus end, while others such as conventional kinesin walk to the plus end. Cells typically have an isopolar microtubule network. This is most pronounced in neuronal axons or fungal hyphae. In these long and thin tubular protrusions, the microtubules are arranged parallel to the tube axis with the minus ends pointing to the cell body and the plus ends pointing to the tip. In such a tubular compartment, transport by only one motor type leads to 'motor traffic jams'. Kinesin-driven cargos accumulate at the tip, while dynein-driven cargos accumulate near the cell body. We identify the relevant length scales and characterize the jamming behaviour in these tube geometries by using both Monte Carlo simulations and analytical calculations. A possible solution to this jamming problem is to transport cargos with a team of plus and a team of minus motors simultaneously, so that they can travel bidirectionally, as observed in cells. The presumably simplest mechanism for such bidirectional transport is provided by a 'tug-of-war' between the two motor teams which is governed by mechanical motor interactions only. We develop a stochastic tug-of-war model and study it with numerical and analytical calculations. We find a surprisingly complex cooperative motility behaviour. We compare our results to the available experimental data, which we reproduce qualitatively and quantitatively. / In biologischen Zellen transportieren molekulare Motoren verschiedenste Frachtteilchen entlang von Mikrotubuli-Filamenten. Die Mikrotubuli-Filamente besitzen eine intrinsische Richtung: sie haben ein "Plus-" und ein "Minus-"Ende. Einige molekulare Motoren wie Dynein laufen zum Minus-Ende, während andere wie Kinesin zum Plus-Ende laufen. Zellen haben typischerweise ein isopolares Mikrotubuli-Netzwerk. Dies ist besonders ausgeprägt in neuronalen Axonen oder Pilz-Hyphen. In diesen langen röhrenförmigen Ausstülpungen liegen die Mikrotubuli parallel zur Achse mit dem Minus-Ende zum Zellkörper und dem Plus-Ende zur Zellspitze gerichtet. In einer solchen Röhre führt Transport durch nur einen Motor-Typ zu "Motor-Staus". Kinesin-getriebene Frachten akkumulieren an der Spitze, während Dynein-getriebene Frachten am Zellkörper akkumulieren. Wir identifizieren die relevanten Längenskalen und charakterisieren das Stauverhalten in diesen Röhrengeometrien mit Hilfe von Monte-Carlo-Simulationen und analytischen Rechnungen. Eine mögliche Lösung für das Stauproblem ist der Transport mit einem Team von Plus- und einem Team von Minus-Motoren gleichzeitig, so dass die Fracht sich in beide Richtungen bewegen kann. Dies wird in Zellen tatsächlich beobachtet. Der einfachste Mechanismus für solchen bidirektionalen Transport ist ein "Tauziehen" zwischen den beiden Motor-Teams, das nur mit mechanischer Interaktion funktioniert. Wir entwickeln ein stochastisches Tauzieh-Modell, das wir mit numerischen und analytischen Rechnungen untersuchen. Es ergibt sich ein erstaunlich komplexes Motilitätsverhalten. Wir vergleichen unsere Resultate mit den vorhandenen experimentellen Daten, die wir qualitativ und quantitativ reproduzieren.
28

Different modes of cooperative transport by molecular motors

Berger, Florian January 2012 (has links)
Cargo transport by molecular motors is ubiquitous in all eukaryotic cells and is typically driven cooperatively by several molecular motors, which may belong to one or several motor species like kinesin, dynein or myosin. These motor proteins transport cargos such as RNAs, protein complexes or organelles along filaments, from which they unbind after a finite run length. Understanding how these motors interact and how their movements are coordinated and regulated is a central and challenging problem in studies of intracellular transport. In this thesis, we describe a general theoretical framework for the analysis of such transport processes, which enables us to explain the behavior of intracellular cargos based on the transport properties of individual motors and their interactions. Motivated by recent in vitro experiments, we address two different modes of transport: unidirectional transport by two identical motors and cooperative transport by actively walking and passively diffusing motors. The case of cargo transport by two identical motors involves an elastic coupling between the motors that can reduce the motors’ velocity and/or the binding time to the filament. We show that this elastic coupling leads, in general, to four distinct transport regimes. In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted to attain a reduced velocity regime. All of these regimes, which we derive both by analytical calculations and by general time scale arguments, can be explored experimentally by varying the elastic coupling strength. In addition, using the time scale arguments, we explain why previous studies came to different conclusions about the effect and relevance of motor-motor interference. In this way, our theory provides a general and unifying framework for understanding the dynamical behavior of two elastically coupled molecular motors. The second mode of transport studied in this thesis is cargo transport by actively pulling and passively diffusing motors. Although these passive motors do not participate in active transport, they strongly enhance the overall cargo run length. When an active motor unbinds, the cargo is still tethered to the filament by the passive motors, giving the unbound motor the chance to rebind and continue its active walk. We develop a stochastic description for such cooperative behavior and explicitly derive the enhanced run length for a cargo transported by one actively pulling and one passively diffusing motor. We generalize our description to the case of several pulling and diffusing motors and find an exponential increase of the run length with the number of involved motors. / Lastentransport mittels Motorproteinen ist ein grundlegender Mechanismus aller eukaryotischen Zellen und wird üblicherweise von mehreren Motoren kooperativ durchgeführt, die zu einer oder zu verschiedenen Motorarten wie Kinesin, Dynein oder Myosin gehören. Diese Motoren befördern Lasten wie zum Beispiel RNAs, Proteinkomplexe oder Organellen entlang Filamenten, von denen sie nach einer endlichen zurückgelegten Strecke abbinden. Es ist ein zentrales und herausforderndes Problem zu verstehen, wie diese Motoren wechselwirken und wie ihre Bewegungen koordiniert und reguliert werden. In der vorliegenden Arbeit wird eine allgemeine theoretische Herangehensweise zur Untersuchung solcher Transportprozesse beschrieben, die es uns ermöglicht, das Verhalten von intrazellularem Transport, ausgehend von den Transporteigenschaften einzelner Motoren und ihren Wechselwirkungen, zu verstehen. Wir befassen uns mit zwei Arten kooperativen Transports, die auch kürzlich in verschiedenen in vitro-Experimenten untersucht wurden: (i) gleichgerichteter Transport mit zwei identischen Motorproteinen und (ii) kooperativer Transport mit aktiv schreitenden und passiv diffundierenden Motoren. Beim Lastentransport mit zwei identischen Motoren sind die Motoren elastisch gekoppelt, was eine Verminderung ihrer Geschwindigkeit und/oder ihrer Bindezeit am Filament hervorrufen kann. Wir zeigen, dass solch eine elastische Kopplung im Allgemeinen zu vier verschiedenen Transportcharakteristiken führt. Zusätzlich zu einer schwachen Kopplung, können bei Kinesinen und Dyneinen eine starke Kopplung und ein verstärktes Abbinden auftreten, wohingegen bei Myosin Motoren eine verminderte Geschwindigkeit vorhergesagt wird. All diese Transportcharakteristiken, die wir mit Hilfe analytischer Rechnungen und Zeitskalenargumenten herleiten, können durch Änderung der elastischen Kopplung experimentell untersucht werden. Zusätzlich erklären wir anhand der Zeitskalenargumente, warum frühere Untersuchungen zu unterschiedlichen Erkenntnissen über die Auswirkung und die Wichtigkeit der gegenseitigen Beeinflussung der Motoren gelangt sind. Auf diese Art und Weise liefert unsere Theorie eine allgemeine und vereinheitlichende Beschreibung des dynamischen Verhaltens von zwei elastisch gekoppelten Motorproteinen. Die zweite Art von Transport, die in dieser Arbeit untersucht wird ist der Lastentransport durch aktiv ziehende und passiv diffundierende Motoren. Obwohl die passiven Motoren nicht zum aktiven Transport beitragen, verlängern sie stark die zurückgelegte Strecke auf dem Filament. Denn wenn ein aktiver Motor abbindet, wird das Lastteilchen immer noch am Filament durch den passiven Motor festgehalten, was dem abgebundenen Motor die Möglichkeit gibt, wieder an das Filament anzubinden und den aktiven Transport fortzusetzen. Für dieses kooperative Verhalten entwickeln wir eine stochastische Beschreibung und leiten explizit die verlängerte Transportstrecke für einen aktiv ziehenden und einen passiv diffundierenden Motor her. Wir verallgemeinern unsere Beschreibung für den Fall von mehreren ziehenden und diffundierenden Motoren und finden ein exponentielles Anwachsen der zurückgelegten Strecke in Abhängigkeit von der Anzahl der beteiligten Motoren.
29

Kontrafaktische Fallstudien in Geschichte und Ökonomie : Katalysator- vs. Magermotorlösungen

Laitenberger, Korinna 21 August 2006 (has links)
„Ich glaube an das Pferd. Das Automobil ist nur eine vorübergehende Erscheinung.“ Kaiser Wilhelm II. (1859-1941) Was in der Geschichte verdanken wir dem Zufall? Oder war der Lauf der Dinge unausweichlich und hätte trotz kleiner Änderungen seinen Kurs beibehalten? Die Kontrafaktik gibt Antworten auf diese Fragen, indem sie Überlegungen anstellt, wie die Geschichte anders hätte verlaufen können. Dabei werden Handlungsspielräume und situative Einflussfaktoren aufgezeigt und auf ihren Kausalitätsgrad hin analysiert. Insbesondere wird die Frage gestellt, inwiefern bestimmte Entwicklungen kausal und somit unausweichlich für den status quo waren und welche nur zufällig entstanden sind. Speziell bei Innovationen ist die Fragestellung interessant: Warum setzen sich etwa bestimmte Produkte als Standards durch, während andere wenig Erfolg haben bzw. nicht einmal zu Ende entwickelt werden? ...
30

DataCalc: Ad-hoc Analyses on Heterogeneous Data Sources

Luong, Johannes, Habich, Dirk, Lehner, Wolfgang 19 July 2023 (has links)
Storing and processing data at different locations using a heterogeneous set of formats and data managements systems is state-of-the-art in many organizations. However, data analyses can often provide better insight when data from several sources is integrated into a combined perspective. In this paper we present an overview of our data integration system DataCalc. DataCalc is an extensible integration platform that executes adhoc analytical queries on a set of heterogeneous data processors. Our novel platform uses an expressive function shipping interface that promotes local computation and reduces data movement between processors. In this paper, we provide a discussion of the overall architecture and the main components of DataCalc. Moreover, we discuss the cost of integrating additional processors and evaluate the overall performance of the platform.

Page generated in 0.0474 seconds